Araştırma Makalesi
BibTex RIS Kaynak Göster

Hibrit Dokunan Karbon/E-Cam/Polipropilen Termoplastik Prepreg Kompozitlerin Mekanik Özellikleri

Yıl 2018, Cilt: 25 Sayı: 111, 196 - 207, 01.10.2018

Öz

 Kompozit malzemelerde yüksek spesifik özelliklere düşük
fiyatlarda ulaşma isteğinin çeşitli endüstriyel uygulama alanları için giderek
artması, hibrit termoplastik kompozitlerin geliştirilmesine katkı sağlamıştır. Bu
çalışmada, hibrit dokunan Karbon/Polipropilen (PP), E-cam/PP ve Karbon/E-cam/PP
prepregler kullanılarak, katman-içi, katmanlar-arası ve
katman-içi/katmanlar-arası hibrit biçimde tasarlanan termoplastik kompozitler
geliştirilmiş ve bu kompozitlerin eksenel yüke maruz kalması durumundaki
davranışları hibrit-olmayan kompozitlerle karşılaştırılmıştır. Hibritlemede
kullanılan takviye liflerinin konum ve lif miktarı bakımından dengeli/uniform dağılıma
sahip olduğu katman-içi/katmanlar-arası hibrit kompozit yapı en yüksek dayanım/modül
değerini göstermiştir. Katman-içi/katmanlar-arası hibrit kompozit yapı, gerek
daha dar bir alanda sınırlanan delaminasyon davranışı, gerekse yüksek çekme
dayanım/modül değerleri bakımından hasar toleranslı malzeme olarak
değerlendirilmiştir. 

