Derleme
BibTex RIS Kaynak Göster

Şekil Hafızalı Polimerler ve Tekstil Uygulamaları

Yıl 2018, Cilt: 25 Sayı: 111, 264 - 283, 01.10.2018

Öz

Şekil
hafızalı polimerler, çevresel uyaranların etkisi ile özelliklerinde belirgin
değişiklikler gösterebilen akıllı malzemelerdir. Son yıllarda, akıllı
tekstiller grubunda yer alan şekil hafızalı polimerlerle ilgili çalışmalarda, çoğunlukla
sıcaklık ve su/nem duyarlılığa yoğunlaşılmıştır. Literatürdeki çalışmalarda şekil
hafızalı polimerlerin tekstil uygulamaları lif çekimi, iplik ve kumaş oluşumu,
film, kaplama, laminasyon ve bitim işlemlerinden oluşmaktadır. Bu çalışma
kapsamında, şekil hafızalı polimerlerin yapı ve şekil hafıza mekanizmalarının yanı
sıra, bu özelliğin polimerden tekstil malzemesine dönüşümü ile ilgili uygulamalar
da ayrıntılı olarak incelenmiştir. Ayrıca şekil hafızalı polimerlerin
belirtilen tekstil üretim proseslerindeki kısıtlamaları ile yakın gelecekteki
potansiyel uygulamaları da tartışılmıştır. 

Kaynakça

  • Leng, J. S., Lan, X., Liu, Y. J., & Du, S. Y. (2011), Shape-memory Polymers and Their Composites: Stimulus Methods and Applications, Progress in Materials Science, 56, 1077-1135.
  • Liu, C., Qin, H., & Mather, P. T. (2007), Review of Progress in Shape-memory Polymers, Journal of Materials Chemistry, 17, 1543-1558.
  • Lendlein, A., & Langer, R. (2002), Biodegradable, Elastic Shape-memory Polymers for Potential Biomedical Applications, Science, 296, 1673-1676.
  • Ratna, D., & Karger-Kocsis, J. (2008), Recent Advances in Shape Memory Polymers and Composites: A Review, Journal of Materials Science, 43, 254-269.
  • Jiang, H. Y., Kelch, S., & Lendlein, A. (2006), Polymers Move in Response to Light, Advanced Materials, 18, 1471-1475.
  • Lendlein, A., Jiang, H. Y., Jünger, O., & Langer, R. (2005), Light-induced Shape-memory Polymers, Nature, 434, 879-882.
  • Cho, J. W., Kim, J. W., Jung, Y. C., & Goo, N. S. (2005), Electroactive Shape-memory Polyurethane Composites Incorporating Carbon Nanotubes, Macromolecular Rapid Communications, 26, 412-416.
  • 8. Luo, X. F., & Mather, P. T. (2010), Conductive Shape Memory Nanocomposites for High Speed Electrical Actuation, Soft Matter, 6, 2146-2149.
  • Liu, Y. J., Lv, H. B., Lan, X., Leng, J. S., & Du, S. Y. (2009), Review of Electro-active Shape-memory Polymer Composite, Composites Science and Technology, 69, 2064-2068.
  • Xiao, Y., Zhou, S. B., Wang, L., & Gong, T. (2010), Electro-active Shape Memory Properties of Poly(epsilon-caprolactone)/Functionalized Multiwalled Carbon Nanotube Nanocomposite, ACS Applied Materials & Interfaces, 2, 3506-3514.
  • Feil, H., Bae, Y. H., Feijen, T., & Kim, S. W. (1992), Mutual Influence of pH and Temperature on the Swelling of Ionizable and Thermosensitive Hydrogels, Macromolecules, 25, 5228-30.
  • Han, X. J., Dong, Z. Q., Fan, M. M., Liu, Y., Wang, Y. F., Yuan, Q. J., & Zhang, S. (2012), pH‐induced Shape‐memory Polymers, Macromolecular Rapid Communications, 33(12), 1055-1060.
