Derleme
BibTex RIS Kaynak Göster

Smart Fabric Sensor for Electronic Textile

Yıl 2017, Cilt: 24 Sayı: 108, 305 - 320, 31.12.2017

Öz

In recent years, in the global market, the textile and apparel industry has begun to shift from traditional textile products to intelligent textiles that adapt to information and therefore are new and added value. This has created a multidisciplinary study field with textile engineering and other sciences such as chemistry, electronics and material science. Sensors constitute a significant part of the smart textiles field and include developments that make a difference to traditional textiles. In this article, smart fabric sensor types and applications in the literature are discussed. 

Kaynakça

  • Cherenack, K., van Pieterson, L., (2012), Smart textiles: Challenges and opportunities, Journal Of Applied Physics, 112, 9, 091301(1-14).
  • Mattman, C., Amft, O., Harms, H., Tröster, G., Clemens, F., (2007), Recognizing upper body postures using textile strain sensors, Proceedings of 11th International Symposium on Wearable Computers (ISWC 07), 29-36, 11-13 October 2007.
  • Castano, L.M., Flatau, A.B., (2014), Smart fabric sensors and e-textile technologies: a review, Smart Materials and Structures, 23, 5, 1-27.
  • Chen, Y., Lloyd, D.W., Harlock, S.C., (1995), Mechanical characteristics of coated fabrics, The Journal of The Textile Institute, 86, 4, 690-700.
  • Farboodmanesh, S., Chen, J., Mead, J.L., White, K.D., Yesilalan, H.E., Laoulache, R., Warner S.B., (2005), Effect of coating thickness and penetration on shear behaviour of coated fabrics, Journal of Elastomers & Plastics, 37, 3, 197-227.
  • Dubrovski P.D., Cebasek P.F. (2005). Analysis of the mechanical properties of woven and nonwoven fabrics as an integral part of compound fabrics, Fibres & Textiles in Eastern Europe, 13, 3(51), 50-53.
  • Tracton, A.A., (2006), Coatings Technology Handbook, CRC Press, Boca Raton, FL.
  • Kallmayer, C., Simon, E., (2012), Large area sensor integration in textiles, International Multi-Conference on Systems, Signals and Devices (SSD), 5, 20-23 March 2012, Chemnitz, Germany.
  • Post, E.R., Orth, M., Russo. P.R., Gershenfeld, N., (2000), Ebroidery: design and fabrication of textilebased computing, IBM Systems Journal, 39, 3(4), 840-860.
  • Engin, M., Demirel, A., Engin, E.Z., Fedakar, M., (2005), Recent developments and trends in biomedical sensors, Measurement, 37, 2, 173-188.
  • Philips smart connections clothing, http://extra.shu.ac.uk/dac/philips.pdf, erişim tarihi: 23.03.2017.
  • Meyer, J., Lukowicz, P., Tröster, G., (2006), Textile pressure sensor for muscle activity and motion detection, Proceedings 10th IEEE International Symposium on Wearable Computers, 69-72, 11-14 October 2006, Montreux, Switzerland.
  • Intelligent textiles, soft products, http://www.ivt.ntnu.no/ipd/fag/PD9/2003/artikkel/Norstebo.pdf, erişim tarihi: 23.03.2017
  • Carpi, F., De Rossi, D., (2005), Electroactive polymer-based devices for e-textiles in biomedicine, IEEE Transactions on Information Technology in Biomedicine, 9, 4, 295-318.
  • Zhang, R.Q., Li, J.Q., Li, D.J., Xu, J.J., (2011), Study of the structural design and capacitance characteristics of fabric sensor, Advanced Materials Research, 194-196, 1489-1495.
  • Avloni, J., Lau, R., Ouyang, M., Florio, L., Henn, A.R., Sparavigna, A., (2008) Polypyrrolecoated nonwovens for electromagnetic shielding, Journal of Industrial Textiles, 38, 1, 55-68.
  • Holleczek, T., Rüegg, A., Harms, H., Tröster, G., (2010), Textile pressure sensors for sports applications, 732-737, 1-4 November 2010, 9th IEEE Sensors Conference, Kona, HI.
  • Kim, H., Kim, Y., Kim, B., Yoo, H.J., (2009), A wearable fabric computer by planarfashionable circuit board technique, 6th International Workshop on Wearable and Implantable Body Sensor Networks, 282-285, 3-5 June 2009, Berkeley, CA.
  • Sergio, M., Manaresi, N., Campi, F., Canegallo, R., Tartagni, M., Guerrieri, R., (2003), A dynamically reconfigurable monolithic CMOS pressure sensor for smart fabric, IEEE Journal Solid-State Circuits, 38, 6, 966-975.
  • Hasegawa, Y., Shikida, M., Ogura, D., Sato, K., (2007), Novel type of fabric tactile sensor made from artificial hollow fiber, Proc. 20th Int. Conf. on Micro Electro Mechanical Systems, 603-606, 21-25 January 2007, Hyogo, Japan.
  • Meyer, J., Arnrich, B., Schumm, J., Troster, G., (2010), Design and modeling of a textile pressure sensor for sitting posture classification, IEEE Sensors Journal, 10, 8, 1391–1398.
  • Cho, G., Jeong, K., Paik, M.J., Kwun, Y., Sung, M., (2011), Performance evaluation of textilebased electrodes and motion sensors for smart clothing, IEEE Sensors Journal, 11, 12, 3183-3193.
  • Sergio, M., Manaresi, N., Tartagni, M., Guerrieri, R., Canegallo, R., (2002), A Textile Based Capacitive Pressure Sensor, First IEEE International Conference on Sensors, Volume:2, 1625-1630, 12-14 June 2002, Orlando, Florida, USA.
  • Hui, Z., Ming, T.X., Xi, Y.T., Sheng, L.X., (2006), Pressure sensing fabric, Proceedings of MRS, 920, 0920-S05-05.
  • Li, L.F., Ding, Y.S., (2009), Design and analysis of parallel woven structurebased flexible resistive pressure sensor, 3rd International Conference on Bioinformatics and Biomedical Engineering ICBBE, 1-4, 11-13 June 2009, Beijing, China.
  • Inaba, M., Hoshino, Y., Nagasaka K., Ninomiya T., Kagami S., Inoue H. (1996), A fullbody tactile sensor suit using electrically conductive fabric and strings, International Conference on Intelligent Robots and Systems, Volume 2, 450-457, 4-8 November 1996, Osaka, Japan.
  • Sandbach, D.L., Burkitt, J., Walkington, S.M., Flory, K., (2005), Fabric sensor International Patent WO2005031557 A1.
  • Alirezaei H., Nagakubo A., Kuniyoshi, Y., (2009), A tactile distribution sensor which enables stable measurement under high and dynamic stretch, IEEE Symposium on 3D User Interfaces (3DUI), 87-93, 14-15 March 2009, Lafayette, LA.
  • Brady, S., Diamond, D., Lau K.T., (2005), Inherently conducting polymer modified polyurethane smart foam for pressure sensing, Sensors Actuators A, 119, 2, 398-404.
  • Wang, Y., Hua, T., Zhu, B., Li, Q., Yi, W., Tao, X., (2011), Novel fabric pressure sensors: design, fabrication and characterization, Smart Materials and Structures, 20, 6, 065015.
  • Shimojo, M., Namiki, A., Ishikawa, M., Makino, R., Mabuchi, K., (2004), A tactile sensor sheet using pressure conductive rubber with electricalwires stitched method, IEEE Sensors Journal, 4, 5, 589-596.
  • Zhang, H., Tao, X.M., Yu, T.X., Wang, S.Y., (2006), Conductive knitted fabric as largestrain gauge under high temperature, Sensors Actuators A, 126, 1, 129-140.
  • Huang, C.T., Shen, C.L., Tang, C.F., Chang, S.H., (2008), A wearable yarn-based piezoresistive-sensor. Sensors Actuators A. 141, 2, 396-403.
  • Wang, J.P., Xue, P., Tao, X.M., (2011), Strain sensing behavior of electrically conductive fibers under large deformation, Materials Science and Engineering: A, 528, 6, 2863-2869.
  • Calvert, P., Duggal, D., Patra, P., Agrawal, A., Sawhney, A., (2008), Conducting polymer and conducting composite strain sensors on textiles, Molecular Crystals and Liquid Crystals, 484, 1, 291-302.
  • Gioberto, G., Dunne, L., (2012), Theory and characterization of a top-thread coverstitched stretch sensor, IEEE International Conference on Systems, Man, and Cybernetics (SMC), 3275-3280, 14-17 October 2012, Seoul, Korea.
  • Pacelli, M., Caldani, L., Paradiso, R., (2006), Textile piezoresistive sensors for biomechanical variables monitoring, 28 th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 5358-5361, 30 Ağustos-3 Eylül 2006, New York.
  • Wijesiriwardana, R., Dias, T., Mukhopadhyay, S., (2003), Resistive fibre-meshed transducers, 7th IEEE International Symposium on Wearable Computers ISWC, 200-209, White Plains, NY.
  • Sawhney, A., Agrawal, A., Patra, P., Calvert, P., (2006), Piezoresistive sensors on textiles by inkjet printing and electroless plating, Proceedings of MRS, 920, 0920-S05-04.