Kaynakça

  • Hoa, S. V., (2009), Principles of the Manufacturing of Composite Materials, DEStech Publications, Inc. ABD.
  • Offringa, A. R. (1996), Thermoplastic Composites-Rapid Processing Applications, Composites Part A: Applied Science and Manufacturing, 27, 329-336.
  • Iyer, S. R., Drzal, L. T., (1990), Manufacture of Powder-Impregnated Thermoplastic Composites, Journal of Thermoplastic Composite Materials, 3, 325-355.
  • Hifennach, W., Bohm, R., Thieme, M., Winkler, A., Mader, E., Shade, M., (2011), Polypropylene/Glass Fibre 3D-Textile Reinforced Composites for Automotive Applications, Materials & Design, 32, 1468-1476.
  • 5. Ning, H., Janowski, G. M., Vaidya, U. K., Husman, G., (2007) Thermoplastic Sandwich Structure Design and Manufacturing for the Body Panel of Mass Transit Vehicle, Composite Structures, 80, 82-91.
  • Vieille, B., Albouy, W., Chevalier, L., Taleb, L., (2013), About the Influence of Stamping on Thermoplastic-Based Composites for Aeronautical Applications, Composites Part B: Engineering, 45, 821-834.
  • Robert, M., Roy, R., Benmokrane, B., (2010). Environmental Effects on Glass Fibre Reinforced Polypropylene Thermoplastic Composite Laminate for Structural Applications, Polymer Composites, 31, 604-611.
  • Brandrup, J., Immergut, H., Grulke, A., (1999), Polymer Handbook, Fourth Edition, John Willey & Sons, Inc., ABD.
  • Schafer, J., Stolyarov, O., Ali, R., Greb, C, Seide, G., Gries, T., (2015), Process-Structure Relationship of Carbon/Polyphenylene Sulfide Commingled Hybrid Yarns Used for Thermoplastic Composites, Journal of Industrial Textiles, 45, 6, 1661-1673.
  • Thomason, J. L., (2007), The Influence of Fibre Length and Concentration on the Properties of Glass Fibre Reinforced Polypropylene: 7. Interface Strength and Fibre Strain in Injection Moulded Long Fibre PP at High Fibre Content, Composites Part A: Applied Science and Manufacturing, 38, 210-216.
  • Thomason, J. L., (2002), Micromechanical Parameters from Macromechanical Measurements on Glass Reinforced Polypropylene, Composites Science and Technology, 62, 1455-1468.
  • Bureau, M. N., Perrin, F., Denault, J., Dickson, J. I., (2002), Interlaminar Fatigue Crack Propagation in Continuous Glass Fiber/Polypropylene Composites, International Journal of Fatigue, 24, 99-108.
  • Bureau, M. N., Denault, J., (2004), Fatigue Resistance of Continuous Glass Fiber/Polypropylene Composites: Consolidation Dependence, Composites Science and Technology, 64, 1785-1794.
  • Vina, J., Arguelles, A., Canteli, A. F., (2011), Influence of Temperature on the Fatigue Behavior of Glass Fibre Reinforced Polypropylene, Strain, 47, 222-226.
  • Seo, Y., Kim, J., Kim, K. U., Kim, Y. C., (2000), Study of the Crystallization Behaviors of Polypropylene and Maleic Anhydride Grafted Polypropylene, Polymer, 41, 2639-2646.
  • Hamada, H., Fujihara, K., Harada. A., (2000), The Influence of Sizing Conditions on Bending Properties of Continuous Glass Fibre Reinforced Polypropylene Composites, Composites Part A: Applied Science and Manufacturing, 31, 979-990.
  • Mader, E., Freitag, K., (1990), Interface Properties and Their Influence on Short Fibre Composites, Composites, 21, 5, 397-402.
  • Atas, C., Sayman, O., (2008), An Overall View on Impact Response of Woven Fabric Composite Plates, Composite Structures, 82, 336-345.
  • Kim, J. K, Sham, M. L., (2000), Impact and Delamination Failure of Woven-Fabric Composites, Composites Science and Technology, 60, 745-761.