  • Chen, H., Li, Y., Liu, Y., Gong, T., Wang, L., & Zhou, S. (2014), Highly pH-sensitive Polyurethane Exhibiting Shape Memory and Drug Release, Polymer Chemistry, 5(17), 5168-5174.
  • Chen, S. J., Hu, J. L., Yuen, C.-W., & Chan, L. (2009), Novel Moisture-sensitive Shape Memory Polyurethanes Containing Pyridine Moieties, Polymer, 50, 4424-4428.
  • Chen, S. J., Hu, J. L., & Zhuo, H. T. (2011), Study on the Moisture Absorption of Pyridine Containing Polyurethane for Moisture-responsive Shape Memory Effects, Journal of Materials Science, 46, 6581-6588.
  • Huang, W. M., Yang, B., An, L., Li, C., & Chan, Y. S. (2005), Water-driven Programmable Polyurethane Shape Memory Polymer: Demonstration and Mechanism, Applied Physics Letters, 86, 114105.
  • Yang, B., Huang, W. M., Li, C., Lee, C., & Li, L. (2004), On the Effects of Moisture in a Polyurethane Shape Memory Polymer, Smart Materials and Structures, 13, 191-195.
  • Yang, B., Huang, W. M., Li, C., & Li, L. (2006), Effects of Moisture on the Thermo-mechanical Properties of a Polyurethane Shape Memory Polymer, Polymer, 47, 1348-1356.
  • Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M., & Lendlein, A. (2006), Initiation of Shape-memory Effect by Inductive Heating of Magnetic Nanoparticles in Thermoplastic Polymers, Proceedings of the National Academy of Sciences of the United States of America, 103, 3540-3545.
  • Schmidt, A. M. (2006), Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles, Macromolecular Rapid Communications, 27, 1168-1172.
  • Yu, X. J., Zhou, S. B., Zheng, X. T., Guo, T., Xiao, Y., & Song, B. T. (2009), A Biodegradable Shape-memory Nanocomposite with Excellent Magnetism Sensitivity, Nanotechnology, 20, 235702.
  • Zheng, X. T., Zhou, S. B., Xiao, Y., Yu, X. J., Li, X. H., & Wu, P. Z. (2009), Shape Memory Effect of Poly(d,l-lactide)/Fe3O4 Nanocomposites by Inductive Heating of Magnetite Particles, Colloids and Surfaces B: Biointerfaces, 71, 67-72.
  • Yu, X., Zhou, S., Zheng, X., Guo, T., Xiao, Y., & Song, B. (2009), A Biodegradable Shape-memory Nanocomposite with Excellent Magnetism Sensitivity, Nanotechnology, 20 (23), 235702.
  • Zhao, Q., Qi, H. J., & Xie, T. (2015), Recent Progress in Shape Memory Polymer: New Behavior, Enabling Materials, and Mechanistic Understanding, Progress in Polymer Science, 49, 79-120.
  • Behl, M., & Lendlein, A. (2007), Actively Moving Polymers, Soft Matter, 3(1), 58-67.
  • Lendlein, A., & Kelch, S. (2002), Shape‐memory Polymers, Angewandte Chemie International Edition, 41(12), 2034-2057.
  • Bedeloğlu, A. Ç. (2011), Şekil Hafızalı Alaşımlar ve Tekstil Malzemelerindeki Uygulamaları, Tekstil ve Mühendis, 18(83), 27-37.
  • Hu, J., Meng, Q., Zhu, Y., Lu, J., & Zhuo, H. (2007), U.S. Patent Application No. 11/907,012.
  • Lendlein, A., & Langer, R. (2002), Biodegradable, Elastic Shape-memory Polymers for Potential Biomedical Applications, Science, 296(5573), 1673-1676.
  • Scrosati, B. (Ed.). (1993), Applications of Electroactive Polymers (Vol. 75). London: Chapman & Hall.
  • Bar-Cohen, Y. (2001), Proc. 42nd AIAA Structures, Structural Dynamics, and Materials Conf. (SDM), Gossamer Spacecraft Forum (GSF) (Seattle, WA).
  • Xie, T., & Xiao, X. (2008), Self-peeling Reversible Dry Adhesive System, Chemistry of Materials, 20(9), 2866-2868.