  • Kim, K.J., Chang, Y.M., Yoon, S.K., Hyun, J., (2009), A novel piezoelectric PVDF filmbased physiological sensing belt for a complementary respiration and heartbeat monitoring system, Integrated Ferroelectrics, 107, 1, 53-68.
  • Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P., (2008), Dielectric Elastomers as Electromechanical Transducers, Elsevier, Amsterdam.
  • Scilingo, E.P., Lorussi, F., Mazzoldi, A., De Rossi, D., (2003), Strain-sensing fabrics for wearable kinaesthetic-like systems, IEEE Sensors Journal, 3, 4, 460-467.
  • Collins, G.E., Buckley L.J., (1996), Conductive polymercoated fabrics for chemical sensing, Synthetic Metals, 78, 2, 93-101.
  • Kim, H.K., Kim M.S., Chun S.Y., Park, Y.H., Jeon, B.S., Lee, J.Y., Hong, Y.K., Joo J., Kim S.H., (2003), Characteristics of electrically conducting polymercoated textiles, Molecular Crystals and Liquid Crystals, 405, 1, 161-169.
  • Xue, P., Tao, X.M., Kwok, W.Y., Leung, M.Y., Yu, T.X., (2004), Electromechanical behavior of fibers coated with an electrically conductive polymer, Textile Research Journal, 74, 10, 929-936. Campbell, T., Munro, B., Wallace, G., Steele, J., (2007), Can fabric sensors monitor breast motion?, Journal of Biomechanics, 40, 13, 3056-3059.
  • Wu, J., Zhou, D., Too, C.O., Wallace G.G., (2005), Conducting polymer coated lycra, Synthetic Metals, 155, 3, 698-701.
  • Li, Y., Leung, M.Y., Tao, X.M., Cheng, X.Y., Tsang, J., Yuen, M.C.W., (2005), Polypyrrolecoated conductive fabrics as a candidate for strain sensors, Journal of Materials Science, 40, 15, 4093-4095.
  • Daoud, W.A., Xin, J.H., Szeto, Y.S., (2005), Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibres, Sensors and Actuators B: Chemical, 109, 2, 329-333.
  • Lang, U., Rust, P., Dual, J., (2008), Towards fully polymeric MEMS: Fabrication and testing of PEDOT/PSS strain gauges, Microelectronic Engineering, 85, 5-6, 1050-1053.
  • Chang, C.L., Fix, K., Wang, W.C., (2010), Reliability of PEDOTPSS strain gauge on foam structure, Proceedings of SPIE7646, Nanosensors, Biosensors, and Info-Tech Sensors and Systems, 764616, 7-9 March 2010, San Diego, California, USA.
  • Kwon, O.S., Park, E., Kweon, O.Y., Park, S.J., Jang, J., (2010), Novel flexible chemical gas sensor based on poly(3,4ethylenedioxythiophene) nanotube membrane, Talanta, 82, 4, 1338-1343.
  • Lu, H.H., Lin, C.Y., Fang, Y.Y., Hsiao, T.C., Ho, K.C., Yang, D., Lin, C.W., (2008), NO gas sensor of PEDOT: PSS nanowires by using direct patterning DPN, 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Personalized Healthcare through Technology, 3208-3211, 20-25 August 2008, Vancouver, Canada.
  • Martinez, O., Bravos, A.G., Pinto, N., (2009), Fabrication of poly(vinylidene fluoridetrifluoroethylene)/poly(3,4ethylenedioxythiophene) polystyrene sulfonate composite nanofibres via electro spinning, Macromolecules, 42, 20, 7924-7929.
  • Jang, J., Chang, M., Yoon, H., (2005), Chemical sensors based on highly conductive poly(3,4ethylenedioxythiophene) nanorods, Advanced Materials, 17, 13, 1616-1620.
  • Lang, U., Rust, P., Schoberle, B., Dual, J., (2009), Piezoresistive properties of PEDOT:PSS, Microelectronic Engineering, 86, 3, 330-334.
  • Wang, X., Ostblom, M., Johansson, T., Inganas, O., (2004), PEDOT surface energy pattern controls fluorescent polymer deposition by dewetting, Thin Solid Films, 449, 1-2, 125-132.
  • Calvert, P., Patra, P., Sawhney, A., Agrawal, A., Duggal, D., (2007), Printed conducting polymer strain sensors for textiles, 23rd International Conference on Digital Printing Technologies/Digital Fabrication, 831-835, 16-21 September 2007, Anchorage, AK.
  • Molina, J., Esteves, M.F., Fernandez, J., Bonastre, J., and Cases, F., (2011), Polyaniline coated conducting fabrics, chemical and electrochemical characterization, European Polymer Journal, 47, 10, 2003–2015.
  • Okuzaki, H., Harashina, Y., Yan, H., (2009), Highly conductive PEDOT/PSS microfibres fabricated by wetspinning and diptreatment in ethylene glycol, European Polymer Journal, 45, 1, 256-261.
  • Nouri, M., Kish, M.H., Entezami, A.A., Edrisi, M., (2000), Conductivity of textile fibres treated with aniline, Iranian Polymer Journal, 9, 49, 49-58.
  • Kim, B., Koncar, V., Bruniaux, P., (2006), Electro-mechanical and morphological properties of PET conductive polymer fibres - modeling and simulation, Journal of Advanced Materials, 38, 3, 12-20.
  • Lang, E.J., Chou, T.W., (1998), The effect of strain gage size on measurement errors in textile composite materials, Composites Science Technology, 58, 3-4, 539-548.
  • Sau, K.P., Chaki, T.K., Khastgir, D., (1997), Conductive rubber composites from different blends of Ethylenepropylenediene rubber and nitrile rubber, Journal of Material Science, 32, 21, 5717-5724.
  • Kang, T.J., Seo, D.K., Kim, Y.H., Choi, A., Park, Y.W., Kim, D.-H., Hong, S.-H., Jin, K., Jeong, D.H., (2011), Electromechanical properties of CNT-coated cotton yarn for electronic textile applications, Smart Material and Structures, 20, 1, 8.
  • Panhuis, M.I.H., Wu, J., Ashraf, S.A., Wallace, G.G., (2007), Conducting textiles from singlewalled carbon nanotubes, Synthetic Metals, 157, 8-9, 358-362.
  • Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D.N., Hata, K., (2011), A stretchable carbon nanotube strain sensor for human motion detection, Nature Nanotechnology, 6, 5, 296-301.
  • OlivaAvilés, A.I., Avilés, F., Sosa, V., (2011), Electrical and piezoresistive properties of multiwalled carbon nanotube/polymer composite films aligned by an electric field, Carbon, 49, 9, 2989-2997.
  • Alamusi, Hu, N., Fukunaga, H., Atobe, S., Liu, Y., Li, J., (2011), Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites, Sensors, 11, 11, 10691-10723.
  • Mecham, J.B., Cooper, K.L., Huie, K., Claus, R.O., (2001), Electrostatic selfassembly processing of functional nanocomposites, Proceedings of SPIE, Engineering Thin Films with Ion Beams, Nanoscale Diagnostics, and Molecular Manufacturing, 07 March 2010, San Diego, CA, USA.
  • Coyle, S., Wu, Y., Lau, K.T., De Rossi, D., Wallace., G., Diamond, D., (2007), Smart nanotextiles: a review of materials and applications, MRS Bulletin, 32, 5, 434-442.
  • Shirinov, A.V., Schomburg, W.K., (2008), Pressure sensor from a PVDF film, Sensors and Actuators A: Physical, 142, 1, 48-55.
  • Wang, Y.R., Zheng, J.M., Ren, G.Y., Zhang, P.H., Xu, C., (2011), A flexible piezoelectric force sensor based on PVDF fabrics, Smart Materials and Structures, 20, 4, 7.
  • Edmison, J., Jones, M., Nakad, Z., Martin, T., (2002), Using piezoelectric materials for wearable electronic textiles, 6th International Symposium on Wearable Computers (ISWC), 41-48, 7-10 October 2002, Seattle, WA.
  • Yang, W., Torah, R., Yang, K., Beeby, S., Tudor, J., (2012), A novel fabrication process to realize piezoelectric cantilever structures for smart fabric sensor applications, IEEE Sensors Conference, 1-4, 28-31 October 2012, Taipei, Taiwan.
  • Krishna, G.M., Rajanna, K., (2004), Tactile sensor based on piezoelectric resonance, IEEE Sensors Journal, 4, 5, 691-697.
  • Ren, X., Dzenis, Y., (2009), Novel continuous poly(vinylidene fluoride) nanofibres, MRS Proceedings, Smart Nanotextiles, 920, 55-61.
  • Schwodiauer, R., Ortwein, C., Buchberger, G., Graz, I., Bartu, P., Bauer, S., (2008), Flexible touchand pressure sensitive piezo elastomer stretch sensor for simple surface position detection, 13th International Symposium on Electrets ISE13, C130, 15-17 September, Tokyo, Japan.
  • Kogler, A., Buchberger, G., Schwodiauer, R., Bauer, S., (2011), Ferroelectret based flexible keyboards and tactile sensors, 14th International Symposium on Electrets ISE, 201-202, 28-31 August 2011, Montpellier, France.
  • Tao, X.M., Tang, L.Q., Du, W.C., Choy, C.L., (2000), Internal strain measurement by fibre Bragg grating sensors in textile composites, Composites Science Technology, 60, 5, 657-669.
  • Rothmaier, M., Luong, M., Clemens, F., (2008) Textile pressure sensor made of flexible plastic optical fibres, Sensors, 8, 7, 4318-4329.
