Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Oil Absorption Properties of Polypropylene Nonwovens Containing Different Types of Diatomite Produced by Meltblown Technique

Yıl 2018, Cilt: 25 Sayı: 110, 68 - 77, 30.06.2018
https://doi.org/10.7216/1300759920182511001

Öz

In this study, two types of diatomite were incorporated into polypropylene and nonwoven fabrics were produced by meltblown technique. Apart from the various chemical, mineralogical and morphological analyses, both diatomites and the produced nonwovens were evaluated in terms of water and oil wettability and oil absorption performance. Rust inhibitor oil absorption of the diatomite containing nonwovens was improved by 134% (RDE1 diatomite) and 245% (RDE2 diatomite), while depending on the diatomite type used linseed oil, hydraulic oil, and diesel oil absorption values were deteriorated by 268-742%, 409-734%, and 732- 1101%, respectively. Generally, diatomite addition worsened the oil absorption in high viscous oils and improved in low viscous oils. 

Kaynakça

  • Wang J., Zheng Y., Wang A., (2012), Superhydrophobic Kapok Fiber Oil-Absorbent: Preparation and High Oil Absorbency. Chemical Engineering Journal, 213, 1-7.
  • Abdullah M.A., Rahmah A.U., Man Z., (2010), Physicochemical and Sorption Characteristics of Malaysian Ceiba Pentandra (L.) Gaertn. As a Natural Oil Sorbent, Journal of Hazardous Materials, 177, 683-691.
  • Wang J., Zheng Y., Wang A., (2012), Effect of Kapok Fiber Treated with Various Solvents on Oil Absorbency, Industrial Crops and Products, 40, 178-184.
  • Round F.E., Crawford R.M., Mann D.G., (1990), The Diatoms: Biology and Morphology of the Genera. Cambridge University Press Publications, United Kingdom, ISBN: 0 521 36318 7.
  • http://minerals.usgs.gov/minerals/pubs/commodity/diatomite/diatomyb03.pdf.
  • Deniz V., (2011), Comparison with Some Porous Materials and the Effects of Powder Filling on Breakage Parameters of Diatomite in Dry Ball Milling, Particulate Science and Technology: An International Journal, 29, 5, 428-440
  • Maier M., (2001) Amorphous Silica in Working Environments A Toxicological Overview, (Degussa), Mulhouse, France.
  • Zhu Q., Tao F., Pan Q.M., (2010), Fast and Selective Removal of Oils from Water Surface via Highly Hydrophobic Core–shell Fe2O3@C Nanoparticles under Magnetic Field, ACS Applied Materials and Interfaces, 2, 3141-3146.
  • Choi S.J., Kwon T.H., Im H., Moon D.I., Baek D.J., Seol M.L., Duarte J.P., Choi Y.K.A., (2011), Polydimethylsiloxane (PDMS) Sponge for the Selective Absorption of Oil from Water, ACS Applied Materials and Interfaces, 3, 4552-4556.
  • Deng D., Prendergast D.P., Macfarlane J., Bagatin R., Stellacci F., Gschwend P.M., (2013), Hydrophobic Meshes for Oil Spill Recovery Devices, ACS Applied Materials and Interfaces, 5, 774-781.
  • Korhonen J.T., Kettunen M., Ras R.H.A., Ikkala O., (2011), Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents, ACS Applied Materials and Interfaces, 3, 1813-1816.
  • Gurav J.L., Rao A.V., Nadargi D.Y., Park H.H., (2010), Ambient Pressure Dried TEOS-based Silica Aerogels: Good Absorbents of Organic Liquids, Journal of Material Science, 45, 503-510.
  • Hrubesh L.W., Coronado P.R., Satcher J.H., (2001), Solvent Removal from Water with Hydrophobic Aerogels, Journal of Non-Crystalline Solids, 1-3, 328-332.