  • Charlesby, A. (2016), Atomic Radiation and Polymers: International Series of Monographs on Radiation Effects in Materials. Elsevier.
  • Gall, K., Dunn, M.L., Liu, Y., Finch, D., Lake, M., & Munshi, N. A. (2002), Shape Memory Polymer Nanocomposites, Acta Materialia, 50, 5115-26.
  • Sokolowski, W. M., Chmielewski, A. B., Hayashi, S., & Yamada, T. (1999), Cold Hibernated Elastic Memory (CHEM) Self-Deployable Structures SPIE Int. Symp. on Smart Structures and Materials (Newport Beach, CA).
  • Smela, E., Ingan¨as, O., & Lundstr¨om, I. (1995), Controlled Folding of Micrometer-Size Structures, Science, 268, 1735-8.
  • Bar-Cohen, Y., & Zhang, Q. (2008), Electroactive Polymer Actuators and Sensors, MRS Bulletin, 3(3), 173-81.
  • Hu, J., & Chen, S. (2010), A Review of Actively Moving Polymers in Textile Applications, Journal of Materials Chemistry, 20(17), 3346-3355.
  • Mattila, H. (Ed.). (2006), Intelligent Textiles and Clothing, Woodhead Publishing.
  • Hu, J., Meng, H., Li, G., & Ibekwe, S. I. (2012). A Review of Stimuli-responsive Polymers for Smart Textile Applications, Smart Materials and Structures, 21(5), 053001.
  • Cho, G., Lee, S., & Cho, J. (2009), Review and Reappraisal of Smart Clothing, International Journal of Human-Computer Interaction, 25(6), 582-617.
  • Gu, J. F., Gorgutsa, S., & Skorobogatiy, M. (2010), Soft Capacitor Fibers Using Conductive Polymers for Electronic Textiles, Smart Materials and Structures, 19(11), 115006.
  • Kongolo, D. (2008), Assignee. Luminescent Textiles WIPO Patent Application WO/2008/148138.
  • Lee, S. and Starner, T. (2008), Stop Burdening Your Eyes: A Wearable Electro-tactile Display 12th IEEE Int. Symp. Wearable Computers (Pittsburgh, PA).
  • Sayed, I., Berzowska, J., & Skorobogatiy, M. (2010), Jacquard-woven Photonic Bandgap Fiber Displays, Research Journal of Textile and Apparel, 14(4), 97-105.
  • Studstill, K. (2010), Emotion Sensing Dress Releases Mood Driven Scents www.psfk.com/2010/01/ emotion-sensing-dress-releases-mood-driven-scents.html.
  • Qi, K., Chen, X., & Liu, Y., (2007), Facile Preparation of Anatase/SiO2 Spherical Nanocomposites and Their Application in Self-cleaning Textiles, Journal of Materials Chemistry, 17, 3504-8.
  • Mondal, S. (2008), Phase Change Materials for Smart Textiles-An Overview, Applied Thermal Engineering, 28, 1536-50.
  • Hu, J., Zhu, Y., Lu, J., Yeung, L. Y., & and Yeung, K.W. (2007), Uniqueness of Shape Memory Fibers in Comparison with Existing Man-made Fibers, 9th Asian Textile Conf. Federation of Asian Professional Textile Associations (Taiwan).
  • Li, F., Zhang, X., Hou, J., Xu, M., Luo, X., Ma, D., & Kim, B. K., (1997), Studies on Thermally Stimulated Shape Memory Effect of Segmented Polyurethanes, Journal of Applied Polymer Science, 64(8), 1511-1527.
  • Hu, J., Yang, Z., Yeung, L., Ji, F., & Liu, Y. (2005), Crosslinked Polyurethanes with Shape Memory Properties, Polymer International, 54(5), 854-859.
  • Luo, H., Liu, Y., Yu, Z., Zhang, S., & Li, B. (2008), Novel Biodegradable Shape Memory Material Based on Partial Inclusion Complex Formation Between α-Cyclodextrin and Poly (ϵ-caprolactone), Biomacromolecules, 9(10), 2573-2577.
