Araştırma Makalesi
BibTex RIS Kaynak Göster

Thickness and Temperature Effects on the Impact Behavior of Glass Fiber Reinforced Polypropylene Composites

Yıl 2018, Cilt: 25 Sayı: 110, 103 - 112, 30.06.2018
https://doi.org/10.7216/1300759920182511005

Öz

In this study, the low velocity impact behaviors of glass fiber reinforced polypropylene thermoplastic composites were investigated experimentally. In order to improve the low velocity impact behavior, sandwich composites having new orientation were manufactured by using glass fiber reinforced polypropylene composite lamina. Impact tests of composites having thickness of 4 and 6mm were carried out at room temperature and 50˚C so as to investigate the thickness and temperature effects on the low velocity impact behavior. According to the obtained results, maximum contact force of the specimens with two different orientations is enhanced by increasing thickness as it declines by increasing temperature. 

Kaynakça

  • Abrate, S., (2005), Impact on composite structures, Cambridge university press.
  • Guillaud, N., Froustey, C., Dau, F., Viot, P., (2015), Impact response of thick composite plates under uniaxial tensile preloading, Composite Structures, 121, 172–181.
  • Mitrevski, T., Marshall, I.H., Thomson, R., Jones, R., Whittingham, B., (2005), The effect of impactor shape on the impact response of composite laminates, Composite Structures, 67, 139–148.
  • Kurşun, A., Şenel, M., Enginsoy, H.M., (2015), Experimental and numerical analysis of low velocity impact on a preloaded composite plate, Advances in Engineering Software, 90, 41–52.
  • Yudhanto, A., Lubineau, G., Wafai, H., Mulle, M., Pulungan, D., Yaldiz, R., Verghese, N., (2016), Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates, Polymer Testing, 51, 93-100.
  • Russo, P., Langella, A., Papa, I., Simeoli, G., Lopresto, V., (2017), Thermoplastic polyurethane/glass fabric composite laminates: Low velocity impact behavior under extreme temperature conditions, Composite Structures, 166, 146–152.
  • Arıkan, V., Sayman, O., (2015), Comparative study on repeated impact response of E-glass fiber reinforced polypropylene and epoxy matrix composites, Composites Part B, 83, 1-6.
  • Vieille, B., Casado, V.M., Bouvet C., (2013), About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: A comparative study, Composite Structures, 101, 9-21.
  • Feng, C., Liang, M., Jiang, J., Huang, J., Liu, H., (2016), Synergistic effect of a Novel triazine Charring Agent and ammonium polyphosphate on the flame retardant properties of Halogen-Free Flame Retardant Polypropylene composites, Thermochimica Acta, 627, 83-90.
  • Lv, P., Wang, Z., Hu, K., Fan, W., (2005), Flammability and thermal degradation of flame retarded polypropylene composites containing melamine phosphate and pentaerythritol derivatives, Polymer Degradation and Stability, 90, 523-534.
  • Shen, H., Wang, Y., Mai, K., (2008), Effect of compatibilizers on thermal stability and mechanical properties of magnesium hydroxide filled polypropylene composites, Thermochimica Acta, 483, 36–40.
  • Lin, H., Yan, H., Liu, B., Wei, L., Xu, B., (2011), The influence of KH-550 on properties of ammonium polyphosphate and polypropylene flame retardant composites, Polymer Degradation and Stability, 96, 1382-1388.
  • Yang, J., Liang, J.Z., Tang, C.Y., (2009), Studies on melt flow properties during capillary extrusion of PP/Al(OH)3/Mg(OH)2 flame retardant composites, Polymer Testing, 28, 907–911.
  • Chen, L., Wang, Y., (2009), A review on flame retardant technology in China. Part I: development of flame retardants, Wiley InterScience, 22 September.
  • Rault, F., Pleyber, E., Campagne, C., Rochery, M., Giraud, S., Bourbigot, S., Devaux, E., (2009), Effect of manganese nanoparticles on the mechanical, thermal and fire properties of polypropylene multifilament yarn, Polymer Degradation and Stability, 94, 955–964.
  • Dhakal, H.N., Zhang, Z.Y., Bennett, N., Reis, P.N.B., (2012), Low-velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites: Influence of impactor geometry and impact velocity, Composite Structures, 94, 2756–2763.
  • Garcı´a-Castillo, S.K., Sa´nchez-Sa´ez, S., Lo´pez-Puente, J., Barbero, E., Navarro, C., (2009), Impact behaviour of preloaded glass/polyester woven plates, Composites Science and Technology, 69, 711–717.
  • Saghafi, H., Brugo, T., Minak, G., Zucchelli, A., (2014), The effect of pre-stress on impact response of concave and convex composite laminates, Procedia Engineering, 88, 109 – 116.
  • Garcia-Gonzalez, D., Rodriguez-Millan, M., Rusinek, A., Arias, A., (2015), Low temperature effect on impact energy absorption capability of PEEK composites, Composite Structures, 134, 440–449.
  • Al-Shamary, A.K.J., Karakuzu, R., Özdemir, O., (2016), Low-velocity impact response of sandwich composites with different foam core configurations, Journal of Sandwich Structures and Materials, 18(6), 754-768.
  • Özdemir, O., Karakuzu, R., Al-Shamary, A.K.J., (2015), Core-thickness effect on the impact response of sandwich composites with poly(vinyl chloride) and poly(ethylene terephthalate) foam cores, Journal of Composite Materials, 49(11), 1315-1329.
  • Boumbimba, R.M., Coulibaly, M., Khabouchi, A., Kinvi-Dossou, G., Bonfoh, N., Gerard, P., (2017), Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures, Composite Structures, 160, 939-951.