  • Sorrentino, L., Simeoli, G., Iannace, S., Russo, P., (2015), Mechanical Performance Optimization Through Interface Strength Gradation in PP/Glass Fibre Reinforced Composites, Composites Part B: Engineering , 76, 201-208.
  • Stack, R. M., Lai, F., Development in Thermoforming Thermoplastic Composites, https://pdfs.semanticscholar.org/3e1d/a9dc45b73ff1415692d15361baa8a5b2791f.pdf, Erişim tarihi: 30.04.2018.
  • Choi, B. D., Diestel, O., Offermann, P., (1999), Commingled CF/PEEK Hybrid Yarns for Use in Textile Reinforced High Performance Rotors, https://pdfs.semanticscholar.org/a9bc/704a0e09a283ac303f563498ee31dab710a1.pdf, Erişim tarihi: 02.10.2017.
  • Kretsis, G., (1987), A Review of the Tensile, Compressive, Flexural And Shear Properties of Hybrid Fibre-Reinforced Plastics, Composites, 18, 1, 13-23.
  • Yan, R., Wang, R., Lou, C. W., Lin, J. H., (2015), Low-Velocity Impact and Static Behaviors of High-Resilience Thermal-Bonding Inter/Intra-Ply Hybrid Composites, Composites Part B: Engineering, 69, 58-68.
  • Valença, S. L., Griza, S., Oliveira, V. G., Sussuchi, E. M., Cunha, F. G. C., (2015), Evaluation of the Mechanical Behavior of Epoxy Composite Reinforced with Kevlar Plain Fabric and Glass/Kevlar Hybrid Fabric, Composites Part B: Engineering, 70, 1-8.
  • Irina M. M. W., Azmi, A. I., Tan, C. L., Lee, C. C., Khalil, A. N. M., (2015), Evaluation of Mechanical Properties of Hybrid Fiber Reinforced Polymer Composites and Their Architecture, Procedia Manufacturing, 2, 236-240.
  • Lou, C. W., Huang, S. Y., Huang, C. L., Yan, R., Lin, J. H., (2015), Impact Properties of Flexible Composites Made of Nylon/High-Resilience Non-Woven Fabric With an Inter/Intra-Ply Hybrid Structure, Journal of Reinforced Plastics and Composites, 35, 4, 320-333.
  • Hamouda, T., Hassanin, A. H., Kilic, A., Candan, Z., Bodur, M. S., (2015), Hybrid Composites from Coir Fibers Reinforced with Woven Glass Fabrics: Physical and Mechanical Evaluation, Polymer Composites, DOI 10.1002/pc.23799.
  • Mallick, P. K., (2007), Fiber Reinforced Composites: Materials, Manufacturing, and Design, CRC Press Taylor & Francis Group, Birleşik Krallık.
  • Beehag, A., Ye, L., (1996), Role of Cooling Pressure on Interlaminar Fracture Properties of Commingled CF/PEEK composites, Composites Part A: Applied Science and Manufacturing, 2lA, 175-182. Bernet, N., Michaud, V., Bourban, P. E., Manson, J. A. E., (2001), Commingled Yarn Composites for Rapid Processing of Complex Shapes, Composites Part A: Applied Science and Manufacturing, 32, 1613-1626.
  • Mader, E., Rausch, J., Schmidt, N., (2008), Commingled Yarns- Processing Aspects and Tailored Surfaces of Polypropylene/Glass Composites, Composites Part A: Applied Science and Manufacturing, 39, 612-623.
  • Long, A. C., Wilks, C. E., Rudd, C. D., (2001), Experimental Characterization of the Consolidation of a Commingled Glass/Polypropylene Composite, Composites Science and Technology, 61, 1591-1603.
  • Wakeman, M. D., Cain, T. A., Rudd, C. D., Brooks R., Long, A. C., (1998), Compression Moulding of Glass and Polypropylene Composites for Optimised Macro and Micro Mechanical Properties of Commingled Glass and Polypropylene, Composites Science and Technology, 58, 1879-1898.
  • Lariviere, D., Krawczak, P., (2004), Interfacial Properties in Commingled Yarn Thermoplastic Composites Part I: Characterization of the Fiber/Matrix Adhesion, Polymer Composites, 25, 6, 577-587.
  • Ye, L., Friedrich, K., Kastel, J., Mai, Y. W., (1995), Consolidation of Unidirectional CF/Peek Composites from Commingled Yarn Prepreg, Composites Science and Technology, 54: 349-358.