  • El-Sherif, M.A., Yuan, J., MacDiarmid, A., (2000), Fiber optic sensors and smart fabrics, Journal of Intelligent Material Systems and Structures, 11, 5, 407-414.
  • Fernandez-Valdivieso, C., Matias, I.R., Arregui F.J., (2002), Simultaneous measurement of strain and temperature using a fibre Bragg grating and a thermochromic material, Sensors Actuators A, 96, 1, 21-24.
  • Li, Y.L., Chen, S.Y., Yang, L.H., Cao, L.H., (2011), Study on three-dimension computer simulation of plain knitted fabrics, Advanced Material Research, 213, 595-599.
  • Koncar, V., (2005), Optical fiber fabric displays, Optics and Photonics News, 16, 4, 40-44.
  • Selm, B., Gürel, E.A., Rothmaier, M., Rossi, R.M., Scherer, L.J., (2010), Polymeric optical fiber fabrics for illumination and sensorial applications in textiles, Journal of Intelligent Material Systems and Structures, 21, 11, 1061-1071.
  • Luprano, J., (2008), Bio-sensing textile for medical monitoring applications, Advances in Science and Technology, 57, 257-265.
  • Wang, H., Peng, D., Wang, W., Sharif, H., Chen, H.h., Khoynezhad, A., (2010), Resource-aware secure ECG healthcare monitoring through body sensor networks, IEEE Wireless Communications, 17, 1, 12-19.
  • http://tr.euronews.com/2015/03/26/sporda-performans-arttiracak-akilli-kumas-icat-edildi, erişim tarihi: 26.04.2016.
  • Torsi, L., Pezzuto, M., Siciliano, P., Rella, R., Sabbatini, L., Valli, L., Zambonin, P.G., (1998), Conducting polymers doped with metallic inclusions: new materials for gas sensors, Sensors and Actuators B: Chemical, 48, 1-3, 362–367.
  • Hong, K.H., Oh, K.W., Kang, T.J., (2004), Polyanilinenylon 6 composite fabric for ammonia gas sensor, Journal of Applied Polymer Science, 92, 1, 37-42.
  • Jin, G., Norrish, J., Too, C., Wallace, G., (2004), Polypyrrole filament sensors for gases and vapours, Current Applied Physics, 4, 2-4, 366-369.
  • Shim, B.S., Chen, W., Doty, C., Xu, C.L., Kotov, N.A., (2008), Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes, Nano Letters, 8, 12, 4151-4157.
  • Bowman, D., Mattes, B.R., (2005), Conductive fibre prepared from ultrahigh molecular weight polyaniline for smart fabric and interactive textile applications, Synthetic Metals, 154, 1-3, 29-32.
  • Seesaard, T., Lorwongtragool, P., Kerdcharoen, T., (2012), Wearable electronic nose based on embroidered amine sensors on the fabric substrates, 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTICON), 1-4, 16-18 May 2012, Hua Hin, Thailand.
  • Weng, W., Chen, P., He, S., Sun X., Peng, H., (2016), Smart Electronic Textiles, Angewandte Chemie International Edition, 55, 21, 6140-6169.
  • Yun, J., Kim, H.-I., Lee, Y.-S., (2013), A hybrid gas-sensing material based on porous carbon fibers and a TiO2 photocatalyst, Journal of Materials Science, 48, 23, 8320-8328.
  • Modafferi, V., Panzera, G., Donato, A., Antonucci, P.L., Cannilla, C., Donato, N., Spadaro, D., Neri, G., (2012), Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers, Sensors and Actuators B: Chemical, 163, 1, 61-68.
  • Zhang, W., Tan, Y.Y., Wu, C., Silva, S.R.P., (2012), Self-assembly of single walled carbon nanotubes onto cotton to make conductive yarn, Particuology, 10, 4, 517-521.
  • Seesaard, T., Lorwongtragool, P., Kerdcharoen, T., (2015), Development of Fabric-Based Chemical Gas Sensors for Use as Wearable Electronic Noses, Sensors, 15, 1, 1885-1902.
  • Lala, N.L., Thavasi, V., Ramakrishna, S., (2009), Preparation of Surface Adsorbed and Impregnated Multi-walled Carbon Nanotube/Nylon-6 Nanofiber Composites and Investigation of their Gas Sensing Ability, Sensors, 9, 1, 86-101 Yang, A., Tao, X., Wang, R., Lee, S., Surya, C., (2007), Room temperature gas sensing properties SnO2/multiwall-carbon-nanotube composite nanofibers, Applied Physics Letters, 91, 13, 3110.
  • Shuai, S., Huang, Y., Tao, S., (2014), Simultaneous Monitoring of Ammonia and Moisture Using a Single Fiber Optoelectrode as a Transducer, IEEE Sensors Journal, 14, 3, 847-852.
  • Kinkeldei, T. Zysset, C., Münzenrieder, N., Tröster, G., (2012), An electronic nose on flexible substrates integrated into a smart textile, Sensors and Actuators B: Chemical, 174, 81-86.
  • Kincal, D., Kumar, A., Child, A.D., Reynolds, J.R., (1998), Conductivity switching in polypyrrole-coated textile fabrics as gas sensors, Synthetic Metals, 92, 53-56.
  • Manesh, K.M., Gopalan, A.I., Kwang-Pill, L., Santhosh, P., Kap-Duk, S., Duk-Dong, L., (2007), Fabrication of Functional Nanofibrous Ammonia Sensor, IEEE Transactions on Nanotechnology, 6, 5, 513-518.
  • Low, K., Horner, C.B., Li, C., Ico, G., Bosze, W., Myung, N.V., Nam, J., Composition-dependent sensing mechanism of electrospun conductive polymer composite nanofibers, Sensors and Actuators B: Chemical, 207, Part A, 235-242.
  • Ji, S., Li, Y., Yang, M., (2008), Gas sensing properties of a composite composed of electrospun poly(methyl methacrylate) nanofibers and in situ polymerized polyaniline, (2008), Sensors and Actuators B: Chemical, 133, 2, 644-649.
  • Gao, Y., Li, X., Gong, J., Fan, B., Su, Z., Qu, L., (2008), Polyaniline Nanotubes Prepared Using Fiber Mats Membrane as the Template and their Gas-response Behavior, Journal of Physical Chemistry C, 112, 22, 8215-8222.
  • Hong, K.H., Oh, K.W., Kang, T.J., (2004), Polyaniline–nylon 6 composite fabric for ammonia gas sensor, Journal of Applied Polymer Science, 92, 1, 37-42.
  • BIOTEX, Bio-sensing textile for health management, https://cordis.europa.eu/pub/ist/docs/mnd/biotex_en.pdf, erişim tarihi: 10.04.2017.
  • TWIGS: Textiles with integrated gas sensors, http://www.nano-tera.ch/projects/308.php, erişim tarihi: 10.04.2017.
  • Pereira, T., Silva, P., Carvalho, H., Carvalho, M., (2011), Textile moisture sensor matrix for monitoring of disabled and bedrest patients, IEEE International Conference on Computer as a Tool (EUROCON), 1-4, 27-29 April 2011, Lisbon, Portugal.
  • Panapoy, M., Singsang, W., Ksapabutr, B., (2010), Electrically conductive poly(3,4ethylenedioxythiophene) poly( styrene sulfonate)/polyacrylonitrile fabrics for humidity sensors, Physica Scripta, 2010, T139, 014056.
  • Hwang, L.S., Ko, J.M., Rhee, H.W., Kim C.Y., (1993), A polymer humidity sensor, Synthetic Metals, 57, 1, 3671-3676.
  • Kinkeldei, T., Zysset, C., Cherenack, K.H., Troster, G., (2011), A textile integrated sensor system for monitoring humidity and temperature, 16th International Solid-State Sensors, Actuators and Microsystems Conference, 1156-1159, 5-9 June 2011, Beijing, China. Nilsson, D., Kugler, T., Svensson, P.O., Berggren, M., (2002), An allorganic sensor–transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper, Sensors and Actuators B: Chemical, 86, 2-3, 193-197.
  • Kim, H., Kim, Y., Kwon, Y., Yoo, H., (2008), A 1.12 mW continuous healthcare monitor chip integrated on a planarfashionable circuit board, IEEE International Solid-State Circuits Conference (ISSCC) - Diges Technical Papers, 150-603, 3-7 February 2008, Philadelphia, PA.
  • Starke, E., Turke, A., Krause, M., Fischer, W.J., (2011), Flexible polymer humidity sensor fabricated by inkjet printing, 16th International Solid-State Sensors, Actuators and Microsystems Conference, 1152-1155, 5-9 June 2011, Beijing, China.
  • Kinkeldei, T., Zysset, C., Cherenack, K., Troester, G., (2009), Development and evaluation of temperature sensors for textile integration, 8th IEEE Sensors Conference, 1580-1583, 25-28 October 2009, Christchurch, Canterbury, NZ. Jung, S., Lauterback, C., Strasser, M., Weber, W., (2003), Enabling technologies for disappearing electronics in smart textiles, IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 386-387, 13 February 2003, Philadelphia, PA.
  • Ma, B., Ren, J., Deng, J., Yuan, W., (2010), Flexible thermal sensor array on PI film substrate for underwater applications, IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 679-682, 24-28 January 2010, Wanchai, Hong Kong.
  • Shih, W.-P., Tsao, L.-C., Lee, C.-W., Cheng, M.-Y., Chang, C., Yang, Y.-J., Fan, K.-J., (2010), Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite, Sensors, 10, 4, 3597-3610.