  • Reynolds J.G., Coronado P.R., Hrubesh L.W., (2001), Hydrophobic Aerogels for Oil-spill Clean up – Intrinsic Absorbing Properties, Energy Sources, 23, 831-843.
  • Falk R.A ve Mueller K.F., (1981), Perfluoroalkylthioethyl Ether Derivatives, US Patent 4266080 (1981).
  • Kavale M.S., Mahadik D.B., Parale V.G., Rao A.V., Wagh P.B., Gupta S.C., (2012), Methyltrimethoxysilane Based Flexible Silica Aerogels for Oil Absorption Applications, AIP Conference Proceedings, 1447, 1283-1284.
  • Sheen Y.C., Huang Y.C., Liao C.S., Chou H.Y., Chang F.C., (2008), New Approach to Fabricate an Extremely Super-amphiphobic Surface Based on Fluorinated Silica Nanoparticles, Journal of Polymer Science: Part B Polymer Physics, 46, 1984-1990.
  • Akhavan B., Jarvis K., Majewski P., (2013), Hydrophobic Plasma Polymer Coated Silica Particles for Petroleum Hydrocarbon Removal, ACS Applied Materials and Interfaces, 5, 8563-8571.
  • Oliveira N.M., Reis R.L., Mano J.F., (2013), Superhydrophobic Surfaces Engineered Using Diatomaceous Earth, ACS Applied Materials and Interfaces, 5, 4202-4208.
  • Simpson J.T, D’Urso B.R., (2010), Superhydrophobic Diatomaceous Earth US Patent 2010/0021745 A1.
  • Venema P.C., Barbeei B.W., Larsonwo J.M., (2013), Multifunctional Superhydrophobic Diatomaceous Earth for Chemical Adhesion and Color Change, WO Patent 2013/071212 A1.
  • Chen J., Liu X., Li H., (2007), Improvement in Processability of Metallocene Polyethylene by Ultrasound and Binary Processing Aid, Journal of Applied Polymer Science, 103, 3, 1927–1935.
  • Hashimoto T. ve Mizuhata M., (2012), Discrimination of Transparent Polyethylene Films Based on Identification of Inorganic Antiblocking Agents, Journal of Forensic Science, 57, 3, 744-749.
  • Hu S.-F., Zhu X.-B., Hu W., Yan L., Cai C., (2012), “Crystallization Behaviors and Foaming Properties of Diatomite-filled Polypropylene Composites, Polymer Bulletin, 70, 2, 517-533.
  • Liang J.Z., (2008), Effects of Extrusion Conditions on Die-Swell Behavior of Polypropylene/Diatomite Composite Melts, Polymer Testing, 27, 8, 936–940.
  • Liang J.Z., (2009), Impact Fracture Toughness and Morphology of Diatomite-Filled Polypropylene Composites, Polymer Engineering & Science, 49, 8, 1603–1607.
  • Liang J.Z., (2010), Effects of Diatomite on Extrudate Swell Behavior of Polypropylene Composite Melts”, Journal of Applied Polymer Science, 118, 1, 385–389.
  • Liang J.Z., (2011), Quantitative Description of Interfacial Strength in Polypropylene/Inorganic Particle Composites, Polymer Composites, 32, 5, 821-828.
  • Liu X. ve Li H., (2004), Effect of Diatomite/Polyethylene Glycol Binary Processing Aids on the Rheology of a Metallocene Linear Low- Density Polyethylene, Journal of Applied Polymer Science, 93, 4, 1546–1552.
  • Liu X. ve Li H., (2005), Effect of Diatomite/Polyethylene Glycol Binary Processing Aid on the Melt Fracture and the Rheology of Polyethylenes, Polymer Engineering & Science, 45, 7, 898-903.
  • Liu X., Xie M., Li H., (2005), Effect of Inorganic Fillers in Binary Processing Aids on the Rheology of a Metallocene Linear Low Density Polyethylene, Journal of Applied Polymer Science, 96, 5, 1824–1829.
  • Liu X., Chen J., Li H., (2006), Phase Morphology and Rheological Properties of Metallocene-Catalyzed Linear Low-Density Polyethylene with a Small Amount of Diatomite/Oligomer Hybrids, Journal of Polymer Science: Part B Polymer Physics, 44, 9, 1287–1295.