  • Zhang, S., Yu, Z., Govender, T., Luo, H., & Li, B. (2008), A Novel Supramolecular Shape Memory Material Based on Partial α-CD-PEG Inclusion Complex. Polymer, 49(15), 3205-3210.
  • Lee, B. S., Chun, B. C., Chung, Y. C., Sul, K. I., & Cho, J. W. (2001), Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect, Macromolecules, 34(18), 6431-6437.
  • Ping, P., Wang, W., Chen, X., & Jing, X. (2005), Poly (ε-caprolactone) Polyurethane and its Shape-memory Property, Biomacromolecules, 6(2), 587-592.
  • Hiraoka, K., Tagawa, N., & Baba, K. (2008), Shape‐memory Effect Controlled by the Crosslinking Topology in Uniaxially‐deformed Smectic C* Elastomers, Macromolecular Chemistry and Physics, 209(3), 298-307.
  • Neuss, S., Blomenkamp, I., Stainforth, R., Boltersdorf, D., Jansen, M., Butz, N., & Knüchel, R. (2009), The Use of a Shape-memory Poly (ε-caprolactone) Dimethacrylate Network as a Tissue Engineering Scaffold, Biomaterials, 30(9), 1697-1705.
  • Thomsen, D. L., Keller, P., Naciri, J., Pink, R., Jeon, H., Shenoy, D., & Ratna, B. R. (2001), Liquid Crystal Elastomers with Mechanical Properties of a Muscle, Macromolecules, 34(17), 5868-5875.
  • Li, M. H., Keller, P., Yang, J., & Albouy, P. A. (2004), An Artificial Muscle with Lamellar Structure Based on a Nematic Triblock Copolymer, Advanced Materials, 16(21), 1922-1925.
  • Yan, L., Aggie, C., JinLian, H., & Jing, L., (2007), Shape Memory Behavior of SMPU Knitted Fabric, Journal of Zhejiang University Science A, 8(5):830-834.
  • Liu, Y., Lu, J., Hu, J., & Chung, A., (2013), Study on the Bagging Behavior of Knitted Fabrics by Shape Memory Polyurethane Fiber, The Journal of The Textile Institute, 104(11), 1230-1236.
  • Jing, L., & Hu, J., (2010), Study on the Properties of Core Spun Yarn and Fabrics of Shape Memory Polyurethane, Fibres & Textiles in Eastern Europe, 18, 4 (81), 39-42.
  • Mondal, S. (2009), Recent Developments in Temperature Responsive Shape Memory Polymers, Mini-Reviews in Organic Chemistry, 6(2), 114-119.
  • Hu, J., Zhu, Y., Huang, H., & Lu, J. (2012), Recent Advances in Shape-memory Polymers: Structure, Mechanism, Functionality, Modeling and Applications, Progress in Polymer Science, 37(12), 1720-1763.
  • Hu, J. (2007), Shape Memory Polymers and Textiles, Elsevier.
  • Hager, M. D., Bode, S., Weber, C., & Schubert, U. S. (2015), Shape Memory Polymers: Past, Present and Future Developments, Progress in Polymer Science, 49, 3-33.
  • Yuan, H., Chen, S., Chen, S., & Ge, Z. (2013), Studies on Moisture-sensitive Shape Memory Behavior of IPDI-BINA Based Polyurethane. International Journal of Chemical Engineering and Applications, 4(4), 191.
  • Huang, W. M., Yang, B., An, L., Li, C., & Chan, Y. S. (2005), Water-driven Programmable Polyurethane Shape Memory Polymer: Demonstration and Mechanism, Applied Physics Letters, 86(11), 114105.
  • Chen, S., Hu, J., Yuen, C. W., & Chan, L. (2009), Novel Moisture-sensitive Shape Memory Polyurethanes Containing Pyridine Moieties, Polymer, 50(19), 4424-4428.
  • Chae Jung, Y., Hwa So, H., & Whan Cho, J. (2006), Water‐responsive Shape Memory Polyurethane Block Copolymer Modified with Polyhedral Oligomeric Silsesquioxane, Journal of Macromolecular Science, Part B, 45(4), 453-461.