  • Bernet, N., Michaud, V., Bourban, P. E., Manson, J. A. E., (1999), An Impregnation Model for the Consolidation of Thermoplastic Composites Made from Commingled Yarns, Journal of Composite Materials, 33, 8, 751-772.
  • Alagirusamy, R., Ogale, V., (2004), Commingled and Air Jet-textured Hybrid Yarns for Thermoplastic Composites, Journal of Industrial Textiles, 33, 4, 223-243.
  • Selver, E., Potluri, P., Hogg, P., Soutis, C., (2016), Impact Damage Tolerance of Thermoset Composites Reinforced with Hybrid Commingled Yarns, Composites Part B: Engineering, 91, 522-538.
  • Alagirusamy, R., Fangueiro, R, Ogale, V, Padaki, N., (2006), Hybrid Yarns and Textile Preforming for Thermoplastic Composites, Textile Progress, 38, 4, 1-71.
  • Baghaei, B., Skrifvars, M., Berglin, L. 2015. Characterization of Thermoplastic Natural Fibre Composites Made from Woven Hybrid Yarn Prepregs With Different Weave Pattern. Composites Part A: Applied Science and Manufacturing, 76, 154-161.
  • Baghaei, B., Skrifvars, M., (2016), Characterisation of Polylactic Acid Biocomposites Made from Prepregs Composed of Woven Polylactic Acid/Hemp-Lyocell Hybrid Yarn Fabrics. Composites Part A: Applied Science and Manufacturing, 81, 139-144.
  • Baghaei, B., Skrifvars, M., Berglin, L., (2013), Manufacture and Characterization of Thermoplastic Composites Made from Pla/Hemp Co-Wrapped Hybrid Yarn Prepregs, Composites Part A: Applied Science and Manufacturing, 50, 93-101.
  • Zhang, L., Miao, M., (2010), Commingled Natural Fibre/Polypropylene Wrap Spun Yarns for Structured Thermoplastic Composites, Composites Science and Technology, 70, 130-135.
  • Shekar, R. I., Satheesh Kumar, M. N., Damodhara Rao, P. M., Yaakob, Z., Kotresh, T. M., Siddaramaiah, Chandrakala, (2010), Studies on the Composites Produced from Co-Weaved Poly Ether Ether Ketone and Glass Fiber Fabric, Journal of Composite Materials, 45, 7, 741-749.
  • Shekar, R.I., Kotresh, T. M., Krishna Prasad, A. S., Damodhara Rao, P. M., Satheesh Kumar, M. N., Siddaramaiah, (2010), Hybrid Fiber Fabric Composites from Poly Ether Ether Ketone and Glass Fiber, Journal of Applied Polymer Science, 117, 1446-1459.
  • Dehkordi, M. T., Nosraty, H., Shokrieh, M. M. Minak, G., Ghelli, D., (2010), Low Velocity Impact Properties of Intra-Ply Hybrid Composites Based on Basalt and Nylon Woven Fabrics, Materials and Design, 31, 3835-3844.
  • Sugie, T., Nakai, A., Hamada, H., (2009), Effect of CF/GF Fibre Hybrid on Impact Properties of Multi-Axial Warp Knitted Fabric Composite Materials, Composites Part A: Applied Science and Manufacturing, 40, 1982-1990.
  • Sevkat, E., Liaw, B., Delale, F., Raju, B. B., (2009), Drop-Weight Impact of Plain-Woven Hybrid Glass-Graphite/Toughened Epoxy Composites, Composites Part A: Applied Science and Manufacturing, 40, 8, 1090-1110.
  • Pandya, K. S.,Veerraju, Ch., Naik, N. K., (2011), Hybrid Composites Made of Carbon and Glass Woven Fabrics under Quasi-Static Loading, Materials and Design, 32, 4094-4099.
  • Zhang, J., Chaisombat, K., He, S., Wang, C. H., (2012), Hybrid Composite Laminates Reinforced With Glass/Carbon Woven Fabrics for Lightweight Load Bearing Structures, Materials and Design, 36, 75-80.
  • Kaya, G., (2017), Flexural Stiffness of Carbon/E-Glass/PP(Polypropylene) Hybrid Woven Thermoplastic Prepregs for Composites, 2nd International Mediterranean Science and Engineering Congress (IMSEC), 987-993, 25-27 Ekim, Adana, Türkiye,
  • Spragg, C. J., Drzal, L. T., (1996), Fiber, Matrix, and Interface Properties, ASTM, ABD.