  • Xie M., Liu X., Li H., (2006), Influence of Poly(ethylene glycol)-Containing Additives on Extrusion of Ultrahigh Molecular Weight Polyethylene / Polypropylene Blend, Journal of Applied Polymer Science, 100, 2, 1282–1288.
  • Xie M. ve Li H., (2008), Mechanical Properties of an Ultrahigh-Molecular-Weight Polyethylene/Polypropylene Blend Containing Poly(ethylene glycol) Additives, Journal of Applied Polymer Science, 108, 5, 3148–3153.
  • Xie M., Chen J., Li H., (2009), Morphology and Mechanical Properties of Injection-Molded Ultrahigh Molecular Weight Polyethylene/Polypropylene Blends and Comparison with Compression Molding, Journal of Applied Polymer Science, 111, 2, 890–898.
  • Yang R., Yu J., Liu Y., Wang K., (2005), Effects of Inorganic Fillers on the Natural Photo-Oxidation of High-Density Polyethylene, Polymer Degredation and Stability, 88, 2, 333-340.
  • Yang R., Liu Y., Yu J., Zhang D., (2008), Spatial Heterogeneity of Photo-Oxidation and Its Relation With Crack Propagation in Polyethylene Composites, Polymer Engineering & Science, 48, 11, 2270-2276.
  • Özen İ., Okyay G., Şimşek S., Duran D., (2017), Oil Absorbency of Diatomite Embedded Polypropylene Meltblown Composite Structures, Journal of Industiral Textiles, 46, 7, 1552-1578.
  • Garanti Beziryağı San ve Tic A.Ş., (2014), Refined Linseed Oil Technical Datasheet, Istanbul, Turkey.
  • ASTM D1238, Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer (ASTM, 2011).
  • Varga J., (1995), Polypropylene Structure, Blends and Composites, Edited by J. Karger-Kocsis, Chapman and Hall, London, ISBN: 0 412 58430 1.
  • ASTM F316-03, Standard Test Methods for Pore Size Characteristics of Membrane Filters by Bubble Point and Mean Flow Pore Test (ASTM, 2011).
  • Obara K, Makino H., (2010), Loop Heat Pipe Type Heat Transfer Device, US Patent US 2010/0186931 A1.
  • Santulli C., Gil R.G., Long A.C., Clifford M.J., (2002), Void Content Measurements in Commingled E-Glass/ Polypropylene Composites Using Image Analysis from Optical Micrographs, Science and Engineering of Composite Materials, 10, 2, 77-90.
  • ASTM D1483–12, Standard Test Method for Oil Absorption of Pigments by Gardner-Coleman Method (ASTM, 2012)
  • Calacal E.L. ve Whittemore O.J., (1987), The Sintering of Diatomite, American Ceramic Society Bulletin, 66 790-793.
  • Yusan S., Gök C., Erentürk S., Aytaş Ş., (2012), Adsorptive Removal of Thorium (IV) Using Calcined and Flux Calcined Diatomite from Turkey: Evaluation of Equilibrium, Kinetic and Thermodynamic Data, Applied Clay Science, 67-68, 106-116.
  • Zhuravlev L.T., (2000), The Surface Chemistry of Amorphous Silica. Zhuravlev Model, Colloids Surfaces, A 173, 1-38.
  • Fowler E.C., Buchber C., Lebeau B., Patarin J., Delacote C., Walcarius A., (2007), An Aqueous Route to Organically Functionalized Silica Diatom Skeletons, Applied Surface Science, 253, 5485-5493.
  • Lifshutz N., (2005), On the "Mean Flow" Pore Size Distribution of Microfiber and Nanofiber Webs, International Nonwovens Journal, 1, 18-24.
  • Yuan W., (2014), Effect of Fiber Diameter and Web Porosity on Breathability of Nanofiber Mats at Various Test Conditions, MSc. Thesis, The University of Texas at Austin, USA.