Elektronik Tekstillere Yönelik Akıllı Kumaş Sensörleri

Yıl 2017, Cilt: 24 Sayı: 108, 305 - 320, 31.12.2017

Öz

Son yıllarda küresel piyasada tekstil ve giyim sanayi, geleneksel tekstil ürünlerinden, bilgiyi adapte eden ve dolayısıyla yeni ve katma değeri yüksek akıllı tekstillere doğru kaymaya başlamıştır. Bu durum tekstil mühendisliğinin, kimya, elektronik ve malzeme bilimi gibi diğer bilimlerle, multidisipliner bir çalışma alanını oluşturmuştur. Sensörler, akıllı tekstiller alanının önemli bir bölümünü oluşturmaktadır ve geleneksel tekstillere fark yaratacak gelişmeleri içermektedir. Bu makalede akıllı kumaş sensör çeşitleri ve literatürdeki uygulamaları ele alınmıştır.  

Kaynakça

  • Cherenack, K., van Pieterson, L., (2012), Smart textiles: Challenges and opportunities, Journal Of Applied Physics, 112, 9, 091301(1-14).
  • Mattman, C., Amft, O., Harms, H., Tröster, G., Clemens, F., (2007), Recognizing upper body postures using textile strain sensors, Proceedings of 11th International Symposium on Wearable Computers (ISWC 07), 29-36, 11-13 October 2007.
  • Castano, L.M., Flatau, A.B., (2014), Smart fabric sensors and e-textile technologies: a review, Smart Materials and Structures, 23, 5, 1-27.
  • Chen, Y., Lloyd, D.W., Harlock, S.C., (1995), Mechanical characteristics of coated fabrics, The Journal of The Textile Institute, 86, 4, 690-700.
  • Farboodmanesh, S., Chen, J., Mead, J.L., White, K.D., Yesilalan, H.E., Laoulache, R., Warner S.B., (2005), Effect of coating thickness and penetration on shear behaviour of coated fabrics, Journal of Elastomers & Plastics, 37, 3, 197-227.
  • Dubrovski P.D., Cebasek P.F. (2005). Analysis of the mechanical properties of woven and nonwoven fabrics as an integral part of compound fabrics, Fibres & Textiles in Eastern Europe, 13, 3(51), 50-53.
  • Tracton, A.A., (2006), Coatings Technology Handbook, CRC Press, Boca Raton, FL.
  • Kallmayer, C., Simon, E., (2012), Large area sensor integration in textiles, International Multi-Conference on Systems, Signals and Devices (SSD), 5, 20-23 March 2012, Chemnitz, Germany.
  • Post, E.R., Orth, M., Russo. P.R., Gershenfeld, N., (2000), Ebroidery: design and fabrication of textilebased computing, IBM Systems Journal, 39, 3(4), 840-860.
  • Engin, M., Demirel, A., Engin, E.Z., Fedakar, M., (2005), Recent developments and trends in biomedical sensors, Measurement, 37, 2, 173-188.
  • Philips smart connections clothing, http://extra.shu.ac.uk/dac/philips.pdf, erişim tarihi: 23.03.2017.
  • Meyer, J., Lukowicz, P., Tröster, G., (2006), Textile pressure sensor for muscle activity and motion detection, Proceedings 10th IEEE International Symposium on Wearable Computers, 69-72, 11-14 October 2006, Montreux, Switzerland.
  • Intelligent textiles, soft products, http://www.ivt.ntnu.no/ipd/fag/PD9/2003/artikkel/Norstebo.pdf, erişim tarihi: 23.03.2017
  • Carpi, F., De Rossi, D., (2005), Electroactive polymer-based devices for e-textiles in biomedicine, IEEE Transactions on Information Technology in Biomedicine, 9, 4, 295-318.
  • Zhang, R.Q., Li, J.Q., Li, D.J., Xu, J.J., (2011), Study of the structural design and capacitance characteristics of fabric sensor, Advanced Materials Research, 194-196, 1489-1495.
  • Avloni, J., Lau, R., Ouyang, M., Florio, L., Henn, A.R., Sparavigna, A., (2008) Polypyrrolecoated nonwovens for electromagnetic shielding, Journal of Industrial Textiles, 38, 1, 55-68.
  • Holleczek, T., Rüegg, A., Harms, H., Tröster, G., (2010), Textile pressure sensors for sports applications, 732-737, 1-4 November 2010, 9th IEEE Sensors Conference, Kona, HI.
  • Kim, H., Kim, Y., Kim, B., Yoo, H.J., (2009), A wearable fabric computer by planarfashionable circuit board technique, 6th International Workshop on Wearable and Implantable Body Sensor Networks, 282-285, 3-5 June 2009, Berkeley, CA.
  • Sergio, M., Manaresi, N., Campi, F., Canegallo, R., Tartagni, M., Guerrieri, R., (2003), A dynamically reconfigurable monolithic CMOS pressure sensor for smart fabric, IEEE Journal Solid-State Circuits, 38, 6, 966-975.
  • Hasegawa, Y., Shikida, M., Ogura, D., Sato, K., (2007), Novel type of fabric tactile sensor made from artificial hollow fiber, Proc. 20th Int. Conf. on Micro Electro Mechanical Systems, 603-606, 21-25 January 2007, Hyogo, Japan.
  • Meyer, J., Arnrich, B., Schumm, J., Troster, G., (2010), Design and modeling of a textile pressure sensor for sitting posture classification, IEEE Sensors Journal, 10, 8, 1391–1398.
  • Cho, G., Jeong, K., Paik, M.J., Kwun, Y., Sung, M., (2011), Performance evaluation of textilebased electrodes and motion sensors for smart clothing, IEEE Sensors Journal, 11, 12, 3183-3193.
  • Sergio, M., Manaresi, N., Tartagni, M., Guerrieri, R., Canegallo, R., (2002), A Textile Based Capacitive Pressure Sensor, First IEEE International Conference on Sensors, Volume:2, 1625-1630, 12-14 June 2002, Orlando, Florida, USA.
  • Hui, Z., Ming, T.X., Xi, Y.T., Sheng, L.X., (2006), Pressure sensing fabric, Proceedings of MRS, 920, 0920-S05-05.
  • Li, L.F., Ding, Y.S., (2009), Design and analysis of parallel woven structurebased flexible resistive pressure sensor, 3rd International Conference on Bioinformatics and Biomedical Engineering ICBBE, 1-4, 11-13 June 2009, Beijing, China.
  • Inaba, M., Hoshino, Y., Nagasaka K., Ninomiya T., Kagami S., Inoue H. (1996), A fullbody tactile sensor suit using electrically conductive fabric and strings, International Conference on Intelligent Robots and Systems, Volume 2, 450-457, 4-8 November 1996, Osaka, Japan.
  • Sandbach, D.L., Burkitt, J., Walkington, S.M., Flory, K., (2005), Fabric sensor International Patent WO2005031557 A1.
  • Alirezaei H., Nagakubo A., Kuniyoshi, Y., (2009), A tactile distribution sensor which enables stable measurement under high and dynamic stretch, IEEE Symposium on 3D User Interfaces (3DUI), 87-93, 14-15 March 2009, Lafayette, LA.
  • Brady, S., Diamond, D., Lau K.T., (2005), Inherently conducting polymer modified polyurethane smart foam for pressure sensing, Sensors Actuators A, 119, 2, 398-404.