  • Chen, M. C., Tsai, H. W., Chang, Y., Lai, W. Y., Mi, F. L., Liu, C. T., & Sung, H. W. (2007), Rapidly Self-expandable Polymeric Stents with a Shape-memory Property, Biomacromolecules, 8(9), 2774-2780.
  • Huang, W. M., Yang, B., Zhao, Y., & Ding, Z. (2010), Thermo-moisture Responsive Polyurethane Shape-memory Polymer and Composites: A Review, Journal of Materials Chemistry, 20(17), 3367-3381.
  • Meng, H., & Li, G. (2013), A Review of Stimuli-responsive Shape Memory Polymer Composites, Polymer, 54(9), 2199-2221.
  • Qi, X., Yao, X., Deng, S., Zhou, T., & Fu, Q. (2014), Water-induced Shape Memory Effect of Graphene Oxide Reinforced Polyvinyl Alcohol Nanocomposites, Journal of Materials Chemistry A, 2(7), 2240-2249.
  • Correia, C. O., & Mano, J. F. (2014), Chitosan Scaffolds with a Shape Memory Effect Induced by Hydration, Journal of Materials Chemistry B, 2(21), 3315-3323.
  • Correia, C. O., Leite, Á. J., & Mano, J. F. (2015), Chitosan/Bioactive Glass Nanoparticles Scaffolds with Shape Memory Properties, Carbohydrate Polymers, 123, 39-45.
  • Liu, Y., Li, Y., Yang, G., Zheng, X., & Zhou, S. (2015), Multi-stimulus-responsive Shape-memory Polymer Nanocomposite Network Cross-linked by Cellulose Nanocrystals, ACS Applied Materials & Interfaces, 7(7), 4118-4126.
  • Luo, H., Hu, J., & Zhu, Y. (2011), Polymeric Shape Memory Nanocomposites with Heterogeneous Twin Switches, Macromolecular Chemistry and Physics, 212(18), 1981-1986.
  • Luo, H., Hu, J., & Zhu, Y. (2012), Path-dependent and Selective Multi-shape Recovery of a Polyurethane/Cellulose-whisker Nanocomposite, Materials Letters, 89, 172-175.
  • Dagnon, K. L., Way, A. E., Carson, S. O., Silva, J., Maia, J., & Rowan, S. J. (2013), Controlling the Rate of Water-induced Switching in Mechanically Dynamic Cellulose Nanocrystal Composites, Macromolecules, 46(20), 8203-8212.
  • Zhu, Y., Hu, J., Luo, H., Young, R. J., Deng, L., Zhang, S., & Ye, G. (2012), Rapidly Switchable Water-sensitive Shape-memory Cellulose/Elastomer Nano-composites, Soft Matter, 8(8), 2509-2517.
  • Yeqiu, L., Jinlian, H., Yong, Z., & Zhuohong, Y. (2005), Surface Modification of Cotton Fabric by Grafting of Polyurethane, Carbohydrate Polymers, 61(3), 276-280.
  • Hu, J.L., Liu, Y.J., Wang, Q.M., Liu, Y., & Lu, J. (2006), Shape Memory Finishing for Wool: Synthesis of Polyurethane and Application Methods, CN Pat 1818198.
  • Tobushi, H., Hara, H., Yamada, E., & Hayashi, S. (1996), Thermomechanical Properties in a Thin Film of Shape Memory Polymer of Polyurethane Series, Smart Materials and Structures, 5(4), 483.
  • Chen, S., Hu, J., Liu, Y., Liem, H., Zhu, Y., & Meng, Q. (2007), Effect of Molecular Weight on Shape Memory Behavior in Polyurethane Films, Polymer International, 56(9), 1128-1134.
  • Mondal, S., & Hu, J. L. (2006), Segmented Shape Memory Polyurethane and its Water Vapor Transport Properties, Designed Monomers and Polymers, 9(6), 527-550.
  • Ding, X. M., Hu, J. L., & Tao, X. M. (2004), Effect of Crystal Melting on Water Vapor Permeability of Shape-memory Polyurethane Film, Textile Research Journal, 74(1), 39-43.