Cam Lifi Takviyeli Polipropilen Kompozitlerde Kalınlığın ve Sıcaklığın Darbe Davranışına Etkileri

Yıl 2018, Cilt: 25 Sayı: 110, 103 - 112, 30.06.2018
https://doi.org/10.7216/1300759920182511005

Öz

Bu çalışmada, uzun cam elyaf takviyeli polipropilen granüllerden oluşan termoplastik kompozitlerin düşük hızlı darbe davranışları deneysel olarak incelenmiştir. Bu kompozitlerin düşük hızlı darbe davranışını iyileştirmek amacıyla cam elyaf takviyeli polipropilen kompozit prepregler kullanılarak sandviç yapıda yeni bir dizilime sahip kompozitler üretilmiştir. Kalınlığın ve sıcaklığın düşük hızlı darbe davranışına olan etkilerini incelemek amacıyla 4 ve 6mm kalınlığa sahip kompozitlerin oda sıcaklığında ve 50˚C’de deneyleri gerçekleştirilmiştir. Elde edilen sonuçlara göre, iki farklı dizilime sahip kompozitlerin kalınlığın artmasıyla maksimum temas kuvvetinin arttığı, sıcaklığın yükselmesiyle ise düştüğü gözlemlenmiştir. 

Kaynakça

  • Abrate, S., (2005), Impact on composite structures, Cambridge university press.
  • Guillaud, N., Froustey, C., Dau, F., Viot, P., (2015), Impact response of thick composite plates under uniaxial tensile preloading, Composite Structures, 121, 172–181.
  • Mitrevski, T., Marshall, I.H., Thomson, R., Jones, R., Whittingham, B., (2005), The effect of impactor shape on the impact response of composite laminates, Composite Structures, 67, 139–148.
  • Kurşun, A., Şenel, M., Enginsoy, H.M., (2015), Experimental and numerical analysis of low velocity impact on a preloaded composite plate, Advances in Engineering Software, 90, 41–52.
  • Yudhanto, A., Lubineau, G., Wafai, H., Mulle, M., Pulungan, D., Yaldiz, R., Verghese, N., (2016), Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates, Polymer Testing, 51, 93-100.
  • Russo, P., Langella, A., Papa, I., Simeoli, G., Lopresto, V., (2017), Thermoplastic polyurethane/glass fabric composite laminates: Low velocity impact behavior under extreme temperature conditions, Composite Structures, 166, 146–152.
  • Arıkan, V., Sayman, O., (2015), Comparative study on repeated impact response of E-glass fiber reinforced polypropylene and epoxy matrix composites, Composites Part B, 83, 1-6.
  • Vieille, B., Casado, V.M., Bouvet C., (2013), About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: A comparative study, Composite Structures, 101, 9-21.
  • Feng, C., Liang, M., Jiang, J., Huang, J., Liu, H., (2016), Synergistic effect of a Novel triazine Charring Agent and ammonium polyphosphate on the flame retardant properties of Halogen-Free Flame Retardant Polypropylene composites, Thermochimica Acta, 627, 83-90.
  • Lv, P., Wang, Z., Hu, K., Fan, W., (2005), Flammability and thermal degradation of flame retarded polypropylene composites containing melamine phosphate and pentaerythritol derivatives, Polymer Degradation and Stability, 90, 523-534.
  • Shen, H., Wang, Y., Mai, K., (2008), Effect of compatibilizers on thermal stability and mechanical properties of magnesium hydroxide filled polypropylene composites, Thermochimica Acta, 483, 36–40.
  • Lin, H., Yan, H., Liu, B., Wei, L., Xu, B., (2011), The influence of KH-550 on properties of ammonium polyphosphate and polypropylene flame retardant composites, Polymer Degradation and Stability, 96, 1382-1388.
  • Yang, J., Liang, J.Z., Tang, C.Y., (2009), Studies on melt flow properties during capillary extrusion of PP/Al(OH)3/Mg(OH)2 flame retardant composites, Polymer Testing, 28, 907–911.
  • Chen, L., Wang, Y., (2009), A review on flame retardant technology in China. Part I: development of flame retardants, Wiley InterScience, 22 September.
  • Rault, F., Pleyber, E., Campagne, C., Rochery, M., Giraud, S., Bourbigot, S., Devaux, E., (2009), Effect of manganese nanoparticles on the mechanical, thermal and fire properties of polypropylene multifilament yarn, Polymer Degradation and Stability, 94, 955–964.
  • Dhakal, H.N., Zhang, Z.Y., Bennett, N., Reis, P.N.B., (2012), Low-velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites: Influence of impactor geometry and impact velocity, Composite Structures, 94, 2756–2763.
  • Garcı´a-Castillo, S.K., Sa´nchez-Sa´ez, S., Lo´pez-Puente, J., Barbero, E., Navarro, C., (2009), Impact behaviour of preloaded glass/polyester woven plates, Composites Science and Technology, 69, 711–717.
  • Saghafi, H., Brugo, T., Minak, G., Zucchelli, A., (2014), The effect of pre-stress on impact response of concave and convex composite laminates, Procedia Engineering, 88, 109 – 116.
  • Garcia-Gonzalez, D., Rodriguez-Millan, M., Rusinek, A., Arias, A., (2015), Low temperature effect on impact energy absorption capability of PEEK composites, Composite Structures, 134, 440–449.
  • Al-Shamary, A.K.J., Karakuzu, R., Özdemir, O., (2016), Low-velocity impact response of sandwich composites with different foam core configurations, Journal of Sandwich Structures and Materials, 18(6), 754-768.
  • Özdemir, O., Karakuzu, R., Al-Shamary, A.K.J., (2015), Core-thickness effect on the impact response of sandwich composites with poly(vinyl chloride) and poly(ethylene terephthalate) foam cores, Journal of Composite Materials, 49(11), 1315-1329.
  • Boumbimba, R.M., Coulibaly, M., Khabouchi, A., Kinvi-Dossou, G., Bonfoh, N., Gerard, P., (2017), Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures, Composite Structures, 160, 939-951.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Okan Özdemir 0000-0003-4055-6874