  • Wang, Y., Hua, T., Zhu, B., Li, Q., Yi, W., Tao, X., (2011), Novel fabric pressure sensors: design, fabrication and characterization, Smart Materials and Structures, 20, 6, 065015.
  • Shimojo, M., Namiki, A., Ishikawa, M., Makino, R., Mabuchi, K., (2004), A tactile sensor sheet using pressure conductive rubber with electricalwires stitched method, IEEE Sensors Journal, 4, 5, 589-596.
  • Zhang, H., Tao, X.M., Yu, T.X., Wang, S.Y., (2006), Conductive knitted fabric as largestrain gauge under high temperature, Sensors Actuators A, 126, 1, 129-140.
  • Huang, C.T., Shen, C.L., Tang, C.F., Chang, S.H., (2008), A wearable yarn-based piezoresistive-sensor. Sensors Actuators A. 141, 2, 396-403.
  • Wang, J.P., Xue, P., Tao, X.M., (2011), Strain sensing behavior of electrically conductive fibers under large deformation, Materials Science and Engineering: A, 528, 6, 2863-2869.
  • Calvert, P., Duggal, D., Patra, P., Agrawal, A., Sawhney, A., (2008), Conducting polymer and conducting composite strain sensors on textiles, Molecular Crystals and Liquid Crystals, 484, 1, 291-302.
  • Gioberto, G., Dunne, L., (2012), Theory and characterization of a top-thread coverstitched stretch sensor, IEEE International Conference on Systems, Man, and Cybernetics (SMC), 3275-3280, 14-17 October 2012, Seoul, Korea.
  • Pacelli, M., Caldani, L., Paradiso, R., (2006), Textile piezoresistive sensors for biomechanical variables monitoring, 28 th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 5358-5361, 30 Ağustos-3 Eylül 2006, New York.
  • Wijesiriwardana, R., Dias, T., Mukhopadhyay, S., (2003), Resistive fibre-meshed transducers, 7th IEEE International Symposium on Wearable Computers ISWC, 200-209, White Plains, NY.
  • Sawhney, A., Agrawal, A., Patra, P., Calvert, P., (2006), Piezoresistive sensors on textiles by inkjet printing and electroless plating, Proceedings of MRS, 920, 0920-S05-04.
  • Kim, K.J., Chang, Y.M., Yoon, S.K., Hyun, J., (2009), A novel piezoelectric PVDF filmbased physiological sensing belt for a complementary respiration and heartbeat monitoring system, Integrated Ferroelectrics, 107, 1, 53-68.
  • Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P., (2008), Dielectric Elastomers as Electromechanical Transducers, Elsevier, Amsterdam.
  • Scilingo, E.P., Lorussi, F., Mazzoldi, A., De Rossi, D., (2003), Strain-sensing fabrics for wearable kinaesthetic-like systems, IEEE Sensors Journal, 3, 4, 460-467.
  • Collins, G.E., Buckley L.J., (1996), Conductive polymercoated fabrics for chemical sensing, Synthetic Metals, 78, 2, 93-101.
  • Kim, H.K., Kim M.S., Chun S.Y., Park, Y.H., Jeon, B.S., Lee, J.Y., Hong, Y.K., Joo J., Kim S.H., (2003), Characteristics of electrically conducting polymercoated textiles, Molecular Crystals and Liquid Crystals, 405, 1, 161-169.
  • Xue, P., Tao, X.M., Kwok, W.Y., Leung, M.Y., Yu, T.X., (2004), Electromechanical behavior of fibers coated with an electrically conductive polymer, Textile Research Journal, 74, 10, 929-936. Campbell, T., Munro, B., Wallace, G., Steele, J., (2007), Can fabric sensors monitor breast motion?, Journal of Biomechanics, 40, 13, 3056-3059.
  • Wu, J., Zhou, D., Too, C.O., Wallace G.G., (2005), Conducting polymer coated lycra, Synthetic Metals, 155, 3, 698-701.
  • Li, Y., Leung, M.Y., Tao, X.M., Cheng, X.Y., Tsang, J., Yuen, M.C.W., (2005), Polypyrrolecoated conductive fabrics as a candidate for strain sensors, Journal of Materials Science, 40, 15, 4093-4095.
  • Daoud, W.A., Xin, J.H., Szeto, Y.S., (2005), Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibres, Sensors and Actuators B: Chemical, 109, 2, 329-333.
  • Lang, U., Rust, P., Dual, J., (2008), Towards fully polymeric MEMS: Fabrication and testing of PEDOT/PSS strain gauges, Microelectronic Engineering, 85, 5-6, 1050-1053.
  • Chang, C.L., Fix, K., Wang, W.C., (2010), Reliability of PEDOTPSS strain gauge on foam structure, Proceedings of SPIE7646, Nanosensors, Biosensors, and Info-Tech Sensors and Systems, 764616, 7-9 March 2010, San Diego, California, USA.
  • Kwon, O.S., Park, E., Kweon, O.Y., Park, S.J., Jang, J., (2010), Novel flexible chemical gas sensor based on poly(3,4ethylenedioxythiophene) nanotube membrane, Talanta, 82, 4, 1338-1343.
  • Lu, H.H., Lin, C.Y., Fang, Y.Y., Hsiao, T.C., Ho, K.C., Yang, D., Lin, C.W., (2008), NO gas sensor of PEDOT: PSS nanowires by using direct patterning DPN, 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Personalized Healthcare through Technology, 3208-3211, 20-25 August 2008, Vancouver, Canada.
  • Martinez, O., Bravos, A.G., Pinto, N., (2009), Fabrication of poly(vinylidene fluoridetrifluoroethylene)/poly(3,4ethylenedioxythiophene) polystyrene sulfonate composite nanofibres via electro spinning, Macromolecules, 42, 20, 7924-7929.
  • Jang, J., Chang, M., Yoon, H., (2005), Chemical sensors based on highly conductive poly(3,4ethylenedioxythiophene) nanorods, Advanced Materials, 17, 13, 1616-1620.
  • Lang, U., Rust, P., Schoberle, B., Dual, J., (2009), Piezoresistive properties of PEDOT:PSS, Microelectronic Engineering, 86, 3, 330-334.
  • Wang, X., Ostblom, M., Johansson, T., Inganas, O., (2004), PEDOT surface energy pattern controls fluorescent polymer deposition by dewetting, Thin Solid Films, 449, 1-2, 125-132.
  • Calvert, P., Patra, P., Sawhney, A., Agrawal, A., Duggal, D., (2007), Printed conducting polymer strain sensors for textiles, 23rd International Conference on Digital Printing Technologies/Digital Fabrication, 831-835, 16-21 September 2007, Anchorage, AK.
  • Molina, J., Esteves, M.F., Fernandez, J., Bonastre, J., and Cases, F., (2011), Polyaniline coated conducting fabrics, chemical and electrochemical characterization, European Polymer Journal, 47, 10, 2003–2015.
  • Okuzaki, H., Harashina, Y., Yan, H., (2009), Highly conductive PEDOT/PSS microfibres fabricated by wetspinning and diptreatment in ethylene glycol, European Polymer Journal, 45, 1, 256-261.
  • Nouri, M., Kish, M.H., Entezami, A.A., Edrisi, M., (2000), Conductivity of textile fibres treated with aniline, Iranian Polymer Journal, 9, 49, 49-58.
