Araştırma Makalesi
BibTex RIS Kaynak Göster

Türk Deprem Yönetmelikleri (DBYBHY ve TBDY) Spektrum Tanımlarının Deprem Yalıtım Sistemi Tasarımı Özelinde Karşılaştırılması

Yıl 2021, Cilt: 32 Sayı: 5, 11127 - 11152, 01.09.2021
https://doi.org/10.18400/tekderg.713068

Öz

Bu çalışmada, Türkiye Bina Deprem Yönetmeliği ve Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik koşulları dikkate alınarak tasarlanmış deprem yalıtımlı bir yapı modeli için, spektrum tanımındaki değişime bağlı olarak maksimum yalıtım birimi deplasmanının nasıl etkilendiği incelenmiştir. Yapıdaki deprem yalıtım sitemi kurşun çekirdekli kauçuk yalıtım birimlerinden oluşurken, seçilen ve ölçeklenen deprem kayıtlarına ait yatay bileşenlerin eş zamanlı etkisine maruz bırakılmıştır. Analizler, çevrimsel yükleme altında yalıtım birimindeki dayanım kaybını dikkate alan ve almayan durumlar için tekrarlanmıştır. Yalıtım birimi dayanımını temsilen Q/W oranı ve yapının inşa edileceği alan seçilen parametrelerdir. Sonuç olarak, her iki deprem yönetmeliğinin tanımladığı spektrum eğrilerine göre tasarlanan yalıtım birimlerinin maksimum deplasmanlarında yapı koordinatına bağlı olarak farklılaşma %50 mertebelerine varabilmektedir. Yalıtım birimindeki dayanım kaybının dikkate alındığı durumlar için bu farklılaşmanın daha da fazla olduğu kaydedilmiştir.

