Araştırma Makalesi
BibTex RIS Kaynak Göster

A New Minimum Delay Model for Multi-Lane Traffic Circles

Yıl 2022, Cilt: 33 Sayı: 1, 11429 - 11454, 01.01.2022
https://doi.org/10.18400/tekderg.557823

Öz

Minimum delay (or service delay) is one of the most important performance measures for intersection analysis. It can be described as the delay to a vehicle, which is waiting at the stop (or yield) line of an unsignalized intersection. In this study, an appropriate minimum delay equation is derived for multi-lane traffic circles in İzmir, Turkey. For this purpose, observations are made at six approaches of five multi-lane traffic circles. Simple and multiple regression analysis, in which circulating flow and geometric parameters are chosen as independent variables, are used to model minimum delay. Results have shown that geometry of a traffic circle has an important effect on minimum delay and should be considered in analysis but the model may fail to define minimum delay values greater than 22 seconds. Analyses have shown that models which depend on entry capacity are more effective in estimation of minimum delay at multi-lane traffic circles.

Kaynakça

  • Tanyel, S., Baran, T. and Özuysal, M. (2007). Applicability of various capacity models for single-lane roundabouts in Izmir, Turkey. Journal of Transportation Engineering, Vol. 133(2), pp. 647-653.
  • Özuysal, M., Caliskanelli, S.P., Tanyel, S. and Baran, T. (2009). Capacity estimation for traffic circles. Applicability of ANN. Proceedings of ICE-Transport, Vol. 162(4), pp. 195-206.
  • Çalışkanelli, S.P., Özuysal, M., Tanyel, S. and Yayla, N. (2009). Comparison of different capacity models for traffic circles. Transport, Vol. 24(4), pp. 257–264.
  • Tanyel, S., Yayla, N., (2003). A discussion on the parameters of Cowan M3 distribution for Turkey, Transportation Research Part A: Policy and Practice, 37(2), 129-143.
  • Tanyel, S. and Yayla, N. (2010). Yuvarlakada kavşakların kapasiteleri üzerine bir tartışma. Teknik Dergi, Vol. 21(1), pp. 4935–4958.
  • Ersoy, M. and Çelikoğlu, H. (2014). Çok şeritli dönel kavşaklarda kapasite analizi: Highway Capacity Manual 2010 kapasite modeliyle bir değerlendirme. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Vol. 20(6), pp. 225-231.
  • Tanyel, S., Celik, K., Özuysal, M. and Çalışkanelli S. P. (2013). Different approaches to minimum delay estimation at single-lane traffic circles in İzmir, Turkey. Canadian Journal of Civil Engineering, Vol. 40(3), pp. 274-284.
  • Akgüngör, A.P. (2004). Sinyalize kavşaklarda gecikme tahmininin matematiksel modellemesi-I: Farklı çözümleme süreleri için zamana bağli yeni bir gecikme modeli. Teknoloji, Vol. 7(3), pp. 369-379.
  • Akçelik, R. (1998). Traffic circles: Capacity and performance analysis, ARRB Research report ARR 321, Vermont, Australia.
  • Troutbeck, R. and Brilon, W. (1995). Unsignalized intersection theory. In Traffic Flow Theory: A State of Art Report 8-1, Eds. Gartner, N., Messer, C.J and Rathi, A. K., pp. 8-44.
  • Troutbeck, R. J. (1990). Traffic interactions at traffic circles. Conference of the Australian Road Research Board, NPT-5, Traffic Engineering and Planning, pp. 17-42.
  • Troutbeck, R. (1991). Unsignalized intersections and traffic circles in Australia: Recent developments. Intersections Without Traffic Signals II, pp. 238-257, Bochum, Germany.
  • Cowan, R. C. (1987). An extension of Tanner's results on uncontrolled intersections. Queueing Systems, Vol. 1, pp. 249-263.
  • Luttinen, R. T. (2004). Capacity and level of service at Finnish unsignalized intersections. Finra Reports 1/2004, Finnish Road Administration, Helsinki, Finland.
  • Gerlough, D. L. and Huber, M. J. (1975). Traffic flow theory. Transportation Research Board Special Report 165, Washington D.C., USA.
  • Surti, V. H. (1970). Operation efficiency efficiency evaluation of selected at-grade intersectections. HHR 321, pp. 60-73, Highway Research Board, National Research Council, Washington, D.C.