  • Kim, B., Koncar, V., Bruniaux, P., (2006), Electro-mechanical and morphological properties of PET conductive polymer fibres - modeling and simulation, Journal of Advanced Materials, 38, 3, 12-20.
  • Lang, E.J., Chou, T.W., (1998), The effect of strain gage size on measurement errors in textile composite materials, Composites Science Technology, 58, 3-4, 539-548.
  • Sau, K.P., Chaki, T.K., Khastgir, D., (1997), Conductive rubber composites from different blends of Ethylenepropylenediene rubber and nitrile rubber, Journal of Material Science, 32, 21, 5717-5724.
  • Kang, T.J., Seo, D.K., Kim, Y.H., Choi, A., Park, Y.W., Kim, D.-H., Hong, S.-H., Jin, K., Jeong, D.H., (2011), Electromechanical properties of CNT-coated cotton yarn for electronic textile applications, Smart Material and Structures, 20, 1, 8.
  • Panhuis, M.I.H., Wu, J., Ashraf, S.A., Wallace, G.G., (2007), Conducting textiles from singlewalled carbon nanotubes, Synthetic Metals, 157, 8-9, 358-362.
  • Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D.N., Hata, K., (2011), A stretchable carbon nanotube strain sensor for human motion detection, Nature Nanotechnology, 6, 5, 296-301.
  • OlivaAvilés, A.I., Avilés, F., Sosa, V., (2011), Electrical and piezoresistive properties of multiwalled carbon nanotube/polymer composite films aligned by an electric field, Carbon, 49, 9, 2989-2997.
  • Alamusi, Hu, N., Fukunaga, H., Atobe, S., Liu, Y., Li, J., (2011), Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites, Sensors, 11, 11, 10691-10723.
  • Mecham, J.B., Cooper, K.L., Huie, K., Claus, R.O., (2001), Electrostatic selfassembly processing of functional nanocomposites, Proceedings of SPIE, Engineering Thin Films with Ion Beams, Nanoscale Diagnostics, and Molecular Manufacturing, 07 March 2010, San Diego, CA, USA.
  • Coyle, S., Wu, Y., Lau, K.T., De Rossi, D., Wallace., G., Diamond, D., (2007), Smart nanotextiles: a review of materials and applications, MRS Bulletin, 32, 5, 434-442.
  • Shirinov, A.V., Schomburg, W.K., (2008), Pressure sensor from a PVDF film, Sensors and Actuators A: Physical, 142, 1, 48-55.
  • Wang, Y.R., Zheng, J.M., Ren, G.Y., Zhang, P.H., Xu, C., (2011), A flexible piezoelectric force sensor based on PVDF fabrics, Smart Materials and Structures, 20, 4, 7.
  • Edmison, J., Jones, M., Nakad, Z., Martin, T., (2002), Using piezoelectric materials for wearable electronic textiles, 6th International Symposium on Wearable Computers (ISWC), 41-48, 7-10 October 2002, Seattle, WA.
  • Yang, W., Torah, R., Yang, K., Beeby, S., Tudor, J., (2012), A novel fabrication process to realize piezoelectric cantilever structures for smart fabric sensor applications, IEEE Sensors Conference, 1-4, 28-31 October 2012, Taipei, Taiwan.
  • Krishna, G.M., Rajanna, K., (2004), Tactile sensor based on piezoelectric resonance, IEEE Sensors Journal, 4, 5, 691-697.
  • Ren, X., Dzenis, Y., (2009), Novel continuous poly(vinylidene fluoride) nanofibres, MRS Proceedings, Smart Nanotextiles, 920, 55-61.
  • Schwodiauer, R., Ortwein, C., Buchberger, G., Graz, I., Bartu, P., Bauer, S., (2008), Flexible touchand pressure sensitive piezo elastomer stretch sensor for simple surface position detection, 13th International Symposium on Electrets ISE13, C130, 15-17 September, Tokyo, Japan.
  • Kogler, A., Buchberger, G., Schwodiauer, R., Bauer, S., (2011), Ferroelectret based flexible keyboards and tactile sensors, 14th International Symposium on Electrets ISE, 201-202, 28-31 August 2011, Montpellier, France.
  • Tao, X.M., Tang, L.Q., Du, W.C., Choy, C.L., (2000), Internal strain measurement by fibre Bragg grating sensors in textile composites, Composites Science Technology, 60, 5, 657-669.
  • Rothmaier, M., Luong, M., Clemens, F., (2008) Textile pressure sensor made of flexible plastic optical fibres, Sensors, 8, 7, 4318-4329.
  • El-Sherif, M.A., Yuan, J., MacDiarmid, A., (2000), Fiber optic sensors and smart fabrics, Journal of Intelligent Material Systems and Structures, 11, 5, 407-414.
  • Fernandez-Valdivieso, C., Matias, I.R., Arregui F.J., (2002), Simultaneous measurement of strain and temperature using a fibre Bragg grating and a thermochromic material, Sensors Actuators A, 96, 1, 21-24.
  • Li, Y.L., Chen, S.Y., Yang, L.H., Cao, L.H., (2011), Study on three-dimension computer simulation of plain knitted fabrics, Advanced Material Research, 213, 595-599.
  • Koncar, V., (2005), Optical fiber fabric displays, Optics and Photonics News, 16, 4, 40-44.
  • Selm, B., Gürel, E.A., Rothmaier, M., Rossi, R.M., Scherer, L.J., (2010), Polymeric optical fiber fabrics for illumination and sensorial applications in textiles, Journal of Intelligent Material Systems and Structures, 21, 11, 1061-1071.
  • Luprano, J., (2008), Bio-sensing textile for medical monitoring applications, Advances in Science and Technology, 57, 257-265.
  • Wang, H., Peng, D., Wang, W., Sharif, H., Chen, H.h., Khoynezhad, A., (2010), Resource-aware secure ECG healthcare monitoring through body sensor networks, IEEE Wireless Communications, 17, 1, 12-19.
  • http://tr.euronews.com/2015/03/26/sporda-performans-arttiracak-akilli-kumas-icat-edildi, erişim tarihi: 26.04.2016.
  • Torsi, L., Pezzuto, M., Siciliano, P., Rella, R., Sabbatini, L., Valli, L., Zambonin, P.G., (1998), Conducting polymers doped with metallic inclusions: new materials for gas sensors, Sensors and Actuators B: Chemical, 48, 1-3, 362–367.
  • Hong, K.H., Oh, K.W., Kang, T.J., (2004), Polyanilinenylon 6 composite fabric for ammonia gas sensor, Journal of Applied Polymer Science, 92, 1, 37-42.
  • Jin, G., Norrish, J., Too, C., Wallace, G., (2004), Polypyrrole filament sensors for gases and vapours, Current Applied Physics, 4, 2-4, 366-369.
  • Shim, B.S., Chen, W., Doty, C., Xu, C.L., Kotov, N.A., (2008), Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes, Nano Letters, 8, 12, 4151-4157.
  • Bowman, D., Mattes, B.R., (2005), Conductive fibre prepared from ultrahigh molecular weight polyaniline for smart fabric and interactive textile applications, Synthetic Metals, 154, 1-3, 29-32.