Kaynakça

  • [1] Pınarbaşı, S., Akyüz, U., Sismik İzolasyon ve Elastomerik Yastık Deneyleri, Teknik Dergi, 16(78), 3581-3598, 2005.
  • [2] Türkiye Bina Deprem Yönetmeliği, İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı, Ankara, 2018.
  • [3] American Society of Civil Engineers, Minimum Design Loads and Associated Criteria for Buildings and Other Structures: ASCE7-16, Reston, Virginia, 2017.
  • [4] Eurocode8: Design of Structures for Earthquake Resistance- Part 1: General Rules, Seismic Actions and Rules for Buildings, EN 1998-1, 2004.
  • [5] American Association of State Highway and Transportation Officials, Guide Specification for Seismic Isolation Design 4th Edition, Washington, DC, 2014.
  • [6] Patil, A. S., Kumbhar, P. D., Time History Analysis of Multistoried RCC Buildings for Different Seismic Intensities, International Journal of Structural and Civil Engineering Research, 2(3), 194-201, 2013.
  • [7] Pant, D. R., Constantinou, M. C., Wijeyewickrema, A. C., Re-evaluation of Equivalent Lateral Force Procedure for Prediction of Displacement Demand in Seismically Isolated Structures, Engineering Structures, 52, 455-465, 2013.
  • [8] Fadi, F., Constantinou, M. C., Evaluation of Simplified Methods of Analysis for Structures with Triple Friction Pendulum Isolators, Earthquake Engineering and Structural Dynamics, 39, 5-22, 2010.
  • [9] Özdemir, G., Constantinou, M. C., Evaluation of Equivalent Lateral Force Procedure in Estimating Seismic Isolator Displacements, Soil Dynamics and Earthquake Engineering, 30, 1036-1042, 2010.
  • [10] Özdemir, G., Avşar, Ö., Bayhan, B., Change in Response of Bridges Isolated with LRBs due to Lead Core Heating, Soil Dynamics and Earthquake Engineering, 31, 921-929, 2011.
  • [11] Özdemir, G., Dicleli, M., Effect of Lead Core Heating on the Seismic Performance of Bridges Isolated with LRB in Near-fault Zones, Earthquake Engineering and Structural Dynamics, 41, 1989-2007, 2012.
  • [12] Shao, B., Mahin, S. A., Zayas, V., Achieving Targeted Levels of Reliability for Low-rise Seismically Isolated Structures, Soil Dynamics and Earthquake Engineering, 125, 105744, 2019.
  • [13] Pant, D. R., Maharjan, M., On Selection and Scaling Ground Motions for Analysis of Seismically Isolated Strucutres, Earthquake Engineering and Engineering Vibration, 15, 633-648, 2016.
  • [14] Cancellara, D., Angelis, F. D., Dynamic Assessment of Base Isolation Systems for Irregular in Plan Structures: Response Spectrum Analysis vs Nonlinear Analysis, Composite Structures, 215, 98-115, 2019.
  • [15] Mavronicola, E. A., Polycarpou, P. C., Komodromos, P., Effect of Geound Motion Directionally on the Seismic Response of Base Isolated Buildings Pounding Against Adjacent Structures, Engineering Structures, 207, 110202, 2020.
  • [16] Özdemir, G., Akyüz, U., Dynamic Analyses of Isolated Structures Under Bi-directional Excitations of Near-field Ground Motions, Shock and Vibration, 19, 505-513, 2012.
  • [17] Robinson ,W.H., Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes, Earthquake Engineering and Structural Dynamics, 10(4), 593-604, 1982.
  • [18] Kalpakidis, I. V., Constantinou, M. C., Effects of Heating on the Behavior of Lead-Rubber Bearing. I: Theory, Journal of Structural Engineering, 135, 12, 1440-1449, 2009.
  • [19] Kalpakidis, I. V., Constantinou, M. C., Effects of Heating on the Behavior of Lead-Rubber Bearing. II: Verification of Theory, Journal of Structural Engineering, 135, 12, 1450-1461, 2009.
  • [20] Constantinou, M. C., Whittaker, A. S., Kalpakidis, Y., Fenz, D. M., Warn, G. P., Performance of Seismic Isolation Hardware under Service and Seismic Loading, Technical Report, MCEER-07-0012, Multidisciplinary Center for Earthquake Engineering Research, State University of New York, Buffalo, New York, 2007.
  • [21] Quaglini, V., Bocciarelli, M., Gandelli, E., Dubini, P., Numerical Assessment of Frictional Heating in Sliding Bearings for Seismic Isolation, Journal of Earthquake Engineering, 18, 1198-1216, 2014.
  • [22] Özdemir, G., Lead Core Heating in Lead Rubber Bearings Subjected to Bidirectional Ground Motion Excitations in Various Soil Types, Earthquake Engineering and Structural Dynamics, 43, 267-285, 2014.