Eriyik Üfleme Tekniğiyle Üretilmiş, Farklı Tipte Diatomit İçeren Polipropilen Dokusuz Yüzeylerin Yağ Emicilik Özelliklerinin İncelenmesi

Yıl 2018, Cilt: 25 Sayı: 110, 68 - 77, 30.06.2018
https://doi.org/10.7216/1300759920182511001

Öz

Bu çalışmada polipropilen içerisine iki tipte diatomit ilâve edilerek eriyik üfleme tekniğine göre dokusuz yüzeyler üretilmiştir. Hem diatomitler hem de üretilen dokusuz yüzeyler çeşitli kimyasal, mineralojik ve morfolojik analizlerin dışında yağ ve su ile ıslanabilirlik ve yağ emicilik performansları bakımından değerlendirilmiştir. Diatomit içeren dokusuz yüzeylerde diatomit tipine bağlı olarak keten yağı emiciliği % 268-742, hidrolik yağı emiciliği % 409-734 ve dizel yağı emiciliği % 732-1101 gerilerken pas önleyici yağ emiciliği ise % 134 (RDE1 diatomiti) ve % 245 (RDE2 diatomiti) oranlarında iyileşmiştir. Genel olarak diatomit ilâvesi, yüksek viskoziteli yağlarda emiciliği geriletirken, düşük viskoziteli yağlarda iyileştirmiştir. 