Mechanical Properties of Hybrid Woven Carbon/E-Glass/Polypropylene Thermoplastic Prepreg Composites

Yıl 2018, Cilt: 25 Sayı: 111, 196 - 207, 01.10.2018

Öz

An increased request in composite materials at low
prices with high specific properties has contributed to the development of
hybrid thermoplastic composites. In this study, intra-ply, inter-ply and intra-ply/inter-ply
hybrid thermoplastic composites are developed by using hybrid woven
Carbon/Polypropylene (PP), E-glass/PP and Carbon/E-glass/PP prepregs and their
behaviors under axial loading are compared with non-hybrid composites. The
intra-ply/inter-ply hybrid composites, which have equable and uniform fiber
placement/fiber fractions, provide the highest tensile strength and modulus
values. The intra-ply/inter-ply hybrid composite in which the delamination is
limited to a narrow region provides high tensile strength/modulus values and therefore
this composite is considered as damage tolerant material. 

Kaynakça

  • Hoa, S. V., (2009), Principles of the Manufacturing of Composite Materials, DEStech Publications, Inc. ABD.
  • Offringa, A. R. (1996), Thermoplastic Composites-Rapid Processing Applications, Composites Part A: Applied Science and Manufacturing, 27, 329-336.
  • Iyer, S. R., Drzal, L. T., (1990), Manufacture of Powder-Impregnated Thermoplastic Composites, Journal of Thermoplastic Composite Materials, 3, 325-355.
  • Hifennach, W., Bohm, R., Thieme, M., Winkler, A., Mader, E., Shade, M., (2011), Polypropylene/Glass Fibre 3D-Textile Reinforced Composites for Automotive Applications, Materials & Design, 32, 1468-1476.
  • 5. Ning, H., Janowski, G. M., Vaidya, U. K., Husman, G., (2007) Thermoplastic Sandwich Structure Design and Manufacturing for the Body Panel of Mass Transit Vehicle, Composite Structures, 80, 82-91.
  • Vieille, B., Albouy, W., Chevalier, L., Taleb, L., (2013), About the Influence of Stamping on Thermoplastic-Based Composites for Aeronautical Applications, Composites Part B: Engineering, 45, 821-834.
  • Robert, M., Roy, R., Benmokrane, B., (2010). Environmental Effects on Glass Fibre Reinforced Polypropylene Thermoplastic Composite Laminate for Structural Applications, Polymer Composites, 31, 604-611.
  • Brandrup, J., Immergut, H., Grulke, A., (1999), Polymer Handbook, Fourth Edition, John Willey & Sons, Inc., ABD.
  • Schafer, J., Stolyarov, O., Ali, R., Greb, C, Seide, G., Gries, T., (2015), Process-Structure Relationship of Carbon/Polyphenylene Sulfide Commingled Hybrid Yarns Used for Thermoplastic Composites, Journal of Industrial Textiles, 45, 6, 1661-1673.
  • Thomason, J. L., (2007), The Influence of Fibre Length and Concentration on the Properties of Glass Fibre Reinforced Polypropylene: 7. Interface Strength and Fibre Strain in Injection Moulded Long Fibre PP at High Fibre Content, Composites Part A: Applied Science and Manufacturing, 38, 210-216.
  • Thomason, J. L., (2002), Micromechanical Parameters from Macromechanical Measurements on Glass Reinforced Polypropylene, Composites Science and Technology, 62, 1455-1468.
  • Bureau, M. N., Perrin, F., Denault, J., Dickson, J. I., (2002), Interlaminar Fatigue Crack Propagation in Continuous Glass Fiber/Polypropylene Composites, International Journal of Fatigue, 24, 99-108.
  • Bureau, M. N., Denault, J., (2004), Fatigue Resistance of Continuous Glass Fiber/Polypropylene Composites: Consolidation Dependence, Composites Science and Technology, 64, 1785-1794.
  • Vina, J., Arguelles, A., Canteli, A. F., (2011), Influence of Temperature on the Fatigue Behavior of Glass Fibre Reinforced Polypropylene, Strain, 47, 222-226.
  • Seo, Y., Kim, J., Kim, K. U., Kim, Y. C., (2000), Study of the Crystallization Behaviors of Polypropylene and Maleic Anhydride Grafted Polypropylene, Polymer, 41, 2639-2646.