  • [23] Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskân Bakanlığı Afet İşleri Genel Müdürlüğü, Ankara, 2007.
  • [24] Türkiye Deprem Tehlike Haritası. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı, Ankara, 2018. (https://tdth.afad.gov.tr) (01 Ocak 2019).
  • [25] Yolcu, A., Tanırcan, G., Tüzün, C., Acceleration Displacement Response Spectra for Design of Seismic Isolation Systems in Turkey, Teknik Dergi, DOI: https://dx.doi.org/10.18400/tekderg.511798.
  • [26] Zekioğlu, A., Darama, H., Erkuş, B., Performance-Based Seismic Design of a Large Seismically Isolated Structure: Istanbul Sabiha Gökçen International Airport Terminal Building, Structural Engineers Association of California, San Diego, California, 2009.
  • [27] Jangid, R. S., Kelly, J. M., Base Isolation for Near-fault Motions, Earthquake Engineering and Structural Dynamics, 30, 691–707, 2001.
  • [28] OpenSees, Pacific Earthquake Engineering Research Center, University of California, Berkeley, ABD, 2010. (http://opensees.berkeley.edu).
  • [29] Dicleli, M., Performance of Seismic-Isolated Bridges in Relation to Near-Fault Ground-Motion and Isolator Characteristics, Earthquake Spectra, 22, 4, 887-907, 2006.
  • [30] Blanford, E., Keldrauk, E., Laufer, M., Mieler, M., Wei, J., Stojadinovic, B., Peterson, P. F., Advanced Seismic Base Isolation Methods for Modular Reactors, Final Repot, UCBTH-09-004, Departments of Civil and Environmental Engineering and Nuclear Engineering University of California, Berkeley, California, 2009.
  • [31] Çavdar, E., Özdemir, G., Ölçeklendirilen Yakın Saha Deprem Kayıtlarının Farklı Doğrultularda Etkimesi Durumunda Yalıtım Birimi Maksimum Yer Değiştirmelerinde Gözlenen Değişim, Journal of the Faculty of Engineering and Architecture of Gazi University, 33, 2, 585-598, 2018.
  • [32] Özdemir, G., Gülkan, P., Scaling Legitimacy for Design of Lead Rubber Bearing Isolated Structures Using a Bounding Analysis, Earthquake Spectra, 32, 1, 345-366, 2016.
  • [33] Constantinou, M. C., Whittaker, A. S., Fenz, D. M., Apostolakis, G., Seismic Isolation of Bridges, Department of Civil, Structural and Environmental Engineering, State University of New York at Buffalo, 2007.
  • [34] Samanta, A., Huang, Y. N., Ground-motion Scaling for Seismic Perfonmance Assessment of High-Rise Moment-Resisting Frame Building, Soil Dynamics and Earthquake Engineering, 94, 125-135, 2017.
  • [35] Avşar, Ö., Özdemir, G., Response of Seismic-Isolated Bridges in Relation to Intensity Measures of Ordinary and Pulselike Ground Motions, Journal of Bridge Engineering, 18, 250-260, 2013.
  • [36] Çavdar, E., Özdemir, G., Bayhan, B., Significance of Ground Motion Scaling Parameters on Amplitude of Scale Factors and Seismic Response of Short- and Long-Period Structures, Earthquake Spectra, 35(4), 1663-1688, 2019.
  • [37] Pacific Earthquake Engineering Research Center (PEER) Ground Motion Database, University of California, Berkeley, USA, 2015. (https://ngawest2.berkeley.edu).
  • [38] Bommer, J. J., Ruggeri, C., The Specification of Acceleration Time-Histories in Seismic Design Codes, European Earthquake Engineering, 16(1), 3-17, 2002.
  • [39] Malhotra, P. K., Response of Buildings to Near-Field Pulse-Like Ground Motions, Earthquake Engineering and Structural Dynamics, 28(11), 1309-1326, 1999.
  • [40] Chopra, A. K., Chintanapakdee, C., Comparing Response of SDF Systems to Near-Fault and Far-Fault Earthquake Motions in the Context of Spectral Regions, Earthquake Engineering and Structural Dynamics, 30(12), 1769-1789, 2001.
  • [41] Huang, Y. N., Performance Assessment of Conventional and Base-isolated Nuclear Power Plants for Earthquake and Blast Loadings, PhD Thesis, State University of New York at Buffalo, New York, ABD, 2008.
  • [42] Park, Y. J., Wen, Y. K., Ang, A. H., Random Vibration of Hysteretic Systems Under Bi-Directional Ground Motions, Earthquake Engineering and Structural Dynamics, 14, 4, 543-557, 1986.
  • [43] Constantinou, M. C., Adnane, M. A., Dynamics of Soil-Base-Isolated Structure Systems: Evaluation of Two Models for Yielding Systems, Report to NSF, Drexel University, Philadelphia, 1987.
  • [44] Özdemir, G., Response of Isolated Structures under Bi-directional Excitations of Near-Field Ground Motions, PhD Thesis, Middle East Technical University, Turkey, 2010.