  • Teply, S., Abou-Henaidy, M. I., Hunt, J. D. (1997). Gap acceptance behaviour-aggregate and logit perspectives: Part 2. Traffic Engineering and Control, Vol. 38(10), pp. 540-544.
  • Kyte, M., Clemow, C., Mahfood, N., Lall, B. K. and Khisty, C. J. (1991). Capacity and delay characteristics of two-way stop-controlled intersections. Transportation Research Record 1320, Transportation Research Board, National Research Council, Washington, D.C. pp. 160–167.
  • Al-Omari, B. and Benekohal, R. F. (1999). Hybrid delay models for unsaturated two-way stop controlled intersections. Journal of Transportation Engineering, Vol. 125(4), pp. 292–293.
  • Adams, W. F. (1936). Road traffic considered as a random series. Journal of the Institution of Civil Engineers, Vol. 4(1), pp. 121-130.
  • Tanner, J.C. (1962). A theoretical analysis of delays at an uncontrolled intersection. Biometrika, Vol. 49(1-2), pp. 163-170.
  • Cowan R. J. (1975). Useful headway models. Transportation Research, Vol. 9, pp. 371-375.
  • Cowan, R. J. (1984). Adam's formula revised. Traffic Engineering and Control, Vol. 25 (5), pp. 272-274.
  • Luttinen R. T. (1996). Statistical analysis of vehicle time headways. Teknillien Korkeakoulu, Julkaisu, , Liikennetekniikka, Otaniemi, Finland.
  • Drew, D. R. (1968). Traffic flow theory and control. McGraw-Hill, New York.
  • Gedizlioğlu, E. (1979). Denetimsiz kavşaklarda yan yol sürücülerinin davranışlarına göre pratik kapasite saptanması için bir yöntem. Doktora Tezi, İ.T.Ü. Mühendislik-Mimarlık Fakültesi, İstanbul.
  • Troutbeck, R. J. (1986). Average delay at an unsignalized intersction with two major streams each having a dichotomized headway. Transportation Science, Vol. 20(4), pp. 272-286.
  • Hagring, O. (2003). Capacity model for traffic circles. Trivector Report 2003:7, Lund, Sweden.
  • Flannery, A., Kharoufeh, J. P., Gautam, N. and Elefteriadou, L. (2005). Queuing delay models for single-lane traffic circles. Civil Engineering and Environmental Science, Vol. 22(3), pp. 133-150.
  • Chandra, S., Agrawal, A. and Rajamma, A. (2009). Microscopic analysis of service delay at uncontrolled intersections in mixed traffic conditions. Journal of Transportation Engineering, Vol. 135(6), pp. 323–329.
  • Çelik, F. (1987). Denetimsiz eşdüzey kavşak sisteminin simülasyonu ve taşıt gecikmelerinin formüle edilmesi. Doktora Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
  • Ashalatha R. and Chandra, S. (2011). Service delay analysis at TWSC intersections through simulation. KSCE J. of Civ. Eng., Vol. 15(2), pp. 413–425.
  • Kittelson, W.K. and Vandehey, M.A. (1991). Delay effects on driver gap acceptance characteristics at two-way stop-controlled intersections. Transportation Research Record 1320, pp. 154-159.
  • Transportation Research Board (TRB). (2000) Highway Capacity Manual. National Research Council, Washington D.C., U.S.A.
  • Transportation Research Board (TRB). (2010) Highway Capacity Manual. National Research Council, Washington D.C., U.S.A.
  • Horton, R.E. (1940). An approach toward a physical interpretation of infiltration capacity. Soil Science Society of America Journal, Vol. 5, pp. 399–417.
  • Kimber R. M. (1980). The traffic capacity of roundabouts. Transport and Road Research Laboratory, Report 942, Crowthorne, England.
  • Waren, A. D. and Lasdon, L. S. (1979). The status of nonlinear programming software. Operations Research, Vol. 27 (3), pp. 431–456.
  • Lasdon, L. S. and Waren, A.D. (1983). Large scale nonlinear programming. Computers and Chemical Engineering, Vol. 7(5), pp. 595–604.
  • Nash, J. E., Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, Vol. 10 (3), pp. 282–290.
  • Barnston, A. G. (1992). Correspondence among the correlation RMSE (root mean square error) and Heidke forecast verification measures; refinement of the Heidke score. Notes and Correspondence, Vol. 7(4), pp. 699-709.