Halis Kandaş Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 25 Sayı: 110

Kaynak Göster

APA Özdemir, O., & Kandaş, H. (2018). Cam Lifi Takviyeli Polipropilen Kompozitlerde Kalınlığın ve Sıcaklığın Darbe Davranışına Etkileri. Tekstil Ve Mühendis, 25(110), 103-112. https://doi.org/10.7216/1300759920182511005
AMA Özdemir O, Kandaş H. Cam Lifi Takviyeli Polipropilen Kompozitlerde Kalınlığın ve Sıcaklığın Darbe Davranışına Etkileri. Tekstil ve Mühendis. Haziran 2018;25(110):103-112. doi:10.7216/1300759920182511005
Chicago Özdemir, Okan, ve Halis Kandaş. “Cam Lifi Takviyeli Polipropilen Kompozitlerde Kalınlığın Ve Sıcaklığın Darbe Davranışına Etkileri”. Tekstil Ve Mühendis 25, sy. 110 (Haziran 2018): 103-12. https://doi.org/10.7216/1300759920182511005.
EndNote Özdemir O, Kandaş H (01 Haziran 2018) Cam Lifi Takviyeli Polipropilen Kompozitlerde Kalınlığın ve Sıcaklığın Darbe Davranışına Etkileri. Tekstil ve Mühendis 25 110 103–112.
IEEE O. Özdemir ve H. Kandaş, “Cam Lifi Takviyeli Polipropilen Kompozitlerde Kalınlığın ve Sıcaklığın Darbe Davranışına Etkileri”, Tekstil ve Mühendis, c. 25, sy. 110, ss. 103–112, 2018, doi: 10.7216/1300759920182511005.
ISNAD Özdemir, Okan - Kandaş, Halis. “Cam Lifi Takviyeli Polipropilen Kompozitlerde Kalınlığın Ve Sıcaklığın Darbe Davranışına Etkileri”. Tekstil ve Mühendis 25/110 (Haziran 2018), 103-112. https://doi.org/10.7216/1300759920182511005.
JAMA Özdemir O, Kandaş H. Cam Lifi Takviyeli Polipropilen Kompozitlerde Kalınlığın ve Sıcaklığın Darbe Davranışına Etkileri. Tekstil ve Mühendis. 2018;25:103–112.
MLA Özdemir, Okan ve Halis Kandaş. “Cam Lifi Takviyeli Polipropilen Kompozitlerde Kalınlığın Ve Sıcaklığın Darbe Davranışına Etkileri”. Tekstil Ve Mühendis, c. 25, sy. 110, 2018, ss. 103-12, doi:10.7216/1300759920182511005.
Vancouver Özdemir O, Kandaş H. Cam Lifi Takviyeli Polipropilen Kompozitlerde Kalınlığın ve Sıcaklığın Darbe Davranışına Etkileri. Tekstil ve Mühendis. 2018;25(110):103-12.

Cited By