Comparison of Design Spectra in Turkish Earthquake Codes (TEC and TBEC) in Terms of Seismic Isolator Design

Yıl 2021, Cilt: 32 Sayı: 5, 11127 - 11152, 01.09.2021
https://doi.org/10.18400/tekderg.713068

Öz

In this study, for a seismically isolated structural model designed in accordance with the design spectra defined by both Turkish Earthquake Codes 2007 and 2018, variation of maximum isolator displacement was studied. The isolation system in the structure was composed of lead rubber bearings. Selected and scaled ground motion records were used to perform bi-directional analyses where both horizontal components of records were subjected to analytical model, simultaneously. Analyses were repeated for both deteriorating and non-deteriorating hysteretic representations of isolators. Considered parameters were Q/W ratio of the isolator and the construction site. Results showed that analyses based on design spectra of different versions of Turkish Earthquake Code may lead to variation in maximum isolator displacements up to 50% depending on the coordinate of the structure. It is also observed that use of deteriorating hysteretic representation for seismic isolators will result in even higher variations in maximum isolator displacements.

Kaynakça

  • [1] Pınarbaşı, S., Akyüz, U., Sismik İzolasyon ve Elastomerik Yastık Deneyleri, Teknik Dergi, 16(78), 3581-3598, 2005.
  • [2] Türkiye Bina Deprem Yönetmeliği, İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı, Ankara, 2018.
  • [3] American Society of Civil Engineers, Minimum Design Loads and Associated Criteria for Buildings and Other Structures: ASCE7-16, Reston, Virginia, 2017.
  • [4] Eurocode8: Design of Structures for Earthquake Resistance- Part 1: General Rules, Seismic Actions and Rules for Buildings, EN 1998-1, 2004.
  • [5] American Association of State Highway and Transportation Officials, Guide Specification for Seismic Isolation Design 4th Edition, Washington, DC, 2014.
  • [6] Patil, A. S., Kumbhar, P. D., Time History Analysis of Multistoried RCC Buildings for Different Seismic Intensities, International Journal of Structural and Civil Engineering Research, 2(3), 194-201, 2013.
  • [7] Pant, D. R., Constantinou, M. C., Wijeyewickrema, A. C., Re-evaluation of Equivalent Lateral Force Procedure for Prediction of Displacement Demand in Seismically Isolated Structures, Engineering Structures, 52, 455-465, 2013.
  • [8] Fadi, F., Constantinou, M. C., Evaluation of Simplified Methods of Analysis for Structures with Triple Friction Pendulum Isolators, Earthquake Engineering and Structural Dynamics, 39, 5-22, 2010.
  • [9] Özdemir, G., Constantinou, M. C., Evaluation of Equivalent Lateral Force Procedure in Estimating Seismic Isolator Displacements, Soil Dynamics and Earthquake Engineering, 30, 1036-1042, 2010.
  • [10] Özdemir, G., Avşar, Ö., Bayhan, B., Change in Response of Bridges Isolated with LRBs due to Lead Core Heating, Soil Dynamics and Earthquake Engineering, 31, 921-929, 2011.
  • [11] Özdemir, G., Dicleli, M., Effect of Lead Core Heating on the Seismic Performance of Bridges Isolated with LRB in Near-fault Zones, Earthquake Engineering and Structural Dynamics, 41, 1989-2007, 2012.
  • [12] Shao, B., Mahin, S. A., Zayas, V., Achieving Targeted Levels of Reliability for Low-rise Seismically Isolated Structures, Soil Dynamics and Earthquake Engineering, 125, 105744, 2019.
  • [13] Pant, D. R., Maharjan, M., On Selection and Scaling Ground Motions for Analysis of Seismically Isolated Strucutres, Earthquake Engineering and Engineering Vibration, 15, 633-648, 2016.
  • [14] Cancellara, D., Angelis, F. D., Dynamic Assessment of Base Isolation Systems for Irregular in Plan Structures: Response Spectrum Analysis vs Nonlinear Analysis, Composite Structures, 215, 98-115, 2019.
  • [15] Mavronicola, E. A., Polycarpou, P. C., Komodromos, P., Effect of Geound Motion Directionally on the Seismic Response of Base Isolated Buildings Pounding Against Adjacent Structures, Engineering Structures, 207, 110202, 2020.
  • [16] Özdemir, G., Akyüz, U., Dynamic Analyses of Isolated Structures Under Bi-directional Excitations of Near-field Ground Motions, Shock and Vibration, 19, 505-513, 2012.
  • [17] Robinson ,W.H., Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes, Earthquake Engineering and Structural Dynamics, 10(4), 593-604, 1982.
  • [18] Kalpakidis, I. V., Constantinou, M. C., Effects of Heating on the Behavior of Lead-Rubber Bearing. I: Theory, Journal of Structural Engineering, 135, 12, 1440-1449, 2009.
  • [19] Kalpakidis, I. V., Constantinou, M. C., Effects of Heating on the Behavior of Lead-Rubber Bearing. II: Verification of Theory, Journal of Structural Engineering, 135, 12, 1450-1461, 2009.
  • [20] Constantinou, M. C., Whittaker, A. S., Kalpakidis, Y., Fenz, D. M., Warn, G. P., Performance of Seismic Isolation Hardware under Service and Seismic Loading, Technical Report, MCEER-07-0012, Multidisciplinary Center for Earthquake Engineering Research, State University of New York, Buffalo, New York, 2007.