  • Tobushi, H., Okumura, K., Endo, M., & Hayashi, S. (2001), Thermomechanical Properties of Polyurethane-shape Memory Polymer Foam, Journal of Intelligent Material Systems and Structures, 12(4), 283-287.
  • Tobushi, H., Shimada, D., Hayashi, S., & Endo, M. (2003), Shape Fixity and Shape Recovery of Polyurethane Shape-memory Polymer Foams, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 217(2), 135-143.
  • Mondal, S., & Hu, J. L. (2007), Water Vapor Permeability of Cotton Fabrics Coated with Shape Memory Polyurethane, Carbohydrate Polymers, 67(3), 282-287.
  • Bakhshi, R., Darbyshire, A., Evans, J. E., You, Z., Lu, J., & Seifalian, A. M. (2011), Polymeric Coating of Surface Modified Nitinol Stent with Poss-nanocomposite Polymer, Colloids and Surfaces B: Biointerfaces, 86(1), 93-105.
  • Liem, H., Yeung, L. Y., & Hu, J. L. (2007), A Prerequisite for the Effective Transfer of the Shape-memory Effect to Cotton Fibers, Smart Materials and Structures, 16(3), 748.
  • Hu, J.L., Zeng, Y., & Yan, H.J. (2003), Influence of Processing Conditions on the Microstructure and Properties of Shape Memory Polyurethane Membranes, Textile Research Journal, 73, 172-178.
  • Walczak, J., Chrzanowski, M., & Krucińska, I. (2017), Research on a Nonwoven Fabric Made From Multi-block Biodegradable Copolymer Based on L-Lactide, Glycolide, and Trimethylene Carbonate with Shape Memory, Molecules, 22(8), 1325.
  • Safranski, D. L., Boothby, J. M., Kelly, C. N., Beatty, K., Lakhera, N., Frick, C. P., & Griffis, J. C. (2016), Thermo-mechanical Behavior and Structure of Melt Blown Shape-memory Polyurethane Nonwovens, Journal of the Mechanical Behavior of Biomedical Materials, 62, 545-555.
  • Liu, Y., Chung, A., Hu, J., & Lv, J. (2007), Shape Memory Behavior of SMPU Knitted Fabric, Journal of Zhejiang University-Science A, 8(5), 830-834.
  • Çakmak, E. G. (2013), “Şekil Hafızalı Poliüretanların Performanslarına Zincir Uzatıcı Miktarı Etkisinin Belirlenmesi”, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul.
  • Zhu, Y., Hu, J., Yeung, L. Y., Liu, Y., Ji, F., & Yeung, K. W. (2006), Development of Shape Memory Polyurethane Fiber with Complete Shape Recoverability, Smart Materials and Structures, 15(5), 1385.
  • Zhu, Y., Hu, J., Yeung, L. Y., Lu, J., Meng, Q., Chen, S., & Yeung, K. W. (2007), Effect of Steaming on Shape Memory Polyurethane Fibers with Various Hard Segment Contents, Smart Materials and Structures, 16(4), 969.
  • Meng, Q., Hu, J., Zhu, Y., Lu, J., & Liu, Y. (2007), Morphology, Phase Separation, Thermal and Mechanical Property Differences of Shape Memory Fibres Prepared by Different Spinning Methods, Smart Materials and Structures, 16(4), 1192.
  • Meng, Q., Hu, J., Zhu, Y., Lu, J., & Liu, Y. (2007), Polycaprolactone‐based Shape Memory Segmented Polyurethane Fiber, Journal of Applied Polymer Science, 106(4), 2515-2523.
  • Kaursoin, J., & Agrawal, A. K. (2007), Melt Spun Thermoresponsive Shape Memory Fibers Based on Polyurethanes: Effect of Drawing and Heat‐setting on Fiber Morphology and Properties, Journal of Applied Polymer Science, 103(4), 2172-2182.
  • Meng, Q., Hu, J., Zhu, Y., Lu, J., & Liu, Y. (2007), Morphology, Phase Separation, Thermal and Mechanical Property Differences of Shape Memory Fibres Prepared by Different Spinning Methods, Smart Materials and Structures, 16(4), 1192.