  • Hamada, H., Fujihara, K., Harada. A., (2000), The Influence of Sizing Conditions on Bending Properties of Continuous Glass Fibre Reinforced Polypropylene Composites, Composites Part A: Applied Science and Manufacturing, 31, 979-990.
  • Mader, E., Freitag, K., (1990), Interface Properties and Their Influence on Short Fibre Composites, Composites, 21, 5, 397-402.
  • Atas, C., Sayman, O., (2008), An Overall View on Impact Response of Woven Fabric Composite Plates, Composite Structures, 82, 336-345.
  • Kim, J. K, Sham, M. L., (2000), Impact and Delamination Failure of Woven-Fabric Composites, Composites Science and Technology, 60, 745-761.
  • Sorrentino, L., Simeoli, G., Iannace, S., Russo, P., (2015), Mechanical Performance Optimization Through Interface Strength Gradation in PP/Glass Fibre Reinforced Composites, Composites Part B: Engineering , 76, 201-208.
  • Stack, R. M., Lai, F., Development in Thermoforming Thermoplastic Composites, https://pdfs.semanticscholar.org/3e1d/a9dc45b73ff1415692d15361baa8a5b2791f.pdf, Erişim tarihi: 30.04.2018.
  • Choi, B. D., Diestel, O., Offermann, P., (1999), Commingled CF/PEEK Hybrid Yarns for Use in Textile Reinforced High Performance Rotors, https://pdfs.semanticscholar.org/a9bc/704a0e09a283ac303f563498ee31dab710a1.pdf, Erişim tarihi: 02.10.2017.
  • Kretsis, G., (1987), A Review of the Tensile, Compressive, Flexural And Shear Properties of Hybrid Fibre-Reinforced Plastics, Composites, 18, 1, 13-23.
  • Yan, R., Wang, R., Lou, C. W., Lin, J. H., (2015), Low-Velocity Impact and Static Behaviors of High-Resilience Thermal-Bonding Inter/Intra-Ply Hybrid Composites, Composites Part B: Engineering, 69, 58-68.
  • Valença, S. L., Griza, S., Oliveira, V. G., Sussuchi, E. M., Cunha, F. G. C., (2015), Evaluation of the Mechanical Behavior of Epoxy Composite Reinforced with Kevlar Plain Fabric and Glass/Kevlar Hybrid Fabric, Composites Part B: Engineering, 70, 1-8.
  • Irina M. M. W., Azmi, A. I., Tan, C. L., Lee, C. C., Khalil, A. N. M., (2015), Evaluation of Mechanical Properties of Hybrid Fiber Reinforced Polymer Composites and Their Architecture, Procedia Manufacturing, 2, 236-240.
  • Lou, C. W., Huang, S. Y., Huang, C. L., Yan, R., Lin, J. H., (2015), Impact Properties of Flexible Composites Made of Nylon/High-Resilience Non-Woven Fabric With an Inter/Intra-Ply Hybrid Structure, Journal of Reinforced Plastics and Composites, 35, 4, 320-333.
  • Hamouda, T., Hassanin, A. H., Kilic, A., Candan, Z., Bodur, M. S., (2015), Hybrid Composites from Coir Fibers Reinforced with Woven Glass Fabrics: Physical and Mechanical Evaluation, Polymer Composites, DOI 10.1002/pc.23799.
  • Mallick, P. K., (2007), Fiber Reinforced Composites: Materials, Manufacturing, and Design, CRC Press Taylor & Francis Group, Birleşik Krallık.
  • Beehag, A., Ye, L., (1996), Role of Cooling Pressure on Interlaminar Fracture Properties of Commingled CF/PEEK composites, Composites Part A: Applied Science and Manufacturing, 2lA, 175-182. Bernet, N., Michaud, V., Bourban, P. E., Manson, J. A. E., (2001), Commingled Yarn Composites for Rapid Processing of Complex Shapes, Composites Part A: Applied Science and Manufacturing, 32, 1613-1626.
  • Mader, E., Rausch, J., Schmidt, N., (2008), Commingled Yarns- Processing Aspects and Tailored Surfaces of Polypropylene/Glass Composites, Composites Part A: Applied Science and Manufacturing, 39, 612-623.
  • Long, A. C., Wilks, C. E., Rudd, C. D., (2001), Experimental Characterization of the Consolidation of a Commingled Glass/Polypropylene Composite, Composites Science and Technology, 61, 1591-1603.
  • Wakeman, M. D., Cain, T. A., Rudd, C. D., Brooks R., Long, A. C., (1998), Compression Moulding of Glass and Polypropylene Composites for Optimised Macro and Micro Mechanical Properties of Commingled Glass and Polypropylene, Composites Science and Technology, 58, 1879-1898.
  • Lariviere, D., Krawczak, P., (2004), Interfacial Properties in Commingled Yarn Thermoplastic Composites Part I: Characterization of the Fiber/Matrix Adhesion, Polymer Composites, 25, 6, 577-587.