  • [21] Quaglini, V., Bocciarelli, M., Gandelli, E., Dubini, P., Numerical Assessment of Frictional Heating in Sliding Bearings for Seismic Isolation, Journal of Earthquake Engineering, 18, 1198-1216, 2014.
  • [22] Özdemir, G., Lead Core Heating in Lead Rubber Bearings Subjected to Bidirectional Ground Motion Excitations in Various Soil Types, Earthquake Engineering and Structural Dynamics, 43, 267-285, 2014.
  • [23] Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskân Bakanlığı Afet İşleri Genel Müdürlüğü, Ankara, 2007.
  • [24] Türkiye Deprem Tehlike Haritası. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı, Ankara, 2018. (https://tdth.afad.gov.tr) (01 Ocak 2019).
  • [25] Yolcu, A., Tanırcan, G., Tüzün, C., Acceleration Displacement Response Spectra for Design of Seismic Isolation Systems in Turkey, Teknik Dergi, DOI: https://dx.doi.org/10.18400/tekderg.511798.
  • [26] Zekioğlu, A., Darama, H., Erkuş, B., Performance-Based Seismic Design of a Large Seismically Isolated Structure: Istanbul Sabiha Gökçen International Airport Terminal Building, Structural Engineers Association of California, San Diego, California, 2009.
  • [27] Jangid, R. S., Kelly, J. M., Base Isolation for Near-fault Motions, Earthquake Engineering and Structural Dynamics, 30, 691–707, 2001.
  • [28] OpenSees, Pacific Earthquake Engineering Research Center, University of California, Berkeley, ABD, 2010. (http://opensees.berkeley.edu).
  • [29] Dicleli, M., Performance of Seismic-Isolated Bridges in Relation to Near-Fault Ground-Motion and Isolator Characteristics, Earthquake Spectra, 22, 4, 887-907, 2006.
  • [30] Blanford, E., Keldrauk, E., Laufer, M., Mieler, M., Wei, J., Stojadinovic, B., Peterson, P. F., Advanced Seismic Base Isolation Methods for Modular Reactors, Final Repot, UCBTH-09-004, Departments of Civil and Environmental Engineering and Nuclear Engineering University of California, Berkeley, California, 2009.
  • [31] Çavdar, E., Özdemir, G., Ölçeklendirilen Yakın Saha Deprem Kayıtlarının Farklı Doğrultularda Etkimesi Durumunda Yalıtım Birimi Maksimum Yer Değiştirmelerinde Gözlenen Değişim, Journal of the Faculty of Engineering and Architecture of Gazi University, 33, 2, 585-598, 2018.
  • [32] Özdemir, G., Gülkan, P., Scaling Legitimacy for Design of Lead Rubber Bearing Isolated Structures Using a Bounding Analysis, Earthquake Spectra, 32, 1, 345-366, 2016.
  • [33] Constantinou, M. C., Whittaker, A. S., Fenz, D. M., Apostolakis, G., Seismic Isolation of Bridges, Department of Civil, Structural and Environmental Engineering, State University of New York at Buffalo, 2007.
  • [34] Samanta, A., Huang, Y. N., Ground-motion Scaling for Seismic Perfonmance Assessment of High-Rise Moment-Resisting Frame Building, Soil Dynamics and Earthquake Engineering, 94, 125-135, 2017.
  • [35] Avşar, Ö., Özdemir, G., Response of Seismic-Isolated Bridges in Relation to Intensity Measures of Ordinary and Pulselike Ground Motions, Journal of Bridge Engineering, 18, 250-260, 2013.
  • [36] Çavdar, E., Özdemir, G., Bayhan, B., Significance of Ground Motion Scaling Parameters on Amplitude of Scale Factors and Seismic Response of Short- and Long-Period Structures, Earthquake Spectra, 35(4), 1663-1688, 2019.
  • [37] Pacific Earthquake Engineering Research Center (PEER) Ground Motion Database, University of California, Berkeley, USA, 2015. (https://ngawest2.berkeley.edu).
  • [38] Bommer, J. J., Ruggeri, C., The Specification of Acceleration Time-Histories in Seismic Design Codes, European Earthquake Engineering, 16(1), 3-17, 2002.
  • [39] Malhotra, P. K., Response of Buildings to Near-Field Pulse-Like Ground Motions, Earthquake Engineering and Structural Dynamics, 28(11), 1309-1326, 1999.
  • [40] Chopra, A. K., Chintanapakdee, C., Comparing Response of SDF Systems to Near-Fault and Far-Fault Earthquake Motions in the Context of Spectral Regions, Earthquake Engineering and Structural Dynamics, 30(12), 1769-1789, 2001.
  • [41] Huang, Y. N., Performance Assessment of Conventional and Base-isolated Nuclear Power Plants for Earthquake and Blast Loadings, PhD Thesis, State University of New York at Buffalo, New York, ABD, 2008.
  • [42] Park, Y. J., Wen, Y. K., Ang, A. H., Random Vibration of Hysteretic Systems Under Bi-Directional Ground Motions, Earthquake Engineering and Structural Dynamics, 14, 4, 543-557, 1986.
  • [43] Constantinou, M. C., Adnane, M. A., Dynamics of Soil-Base-Isolated Structure Systems: Evaluation of Two Models for Yielding Systems, Report to NSF, Drexel University, Philadelphia, 1987.
  • [44] Özdemir, G., Response of Isolated Structures under Bi-directional Excitations of Near-Field Ground Motions, PhD Thesis, Middle East Technical University, Turkey, 2010.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Makale
Yazarlar