  • Meng, Q., Hu, J., Zhu, Y., Lu, J., & Liu, Y. (2007), Polycaprolactone‐based Shape Memory Segmented Polyurethane Fiber, Journal of Applied Polymer Science, 106(4), 2515-2523.
  • Meng, Q., & Hu, J. (2008), Study on Poly (e‐caprolactone)‐based Shape Memory Copolymer Fiber Prepared by Bulk Polymerization and Melt Spinning, Polymers for Advanced Technologies, 19(2), 131-136.
  • Meng, Q., & Hu, J. (2008), A Temperature-regulating Fiber Made of PEG-based Smart Copolymer, Solar Energy Materials and Solar Cells, 92(10), 1245-1252.
  • Meng, Q., Hu, J., Yeung, L. Y., & Hu, Y. (2009), The Influence of Heat Treatment on the Properties of Shape Memory Fibers. II. Tensile Properties, Dimensional Stability, Recovery Force Relaxation, and Thermomechanical Cyclic Properties, Journal of Applied Polymer Science, 111(3), 1156-1164.
  • Meng, Q., & Hu, J. (2008), Influence of Heat Treatment on the Properties of Shape Memory Fibers. I. Crystallinity, Hydrogen Bonding, and Shape Memory Effect, Journal of Applied Polymer Science, 109(4), 2616-2623.
  • Hu, J. L., Meng, Q. H., Zhu, Y., Lu, J., & Zhuo, H. T. (2007), Shape Memory Fibers Prepared by Wet, Reaction, Dry, Melt, and Electro Spinning. US Patent, 11(907,012), 6.
  • Yang, Q., & Li, G. (2014), Investigation into Stress Recovery Behavior of Shape Memory Polyurethane Fiber, Journal of Polymer Science Part B: Polymer Physics, 52(21), 1429-1440.
  • Hu, J., & Lu, J. (2015), Shape Memory Fibers, In Handbook of Smart Textiles (pp. 183-207). Springer Singapore.
  • Meng, Q., Hu, J., & Yeung, L. (2007), An Electro-active Shape Memory Fibre by Incorporating Multi-walled Carbon Nanotubes, Smart Materials and Structures, 16(3), 830.
  • Meng, Q., Liu, J., Shen, L., Hu, Y., & Han, J. (2009), A Smart Hollow Filament with Thermal Sensitive Internal Diameter, Journal of Applied Polymer Science, 113(4), 2440-2449.
  • Kumar, B., Hu, J., & Pan, N. (2016), Smart Medical Stocking Using Memory Polymer for Chronic Venous Disorders, Biomaterials, 75, 174-181.
  • Kumar, B., Hu, J., & Pan, N. (2016), Memory Bandage for Functional Compression Management for Venous Ulcers, Fibers, 4(1), 10.
  • Narayana, H., Hu, J., Kumar, B., Shang, S., Han, J., Liu, P., & Zhu, Y. (2017), Stress-memory Polymeric Filaments for Advanced Compression Therapy, Journal of Materials Chemistry B, 5(10), 1905-1916.
  • Debnath, K., & Singh, I. (Eds.). (2017), Primary and Secondary Manufacturing of Polymer Matrix Composites, CRC Press.
  • Maksimkin, A. V., Kharitonov, A. P., Mostovaya, K. S., Kaloshkin, S. D., Gorshenkov, M. V., Senatov, F. S., & Tcherdyntsev, V. V. (2016), Bulk Oriented Nanocomposites of Ultrahigh Molecular Weight Polyethylene Reinforced with Fluorinated Multiwalled Carbon Nanotubes with Nanofibrillar Structure, Composites Part B: Engineering, 94, 292-298.
  • Litvinov, V. M., Xu, J., Melian, C., Demco, D. E., Moller, M., & Simmelink, J. (2011), Morphology, Chain Dynamics, and Domain Sizes in Highly Drawn Gel-spun Ultrahigh Molecular Weight Polyethylene Fibers at the Final Stages of Drawing by SAXS, WAXS, and 1H solid-state NMR, Macromolecules, 44(23), 9254-9266.