  • Ye, L., Friedrich, K., Kastel, J., Mai, Y. W., (1995), Consolidation of Unidirectional CF/Peek Composites from Commingled Yarn Prepreg, Composites Science and Technology, 54: 349-358.
  • Bernet, N., Michaud, V., Bourban, P. E., Manson, J. A. E., (1999), An Impregnation Model for the Consolidation of Thermoplastic Composites Made from Commingled Yarns, Journal of Composite Materials, 33, 8, 751-772.
  • Alagirusamy, R., Ogale, V., (2004), Commingled and Air Jet-textured Hybrid Yarns for Thermoplastic Composites, Journal of Industrial Textiles, 33, 4, 223-243.
  • Selver, E., Potluri, P., Hogg, P., Soutis, C., (2016), Impact Damage Tolerance of Thermoset Composites Reinforced with Hybrid Commingled Yarns, Composites Part B: Engineering, 91, 522-538.
  • Alagirusamy, R., Fangueiro, R, Ogale, V, Padaki, N., (2006), Hybrid Yarns and Textile Preforming for Thermoplastic Composites, Textile Progress, 38, 4, 1-71.
  • Baghaei, B., Skrifvars, M., Berglin, L. 2015. Characterization of Thermoplastic Natural Fibre Composites Made from Woven Hybrid Yarn Prepregs With Different Weave Pattern. Composites Part A: Applied Science and Manufacturing, 76, 154-161.
  • Baghaei, B., Skrifvars, M., (2016), Characterisation of Polylactic Acid Biocomposites Made from Prepregs Composed of Woven Polylactic Acid/Hemp-Lyocell Hybrid Yarn Fabrics. Composites Part A: Applied Science and Manufacturing, 81, 139-144.
  • Baghaei, B., Skrifvars, M., Berglin, L., (2013), Manufacture and Characterization of Thermoplastic Composites Made from Pla/Hemp Co-Wrapped Hybrid Yarn Prepregs, Composites Part A: Applied Science and Manufacturing, 50, 93-101.
  • Zhang, L., Miao, M., (2010), Commingled Natural Fibre/Polypropylene Wrap Spun Yarns for Structured Thermoplastic Composites, Composites Science and Technology, 70, 130-135.
  • Shekar, R. I., Satheesh Kumar, M. N., Damodhara Rao, P. M., Yaakob, Z., Kotresh, T. M., Siddaramaiah, Chandrakala, (2010), Studies on the Composites Produced from Co-Weaved Poly Ether Ether Ketone and Glass Fiber Fabric, Journal of Composite Materials, 45, 7, 741-749.
  • Shekar, R.I., Kotresh, T. M., Krishna Prasad, A. S., Damodhara Rao, P. M., Satheesh Kumar, M. N., Siddaramaiah, (2010), Hybrid Fiber Fabric Composites from Poly Ether Ether Ketone and Glass Fiber, Journal of Applied Polymer Science, 117, 1446-1459.
  • Dehkordi, M. T., Nosraty, H., Shokrieh, M. M. Minak, G., Ghelli, D., (2010), Low Velocity Impact Properties of Intra-Ply Hybrid Composites Based on Basalt and Nylon Woven Fabrics, Materials and Design, 31, 3835-3844.
  • Sugie, T., Nakai, A., Hamada, H., (2009), Effect of CF/GF Fibre Hybrid on Impact Properties of Multi-Axial Warp Knitted Fabric Composite Materials, Composites Part A: Applied Science and Manufacturing, 40, 1982-1990.
  • Sevkat, E., Liaw, B., Delale, F., Raju, B. B., (2009), Drop-Weight Impact of Plain-Woven Hybrid Glass-Graphite/Toughened Epoxy Composites, Composites Part A: Applied Science and Manufacturing, 40, 8, 1090-1110.
  • Pandya, K. S.,Veerraju, Ch., Naik, N. K., (2011), Hybrid Composites Made of Carbon and Glass Woven Fabrics under Quasi-Static Loading, Materials and Design, 32, 4094-4099.
  • Zhang, J., Chaisombat, K., He, S., Wang, C. H., (2012), Hybrid Composite Laminates Reinforced With Glass/Carbon Woven Fabrics for Lightweight Load Bearing Structures, Materials and Design, 36, 75-80.
  • Kaya, G., (2017), Flexural Stiffness of Carbon/E-Glass/PP(Polypropylene) Hybrid Woven Thermoplastic Prepregs for Composites, 2nd International Mediterranean Science and Engineering Congress (IMSEC), 987-993, 25-27 Ekim, Adana, Türkiye,
  • Spragg, C. J., Drzal, L. T., (1996), Fiber, Matrix, and Interface Properties, ASTM, ABD.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Gaye Kaya 0000-0003-1866-4799