A New Minimum Delay Model for Multi-Lane Traffic Circles

Yıl 2022, Cilt: 33 Sayı: 1, 11429 - 11454, 01.01.2022
https://doi.org/10.18400/tekderg.557823

Öz

Minimum delay (or service delay) is one of the most important performance measures for intersection analysis. It can be described as the delay to a vehicle, which is waiting at the stop (or yield) line of an unsignalized intersection. In this study, an appropriate minimum delay equation is derived for multi-lane traffic circles in İzmir, Turkey. For this purpose, observations are made at six approaches of five multi-lane traffic circles. Simple and multiple regression analysis, in which circulating flow and geometric parameters are chosen as independent variables, are used to model minimum delay. Results have shown that geometry of a traffic circle has an important effect on minimum delay and should be considered in analysis but the model may fail to define minimum delay values greater than 22 seconds. Analyses have shown that models which depend on entry capacity are more effective in estimation of minimum delay at multi-lane traffic circles.

Kaynakça

  • Tanyel, S., Baran, T. and Özuysal, M. (2007). Applicability of various capacity models for single-lane roundabouts in Izmir, Turkey. Journal of Transportation Engineering, Vol. 133(2), pp. 647-653.
  • Özuysal, M., Caliskanelli, S.P., Tanyel, S. and Baran, T. (2009). Capacity estimation for traffic circles. Applicability of ANN. Proceedings of ICE-Transport, Vol. 162(4), pp. 195-206.
  • Çalışkanelli, S.P., Özuysal, M., Tanyel, S. and Yayla, N. (2009). Comparison of different capacity models for traffic circles. Transport, Vol. 24(4), pp. 257–264.
  • Tanyel, S., Yayla, N., (2003). A discussion on the parameters of Cowan M3 distribution for Turkey, Transportation Research Part A: Policy and Practice, 37(2), 129-143.
  • Tanyel, S. and Yayla, N. (2010). Yuvarlakada kavşakların kapasiteleri üzerine bir tartışma. Teknik Dergi, Vol. 21(1), pp. 4935–4958.
  • Ersoy, M. and Çelikoğlu, H. (2014). Çok şeritli dönel kavşaklarda kapasite analizi: Highway Capacity Manual 2010 kapasite modeliyle bir değerlendirme. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Vol. 20(6), pp. 225-231.
  • Tanyel, S., Celik, K., Özuysal, M. and Çalışkanelli S. P. (2013). Different approaches to minimum delay estimation at single-lane traffic circles in İzmir, Turkey. Canadian Journal of Civil Engineering, Vol. 40(3), pp. 274-284.
  • Akgüngör, A.P. (2004). Sinyalize kavşaklarda gecikme tahmininin matematiksel modellemesi-I: Farklı çözümleme süreleri için zamana bağli yeni bir gecikme modeli. Teknoloji, Vol. 7(3), pp. 369-379.
  • Akçelik, R. (1998). Traffic circles: Capacity and performance analysis, ARRB Research report ARR 321, Vermont, Australia.
  • Troutbeck, R. and Brilon, W. (1995). Unsignalized intersection theory. In Traffic Flow Theory: A State of Art Report 8-1, Eds. Gartner, N., Messer, C.J and Rathi, A. K., pp. 8-44.
  • Troutbeck, R. J. (1990). Traffic interactions at traffic circles. Conference of the Australian Road Research Board, NPT-5, Traffic Engineering and Planning, pp. 17-42.
  • Troutbeck, R. (1991). Unsignalized intersections and traffic circles in Australia: Recent developments. Intersections Without Traffic Signals II, pp. 238-257, Bochum, Germany.
  • Cowan, R. C. (1987). An extension of Tanner's results on uncontrolled intersections. Queueing Systems, Vol. 1, pp. 249-263.
  • Luttinen, R. T. (2004). Capacity and level of service at Finnish unsignalized intersections. Finra Reports 1/2004, Finnish Road Administration, Helsinki, Finland.
  • Gerlough, D. L. and Huber, M. J. (1975). Traffic flow theory. Transportation Research Board Special Report 165, Washington D.C., USA.
  • Surti, V. H. (1970). Operation efficiency efficiency evaluation of selected at-grade intersectections. HHR 321, pp. 60-73, Highway Research Board, National Research Council, Washington, D.C.