Hicran Erdoğdu Bu kişi benim 0000-0002-5218-1857

Esengül Çavdar Bu kişi benim 0000-0003-1497-0908

Gökhan Özdemir 0000-0002-2962-2327

Yayımlanma Tarihi 1 Eylül 2021
Gönderilme Tarihi 2 Nisan 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 32 Sayı: 5

Kaynak Göster

APA Erdoğdu, H., Çavdar, E., & Özdemir, G. (2021). Türk Deprem Yönetmelikleri (DBYBHY ve TBDY) Spektrum Tanımlarının Deprem Yalıtım Sistemi Tasarımı Özelinde Karşılaştırılması. Teknik Dergi, 32(5), 11127-11152. https://doi.org/10.18400/tekderg.713068
AMA Erdoğdu H, Çavdar E, Özdemir G. Türk Deprem Yönetmelikleri (DBYBHY ve TBDY) Spektrum Tanımlarının Deprem Yalıtım Sistemi Tasarımı Özelinde Karşılaştırılması. Teknik Dergi. Eylül 2021;32(5):11127-11152. doi:10.18400/tekderg.713068
Chicago Erdoğdu, Hicran, Esengül Çavdar, ve Gökhan Özdemir. “Türk Deprem Yönetmelikleri (DBYBHY Ve TBDY) Spektrum Tanımlarının Deprem Yalıtım Sistemi Tasarımı Özelinde Karşılaştırılması”. Teknik Dergi 32, sy. 5 (Eylül 2021): 11127-52. https://doi.org/10.18400/tekderg.713068.
EndNote Erdoğdu H, Çavdar E, Özdemir G (01 Eylül 2021) Türk Deprem Yönetmelikleri (DBYBHY ve TBDY) Spektrum Tanımlarının Deprem Yalıtım Sistemi Tasarımı Özelinde Karşılaştırılması. Teknik Dergi 32 5 11127–11152.
IEEE H. Erdoğdu, E. Çavdar, ve G. Özdemir, “Türk Deprem Yönetmelikleri (DBYBHY ve TBDY) Spektrum Tanımlarının Deprem Yalıtım Sistemi Tasarımı Özelinde Karşılaştırılması”, Teknik Dergi, c. 32, sy. 5, ss. 11127–11152, 2021, doi: 10.18400/tekderg.713068.
ISNAD Erdoğdu, Hicran vd. “Türk Deprem Yönetmelikleri (DBYBHY Ve TBDY) Spektrum Tanımlarının Deprem Yalıtım Sistemi Tasarımı Özelinde Karşılaştırılması”. Teknik Dergi 32/5 (Eylül 2021), 11127-11152. https://doi.org/10.18400/tekderg.713068.
JAMA Erdoğdu H, Çavdar E, Özdemir G. Türk Deprem Yönetmelikleri (DBYBHY ve TBDY) Spektrum Tanımlarının Deprem Yalıtım Sistemi Tasarımı Özelinde Karşılaştırılması. Teknik Dergi. 2021;32:11127–11152.
MLA Erdoğdu, Hicran vd. “Türk Deprem Yönetmelikleri (DBYBHY Ve TBDY) Spektrum Tanımlarının Deprem Yalıtım Sistemi Tasarımı Özelinde Karşılaştırılması”. Teknik Dergi, c. 32, sy. 5, 2021, ss. 11127-52, doi:10.18400/tekderg.713068.
Vancouver Erdoğdu H, Çavdar E, Özdemir G. Türk Deprem Yönetmelikleri (DBYBHY ve TBDY) Spektrum Tanımlarının Deprem Yalıtım Sistemi Tasarımı Özelinde Karşılaştırılması. Teknik Dergi. 2021;32(5):11127-52.