Kaynakça

  • Wang J., Zheng Y., Wang A., (2012), Superhydrophobic Kapok Fiber Oil-Absorbent: Preparation and High Oil Absorbency. Chemical Engineering Journal, 213, 1-7.
  • Abdullah M.A., Rahmah A.U., Man Z., (2010), Physicochemical and Sorption Characteristics of Malaysian Ceiba Pentandra (L.) Gaertn. As a Natural Oil Sorbent, Journal of Hazardous Materials, 177, 683-691.
  • Wang J., Zheng Y., Wang A., (2012), Effect of Kapok Fiber Treated with Various Solvents on Oil Absorbency, Industrial Crops and Products, 40, 178-184.
  • Round F.E., Crawford R.M., Mann D.G., (1990), The Diatoms: Biology and Morphology of the Genera. Cambridge University Press Publications, United Kingdom, ISBN: 0 521 36318 7.
  • http://minerals.usgs.gov/minerals/pubs/commodity/diatomite/diatomyb03.pdf.
  • Deniz V., (2011), Comparison with Some Porous Materials and the Effects of Powder Filling on Breakage Parameters of Diatomite in Dry Ball Milling, Particulate Science and Technology: An International Journal, 29, 5, 428-440
  • Maier M., (2001) Amorphous Silica in Working Environments A Toxicological Overview, (Degussa), Mulhouse, France.
  • Zhu Q., Tao F., Pan Q.M., (2010), Fast and Selective Removal of Oils from Water Surface via Highly Hydrophobic Core–shell Fe2O3@C Nanoparticles under Magnetic Field, ACS Applied Materials and Interfaces, 2, 3141-3146.
  • Choi S.J., Kwon T.H., Im H., Moon D.I., Baek D.J., Seol M.L., Duarte J.P., Choi Y.K.A., (2011), Polydimethylsiloxane (PDMS) Sponge for the Selective Absorption of Oil from Water, ACS Applied Materials and Interfaces, 3, 4552-4556.
  • Deng D., Prendergast D.P., Macfarlane J., Bagatin R., Stellacci F., Gschwend P.M., (2013), Hydrophobic Meshes for Oil Spill Recovery Devices, ACS Applied Materials and Interfaces, 5, 774-781.
  • Korhonen J.T., Kettunen M., Ras R.H.A., Ikkala O., (2011), Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents, ACS Applied Materials and Interfaces, 3, 1813-1816.
  • Gurav J.L., Rao A.V., Nadargi D.Y., Park H.H., (2010), Ambient Pressure Dried TEOS-based Silica Aerogels: Good Absorbents of Organic Liquids, Journal of Material Science, 45, 503-510.
  • Hrubesh L.W., Coronado P.R., Satcher J.H., (2001), Solvent Removal from Water with Hydrophobic Aerogels, Journal of Non-Crystalline Solids, 1-3, 328-332.
  • Reynolds J.G., Coronado P.R., Hrubesh L.W., (2001), Hydrophobic Aerogels for Oil-spill Clean up – Intrinsic Absorbing Properties, Energy Sources, 23, 831-843.
  • Falk R.A ve Mueller K.F., (1981), Perfluoroalkylthioethyl Ether Derivatives, US Patent 4266080 (1981).
  • Kavale M.S., Mahadik D.B., Parale V.G., Rao A.V., Wagh P.B., Gupta S.C., (2012), Methyltrimethoxysilane Based Flexible Silica Aerogels for Oil Absorption Applications, AIP Conference Proceedings, 1447, 1283-1284.
  • Sheen Y.C., Huang Y.C., Liao C.S., Chou H.Y., Chang F.C., (2008), New Approach to Fabricate an Extremely Super-amphiphobic Surface Based on Fluorinated Silica Nanoparticles, Journal of Polymer Science: Part B Polymer Physics, 46, 1984-1990.
  • Akhavan B., Jarvis K., Majewski P., (2013), Hydrophobic Plasma Polymer Coated Silica Particles for Petroleum Hydrocarbon Removal, ACS Applied Materials and Interfaces, 5, 8563-8571.
  • Oliveira N.M., Reis R.L., Mano J.F., (2013), Superhydrophobic Surfaces Engineered Using Diatomaceous Earth, ACS Applied Materials and Interfaces, 5, 4202-4208.
  • Simpson J.T, D’Urso B.R., (2010), Superhydrophobic Diatomaceous Earth US Patent 2010/0021745 A1.
  • Venema P.C., Barbeei B.W., Larsonwo J.M., (2013), Multifunctional Superhydrophobic Diatomaceous Earth for Chemical Adhesion and Color Change, WO Patent 2013/071212 A1.
  • Chen J., Liu X., Li H., (2007), Improvement in Processability of Metallocene Polyethylene by Ultrasound and Binary Processing Aid, Journal of Applied Polymer Science, 103, 3, 1927–1935.
  • Hashimoto T. ve Mizuhata M., (2012), Discrimination of Transparent Polyethylene Films Based on Identification of Inorganic Antiblocking Agents, Journal of Forensic Science, 57, 3, 744-749.
  • Hu S.-F., Zhu X.-B., Hu W., Yan L., Cai C., (2012), “Crystallization Behaviors and Foaming Properties of Diatomite-filled Polypropylene Composites, Polymer Bulletin, 70, 2, 517-533.
  • Liang J.Z., (2008), Effects of Extrusion Conditions on Die-Swell Behavior of Polypropylene/Diatomite Composite Melts, Polymer Testing, 27, 8, 936–940.
  • Liang J.Z., (2009), Impact Fracture Toughness and Morphology of Diatomite-Filled Polypropylene Composites, Polymer Engineering & Science, 49, 8, 1603–1607.