  • Teply, S., Abou-Henaidy, M. I., Hunt, J. D. (1997). Gap acceptance behaviour-aggregate and logit perspectives: Part 2. Traffic Engineering and Control, Vol. 38(10), pp. 540-544.
  • Kyte, M., Clemow, C., Mahfood, N., Lall, B. K. and Khisty, C. J. (1991). Capacity and delay characteristics of two-way stop-controlled intersections. Transportation Research Record 1320, Transportation Research Board, National Research Council, Washington, D.C. pp. 160–167.
  • Al-Omari, B. and Benekohal, R. F. (1999). Hybrid delay models for unsaturated two-way stop controlled intersections. Journal of Transportation Engineering, Vol. 125(4), pp. 292–293.
  • Adams, W. F. (1936). Road traffic considered as a random series. Journal of the Institution of Civil Engineers, Vol. 4(1), pp. 121-130.
  • Tanner, J.C. (1962). A theoretical analysis of delays at an uncontrolled intersection. Biometrika, Vol. 49(1-2), pp. 163-170.
  • Cowan R. J. (1975). Useful headway models. Transportation Research, Vol. 9, pp. 371-375.
  • Cowan, R. J. (1984). Adam's formula revised. Traffic Engineering and Control, Vol. 25 (5), pp. 272-274.
  • Luttinen R. T. (1996). Statistical analysis of vehicle time headways. Teknillien Korkeakoulu, Julkaisu, , Liikennetekniikka, Otaniemi, Finland.
  • Drew, D. R. (1968). Traffic flow theory and control. McGraw-Hill, New York.
  • Gedizlioğlu, E. (1979). Denetimsiz kavşaklarda yan yol sürücülerinin davranışlarına göre pratik kapasite saptanması için bir yöntem. Doktora Tezi, İ.T.Ü. Mühendislik-Mimarlık Fakültesi, İstanbul.
  • Troutbeck, R. J. (1986). Average delay at an unsignalized intersction with two major streams each having a dichotomized headway. Transportation Science, Vol. 20(4), pp. 272-286.
  • Hagring, O. (2003). Capacity model for traffic circles. Trivector Report 2003:7, Lund, Sweden.
  • Flannery, A., Kharoufeh, J. P., Gautam, N. and Elefteriadou, L. (2005). Queuing delay models for single-lane traffic circles. Civil Engineering and Environmental Science, Vol. 22(3), pp. 133-150.
  • Chandra, S., Agrawal, A. and Rajamma, A. (2009). Microscopic analysis of service delay at uncontrolled intersections in mixed traffic conditions. Journal of Transportation Engineering, Vol. 135(6), pp. 323–329.
  • Çelik, F. (1987). Denetimsiz eşdüzey kavşak sisteminin simülasyonu ve taşıt gecikmelerinin formüle edilmesi. Doktora Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
  • Ashalatha R. and Chandra, S. (2011). Service delay analysis at TWSC intersections through simulation. KSCE J. of Civ. Eng., Vol. 15(2), pp. 413–425.
  • Kittelson, W.K. and Vandehey, M.A. (1991). Delay effects on driver gap acceptance characteristics at two-way stop-controlled intersections. Transportation Research Record 1320, pp. 154-159.
  • Transportation Research Board (TRB). (2000) Highway Capacity Manual. National Research Council, Washington D.C., U.S.A.
  • Transportation Research Board (TRB). (2010) Highway Capacity Manual. National Research Council, Washington D.C., U.S.A.
  • Horton, R.E. (1940). An approach toward a physical interpretation of infiltration capacity. Soil Science Society of America Journal, Vol. 5, pp. 399–417.
  • Kimber R. M. (1980). The traffic capacity of roundabouts. Transport and Road Research Laboratory, Report 942, Crowthorne, England.
  • Waren, A. D. and Lasdon, L. S. (1979). The status of nonlinear programming software. Operations Research, Vol. 27 (3), pp. 431–456.
  • Lasdon, L. S. and Waren, A.D. (1983). Large scale nonlinear programming. Computers and Chemical Engineering, Vol. 7(5), pp. 595–604.
  • Nash, J. E., Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, Vol. 10 (3), pp. 282–290.
  • Barnston, A. G. (1992). Correspondence among the correlation RMSE (root mean square error) and Heidke forecast verification measures; refinement of the Heidke score. Notes and Correspondence, Vol. 7(4), pp. 699-709.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Makale
Yazarlar