  • Seesaard, T., Lorwongtragool, P., Kerdcharoen, T., (2012), Wearable electronic nose based on embroidered amine sensors on the fabric substrates, 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTICON), 1-4, 16-18 May 2012, Hua Hin, Thailand.
  • Weng, W., Chen, P., He, S., Sun X., Peng, H., (2016), Smart Electronic Textiles, Angewandte Chemie International Edition, 55, 21, 6140-6169.
  • Yun, J., Kim, H.-I., Lee, Y.-S., (2013), A hybrid gas-sensing material based on porous carbon fibers and a TiO2 photocatalyst, Journal of Materials Science, 48, 23, 8320-8328.
  • Modafferi, V., Panzera, G., Donato, A., Antonucci, P.L., Cannilla, C., Donato, N., Spadaro, D., Neri, G., (2012), Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers, Sensors and Actuators B: Chemical, 163, 1, 61-68.
  • Zhang, W., Tan, Y.Y., Wu, C., Silva, S.R.P., (2012), Self-assembly of single walled carbon nanotubes onto cotton to make conductive yarn, Particuology, 10, 4, 517-521.
  • Seesaard, T., Lorwongtragool, P., Kerdcharoen, T., (2015), Development of Fabric-Based Chemical Gas Sensors for Use as Wearable Electronic Noses, Sensors, 15, 1, 1885-1902.
  • Lala, N.L., Thavasi, V., Ramakrishna, S., (2009), Preparation of Surface Adsorbed and Impregnated Multi-walled Carbon Nanotube/Nylon-6 Nanofiber Composites and Investigation of their Gas Sensing Ability, Sensors, 9, 1, 86-101 Yang, A., Tao, X., Wang, R., Lee, S., Surya, C., (2007), Room temperature gas sensing properties SnO2/multiwall-carbon-nanotube composite nanofibers, Applied Physics Letters, 91, 13, 3110.
  • Shuai, S., Huang, Y., Tao, S., (2014), Simultaneous Monitoring of Ammonia and Moisture Using a Single Fiber Optoelectrode as a Transducer, IEEE Sensors Journal, 14, 3, 847-852.
  • Kinkeldei, T. Zysset, C., Münzenrieder, N., Tröster, G., (2012), An electronic nose on flexible substrates integrated into a smart textile, Sensors and Actuators B: Chemical, 174, 81-86.
  • Kincal, D., Kumar, A., Child, A.D., Reynolds, J.R., (1998), Conductivity switching in polypyrrole-coated textile fabrics as gas sensors, Synthetic Metals, 92, 53-56.
  • Manesh, K.M., Gopalan, A.I., Kwang-Pill, L., Santhosh, P., Kap-Duk, S., Duk-Dong, L., (2007), Fabrication of Functional Nanofibrous Ammonia Sensor, IEEE Transactions on Nanotechnology, 6, 5, 513-518.
  • Low, K., Horner, C.B., Li, C., Ico, G., Bosze, W., Myung, N.V., Nam, J., Composition-dependent sensing mechanism of electrospun conductive polymer composite nanofibers, Sensors and Actuators B: Chemical, 207, Part A, 235-242.
  • Ji, S., Li, Y., Yang, M., (2008), Gas sensing properties of a composite composed of electrospun poly(methyl methacrylate) nanofibers and in situ polymerized polyaniline, (2008), Sensors and Actuators B: Chemical, 133, 2, 644-649.
  • Gao, Y., Li, X., Gong, J., Fan, B., Su, Z., Qu, L., (2008), Polyaniline Nanotubes Prepared Using Fiber Mats Membrane as the Template and their Gas-response Behavior, Journal of Physical Chemistry C, 112, 22, 8215-8222.
  • Hong, K.H., Oh, K.W., Kang, T.J., (2004), Polyaniline–nylon 6 composite fabric for ammonia gas sensor, Journal of Applied Polymer Science, 92, 1, 37-42.
  • BIOTEX, Bio-sensing textile for health management, https://cordis.europa.eu/pub/ist/docs/mnd/biotex_en.pdf, erişim tarihi: 10.04.2017.
  • TWIGS: Textiles with integrated gas sensors, http://www.nano-tera.ch/projects/308.php, erişim tarihi: 10.04.2017.
  • Pereira, T., Silva, P., Carvalho, H., Carvalho, M., (2011), Textile moisture sensor matrix for monitoring of disabled and bedrest patients, IEEE International Conference on Computer as a Tool (EUROCON), 1-4, 27-29 April 2011, Lisbon, Portugal.
  • Panapoy, M., Singsang, W., Ksapabutr, B., (2010), Electrically conductive poly(3,4ethylenedioxythiophene) poly( styrene sulfonate)/polyacrylonitrile fabrics for humidity sensors, Physica Scripta, 2010, T139, 014056.
  • Hwang, L.S., Ko, J.M., Rhee, H.W., Kim C.Y., (1993), A polymer humidity sensor, Synthetic Metals, 57, 1, 3671-3676.
  • Kinkeldei, T., Zysset, C., Cherenack, K.H., Troster, G., (2011), A textile integrated sensor system for monitoring humidity and temperature, 16th International Solid-State Sensors, Actuators and Microsystems Conference, 1156-1159, 5-9 June 2011, Beijing, China. Nilsson, D., Kugler, T., Svensson, P.O., Berggren, M., (2002), An allorganic sensor–transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper, Sensors and Actuators B: Chemical, 86, 2-3, 193-197.
  • Kim, H., Kim, Y., Kwon, Y., Yoo, H., (2008), A 1.12 mW continuous healthcare monitor chip integrated on a planarfashionable circuit board, IEEE International Solid-State Circuits Conference (ISSCC) - Diges Technical Papers, 150-603, 3-7 February 2008, Philadelphia, PA.
  • Starke, E., Turke, A., Krause, M., Fischer, W.J., (2011), Flexible polymer humidity sensor fabricated by inkjet printing, 16th International Solid-State Sensors, Actuators and Microsystems Conference, 1152-1155, 5-9 June 2011, Beijing, China.
  • Kinkeldei, T., Zysset, C., Cherenack, K., Troester, G., (2009), Development and evaluation of temperature sensors for textile integration, 8th IEEE Sensors Conference, 1580-1583, 25-28 October 2009, Christchurch, Canterbury, NZ. Jung, S., Lauterback, C., Strasser, M., Weber, W., (2003), Enabling technologies for disappearing electronics in smart textiles, IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 386-387, 13 February 2003, Philadelphia, PA.
  • Ma, B., Ren, J., Deng, J., Yuan, W., (2010), Flexible thermal sensor array on PI film substrate for underwater applications, IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 679-682, 24-28 January 2010, Wanchai, Hong Kong.
  • Shih, W.-P., Tsao, L.-C., Lee, C.-W., Cheng, M.-Y., Chang, C., Yang, Y.-J., Fan, K.-J., (2010), Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite, Sensors, 10, 4, 3597-3610.
Toplam 119 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayşe Didem Erol Bu kişi benim