  • Liang J.Z., (2010), Effects of Diatomite on Extrudate Swell Behavior of Polypropylene Composite Melts”, Journal of Applied Polymer Science, 118, 1, 385–389.
  • Liang J.Z., (2011), Quantitative Description of Interfacial Strength in Polypropylene/Inorganic Particle Composites, Polymer Composites, 32, 5, 821-828.
  • Liu X. ve Li H., (2004), Effect of Diatomite/Polyethylene Glycol Binary Processing Aids on the Rheology of a Metallocene Linear Low- Density Polyethylene, Journal of Applied Polymer Science, 93, 4, 1546–1552.
  • Liu X. ve Li H., (2005), Effect of Diatomite/Polyethylene Glycol Binary Processing Aid on the Melt Fracture and the Rheology of Polyethylenes, Polymer Engineering & Science, 45, 7, 898-903.
  • Liu X., Xie M., Li H., (2005), Effect of Inorganic Fillers in Binary Processing Aids on the Rheology of a Metallocene Linear Low Density Polyethylene, Journal of Applied Polymer Science, 96, 5, 1824–1829.
  • Liu X., Chen J., Li H., (2006), Phase Morphology and Rheological Properties of Metallocene-Catalyzed Linear Low-Density Polyethylene with a Small Amount of Diatomite/Oligomer Hybrids, Journal of Polymer Science: Part B Polymer Physics, 44, 9, 1287–1295.
  • Xie M., Liu X., Li H., (2006), Influence of Poly(ethylene glycol)-Containing Additives on Extrusion of Ultrahigh Molecular Weight Polyethylene / Polypropylene Blend, Journal of Applied Polymer Science, 100, 2, 1282–1288.
  • Xie M. ve Li H., (2008), Mechanical Properties of an Ultrahigh-Molecular-Weight Polyethylene/Polypropylene Blend Containing Poly(ethylene glycol) Additives, Journal of Applied Polymer Science, 108, 5, 3148–3153.
  • Xie M., Chen J., Li H., (2009), Morphology and Mechanical Properties of Injection-Molded Ultrahigh Molecular Weight Polyethylene/Polypropylene Blends and Comparison with Compression Molding, Journal of Applied Polymer Science, 111, 2, 890–898.
  • Yang R., Yu J., Liu Y., Wang K., (2005), Effects of Inorganic Fillers on the Natural Photo-Oxidation of High-Density Polyethylene, Polymer Degredation and Stability, 88, 2, 333-340.
  • Yang R., Liu Y., Yu J., Zhang D., (2008), Spatial Heterogeneity of Photo-Oxidation and Its Relation With Crack Propagation in Polyethylene Composites, Polymer Engineering & Science, 48, 11, 2270-2276.
  • Özen İ., Okyay G., Şimşek S., Duran D., (2017), Oil Absorbency of Diatomite Embedded Polypropylene Meltblown Composite Structures, Journal of Industiral Textiles, 46, 7, 1552-1578.
  • Garanti Beziryağı San ve Tic A.Ş., (2014), Refined Linseed Oil Technical Datasheet, Istanbul, Turkey.
  • ASTM D1238, Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer (ASTM, 2011).
  • Varga J., (1995), Polypropylene Structure, Blends and Composites, Edited by J. Karger-Kocsis, Chapman and Hall, London, ISBN: 0 412 58430 1.
  • ASTM F316-03, Standard Test Methods for Pore Size Characteristics of Membrane Filters by Bubble Point and Mean Flow Pore Test (ASTM, 2011).
  • Obara K, Makino H., (2010), Loop Heat Pipe Type Heat Transfer Device, US Patent US 2010/0186931 A1.
  • Santulli C., Gil R.G., Long A.C., Clifford M.J., (2002), Void Content Measurements in Commingled E-Glass/ Polypropylene Composites Using Image Analysis from Optical Micrographs, Science and Engineering of Composite Materials, 10, 2, 77-90.
  • ASTM D1483–12, Standard Test Method for Oil Absorption of Pigments by Gardner-Coleman Method (ASTM, 2012)
  • Calacal E.L. ve Whittemore O.J., (1987), The Sintering of Diatomite, American Ceramic Society Bulletin, 66 790-793.
  • Yusan S., Gök C., Erentürk S., Aytaş Ş., (2012), Adsorptive Removal of Thorium (IV) Using Calcined and Flux Calcined Diatomite from Turkey: Evaluation of Equilibrium, Kinetic and Thermodynamic Data, Applied Clay Science, 67-68, 106-116.
  • Zhuravlev L.T., (2000), The Surface Chemistry of Amorphous Silica. Zhuravlev Model, Colloids Surfaces, A 173, 1-38.
  • Fowler E.C., Buchber C., Lebeau B., Patarin J., Delacote C., Walcarius A., (2007), An Aqueous Route to Organically Functionalized Silica Diatom Skeletons, Applied Surface Science, 253, 5485-5493.
  • Lifshutz N., (2005), On the "Mean Flow" Pore Size Distribution of Microfiber and Nanofiber Webs, International Nonwovens Journal, 1, 18-24.
  • Yuan W., (2014), Effect of Fiber Diameter and Web Porosity on Breathability of Nanofiber Mats at Various Test Conditions, MSc. Thesis, The University of Texas at Austin, USA.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İlhan Özen 0000-0002-0105-6036