Serhan Tanyel 0000-0001-8549-9442

Süheyla Pelin Çalışkanelli 0000-0002-0530-3276

Mustafa Özuysal 0000-0002-3276-3075

Yayımlanma Tarihi 1 Ocak 2022
Gönderilme Tarihi 25 Nisan 2019
Yayımlandığı Sayı Yıl 2022 Cilt: 33 Sayı: 1

Kaynak Göster

APA Tanyel, S., Çalışkanelli, S. P., & Özuysal, M. (2022). A New Minimum Delay Model for Multi-Lane Traffic Circles. Teknik Dergi, 33(1), 11429-11454. https://doi.org/10.18400/tekderg.557823
AMA Tanyel S, Çalışkanelli SP, Özuysal M. A New Minimum Delay Model for Multi-Lane Traffic Circles. Teknik Dergi. Ocak 2022;33(1):11429-11454. doi:10.18400/tekderg.557823
Chicago Tanyel, Serhan, Süheyla Pelin Çalışkanelli, ve Mustafa Özuysal. “A New Minimum Delay Model for Multi-Lane Traffic Circles”. Teknik Dergi 33, sy. 1 (Ocak 2022): 11429-54. https://doi.org/10.18400/tekderg.557823.
EndNote Tanyel S, Çalışkanelli SP, Özuysal M (01 Ocak 2022) A New Minimum Delay Model for Multi-Lane Traffic Circles. Teknik Dergi 33 1 11429–11454.
IEEE S. Tanyel, S. P. Çalışkanelli, ve M. Özuysal, “A New Minimum Delay Model for Multi-Lane Traffic Circles”, Teknik Dergi, c. 33, sy. 1, ss. 11429–11454, 2022, doi: 10.18400/tekderg.557823.
ISNAD Tanyel, Serhan vd. “A New Minimum Delay Model for Multi-Lane Traffic Circles”. Teknik Dergi 33/1 (Ocak 2022), 11429-11454. https://doi.org/10.18400/tekderg.557823.
JAMA Tanyel S, Çalışkanelli SP, Özuysal M. A New Minimum Delay Model for Multi-Lane Traffic Circles. Teknik Dergi. 2022;33:11429–11454.
MLA Tanyel, Serhan vd. “A New Minimum Delay Model for Multi-Lane Traffic Circles”. Teknik Dergi, c. 33, sy. 1, 2022, ss. 11429-54, doi:10.18400/tekderg.557823.
Vancouver Tanyel S, Çalışkanelli SP, Özuysal M. A New Minimum Delay Model for Multi-Lane Traffic Circles. Teknik Dergi. 2022;33(1):11429-54.