Suat Çetiner

Yayımlanma Tarihi 31 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 24 Sayı: 108

Kaynak Göster

APA Erol, A. D., & Çetiner, S. (2017). Elektronik Tekstillere Yönelik Akıllı Kumaş Sensörleri. Tekstil Ve Mühendis, 24(108), 305-320.
AMA Erol AD, Çetiner S. Elektronik Tekstillere Yönelik Akıllı Kumaş Sensörleri. Tekstil ve Mühendis. Aralık 2017;24(108):305-320.
Chicago Erol, Ayşe Didem, ve Suat Çetiner. “Elektronik Tekstillere Yönelik Akıllı Kumaş Sensörleri”. Tekstil Ve Mühendis 24, sy. 108 (Aralık 2017): 305-20.
EndNote Erol AD, Çetiner S (01 Aralık 2017) Elektronik Tekstillere Yönelik Akıllı Kumaş Sensörleri. Tekstil ve Mühendis 24 108 305–320.
IEEE A. D. Erol ve S. Çetiner, “Elektronik Tekstillere Yönelik Akıllı Kumaş Sensörleri”, Tekstil ve Mühendis, c. 24, sy. 108, ss. 305–320, 2017.
ISNAD Erol, Ayşe Didem - Çetiner, Suat. “Elektronik Tekstillere Yönelik Akıllı Kumaş Sensörleri”. Tekstil ve Mühendis 24/108 (Aralık 2017), 305-320.
JAMA Erol AD, Çetiner S. Elektronik Tekstillere Yönelik Akıllı Kumaş Sensörleri. Tekstil ve Mühendis. 2017;24:305–320.
MLA Erol, Ayşe Didem ve Suat Çetiner. “Elektronik Tekstillere Yönelik Akıllı Kumaş Sensörleri”. Tekstil Ve Mühendis, c. 24, sy. 108, 2017, ss. 305-20.
Vancouver Erol AD, Çetiner S. Elektronik Tekstillere Yönelik Akıllı Kumaş Sensörleri. Tekstil ve Mühendis. 2017;24(108):305-20.