Yayımlanma Tarihi 30 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 25 Sayı: 110

Kaynak Göster

APA Özen, İ. (2018). Eriyik Üfleme Tekniğiyle Üretilmiş, Farklı Tipte Diatomit İçeren Polipropilen Dokusuz Yüzeylerin Yağ Emicilik Özelliklerinin İncelenmesi. Tekstil Ve Mühendis, 25(110), 68-77. https://doi.org/10.7216/1300759920182511001
AMA Özen İ. Eriyik Üfleme Tekniğiyle Üretilmiş, Farklı Tipte Diatomit İçeren Polipropilen Dokusuz Yüzeylerin Yağ Emicilik Özelliklerinin İncelenmesi. Tekstil ve Mühendis. Haziran 2018;25(110):68-77. doi:10.7216/1300759920182511001
Chicago Özen, İlhan. “Eriyik Üfleme Tekniğiyle Üretilmiş, Farklı Tipte Diatomit İçeren Polipropilen Dokusuz Yüzeylerin Yağ Emicilik Özelliklerinin İncelenmesi”. Tekstil Ve Mühendis 25, sy. 110 (Haziran 2018): 68-77. https://doi.org/10.7216/1300759920182511001.
EndNote Özen İ (01 Haziran 2018) Eriyik Üfleme Tekniğiyle Üretilmiş, Farklı Tipte Diatomit İçeren Polipropilen Dokusuz Yüzeylerin Yağ Emicilik Özelliklerinin İncelenmesi. Tekstil ve Mühendis 25 110 68–77.
IEEE İ. Özen, “Eriyik Üfleme Tekniğiyle Üretilmiş, Farklı Tipte Diatomit İçeren Polipropilen Dokusuz Yüzeylerin Yağ Emicilik Özelliklerinin İncelenmesi”, Tekstil ve Mühendis, c. 25, sy. 110, ss. 68–77, 2018, doi: 10.7216/1300759920182511001.
ISNAD Özen, İlhan. “Eriyik Üfleme Tekniğiyle Üretilmiş, Farklı Tipte Diatomit İçeren Polipropilen Dokusuz Yüzeylerin Yağ Emicilik Özelliklerinin İncelenmesi”. Tekstil ve Mühendis 25/110 (Haziran 2018), 68-77. https://doi.org/10.7216/1300759920182511001.
JAMA Özen İ. Eriyik Üfleme Tekniğiyle Üretilmiş, Farklı Tipte Diatomit İçeren Polipropilen Dokusuz Yüzeylerin Yağ Emicilik Özelliklerinin İncelenmesi. Tekstil ve Mühendis. 2018;25:68–77.
MLA Özen, İlhan. “Eriyik Üfleme Tekniğiyle Üretilmiş, Farklı Tipte Diatomit İçeren Polipropilen Dokusuz Yüzeylerin Yağ Emicilik Özelliklerinin İncelenmesi”. Tekstil Ve Mühendis, c. 25, sy. 110, 2018, ss. 68-77, doi:10.7216/1300759920182511001.
Vancouver Özen İ. Eriyik Üfleme Tekniğiyle Üretilmiş, Farklı Tipte Diatomit İçeren Polipropilen Dokusuz Yüzeylerin Yağ Emicilik Özelliklerinin İncelenmesi. Tekstil ve Mühendis. 2018;25(110):68-77.