Yayımlanma Tarihi 1 Ekim 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 25 Sayı: 111

Kaynak Göster

APA Kaya, G. (2018). Hibrit Dokunan Karbon/E-Cam/Polipropilen Termoplastik Prepreg Kompozitlerin Mekanik Özellikleri. Tekstil Ve Mühendis, 25(111), 196-207.
AMA Kaya G. Hibrit Dokunan Karbon/E-Cam/Polipropilen Termoplastik Prepreg Kompozitlerin Mekanik Özellikleri. Tekstil ve Mühendis. Ekim 2018;25(111):196-207.
Chicago Kaya, Gaye. “Hibrit Dokunan Karbon/E-Cam/Polipropilen Termoplastik Prepreg Kompozitlerin Mekanik Özellikleri”. Tekstil Ve Mühendis 25, sy. 111 (Ekim 2018): 196-207.
EndNote Kaya G (01 Ekim 2018) Hibrit Dokunan Karbon/E-Cam/Polipropilen Termoplastik Prepreg Kompozitlerin Mekanik Özellikleri. Tekstil ve Mühendis 25 111 196–207.
IEEE G. Kaya, “Hibrit Dokunan Karbon/E-Cam/Polipropilen Termoplastik Prepreg Kompozitlerin Mekanik Özellikleri”, Tekstil ve Mühendis, c. 25, sy. 111, ss. 196–207, 2018.
ISNAD Kaya, Gaye. “Hibrit Dokunan Karbon/E-Cam/Polipropilen Termoplastik Prepreg Kompozitlerin Mekanik Özellikleri”. Tekstil ve Mühendis 25/111 (Ekim 2018), 196-207.
JAMA Kaya G. Hibrit Dokunan Karbon/E-Cam/Polipropilen Termoplastik Prepreg Kompozitlerin Mekanik Özellikleri. Tekstil ve Mühendis. 2018;25:196–207.
MLA Kaya, Gaye. “Hibrit Dokunan Karbon/E-Cam/Polipropilen Termoplastik Prepreg Kompozitlerin Mekanik Özellikleri”. Tekstil Ve Mühendis, c. 25, sy. 111, 2018, ss. 196-07.
Vancouver Kaya G. Hibrit Dokunan Karbon/E-Cam/Polipropilen Termoplastik Prepreg Kompozitlerin Mekanik Özellikleri. Tekstil ve Mühendis. 2018;25(111):196-207.