  • Jung, Y. C., Kim, J. W., Chun, B. C., Chung, Y. C., & Cho, J. W. (2004), Shape Memory Polyurethane Nanofibers, Quality Textiles for Quality Life Vols 1, 4, 43-46.
  • Zhuo, H., Hu, J., Chen, S., & Yeung, L. (2008), Preparation of Polyurethane Nanofibers by Electrospinning, Journal of Applied Polymer Science, 109(1), 406-411.
  • Zhuo, H. T., Hu, J. L., Chen, S. J., & Zhu, Y. (2008), Study of Shape Memory Nanofibre Nonwoven Fabrics, In proceedings of the International Conference on Advanced Textile Materials & Manufacturing Technology (pp. 463-6).
  • Zhuo, H., Hu, J., & Chen, S. (2011), Study of the Thermal Properties of Shape Memory Polyurethane Nanofibrous Nonwoven, Journal of Materials Science, 46(10).
  • So, J. H., Jung, S. H., J., Yoon, K. J. and Cho, J. W. (2004), Quality Textiles for Quality Life, Vols. 1-4, 121.
  • Zhuo, H., Hu, J., & Chen, S. (2011), Study of Water Vapor Permeability of Shape Memory Polyurethane Nanofibrous Nonwovens, Textile Research Journal, 81(9), 883-891.
  • Han, H. R., Chung, S. E., & Park, C. H. (2013), Shape Memory and Breathable Waterproof Properties of Polyurethane Nanowebs, Textile Research Journal, 83(1), 76-82. ISO 690.
  • Chung, S. E., Park, C. H., Yu, W. R., & Kang, T. J. (2011), Thermoresponsive Shape Memory Characteristics of Polyurethane Electrospun Web, Journal of Applied Polymer Science, 120(1), 492-500.
  • Cha, D. I., Kim, H. Y., Lee, K. H., Jung, Y. C., Cho, J. W., & Chun, B. C. (2005), Electrospun Nonwovens of Shape‐memory Polyurethane Block Copolymers. Journal of Applied Polymer Science, 96(2), 460-465.
  • Chen, S., Hu, J., Zhuo, H., & Chen, S. (2011), Effect of MDI-BDO Hard Segment on Pyridine-containing Shape Memory Polyurethanes, Journal of Materials Science, 46(15), 5294-5304.
  • Zhuo, H., Hu, J., & Chen, S. (2008), Electrospun Polyurethane Nanofibres Having Shape Memory Effect, Materials Letters, 62(14), 2074-2076.
  • Budun, S., İşgören, E., Erdem, R., & Yüksek, M. (2016), Morphological and Mechanical Analysis of Electrospun Shape Memory Polymer Fibers, Applied Surface Science, 380, 294-300.
  • Leng, J., Lv, H., Liu, Y., & Du, S. (2007), Electroactivate Shape-memory Polymer Filled with Nanocarbon Particles and Short Carbon Fibers, Applied Physics Letters, 91(14), 144105.
  • Sahoo, N. G., Rana, S., Cho, J. W., Li, L., & Chan, S. H. (2010), Polymer Nanocomposites Based on Functionalized Carbon Nanotubes, Progress in Polymer Science, 35(7), 837-867.
  • Zhang, F. H., Zhang, Z. C., Liu, Y. J., and Leng, J. S. (2014), Electrospun Nanofiber Membranes for Electrically Activated Shape Memory Nanocomposites, Smart Materials and Structures, 23(6), 065020.
  • Jeon, H. J., Kim, J. S., Kim, T. G., Kim, J. H., Yu, W. R., & Youk, J. H. (2008), Preparation of Poly (ɛ-caprolactone)-based Polyurethane Nanofibers Containing Silver Nanoparticles, Applied Surface Science, 254(18), 5886-5890.
  • 136. Zhang, F., Zhang, Z., Liu, Y., Lu, H., & Leng, J. (2013), The Quintuple-shape Memory Effect in Electrospun Nanofiber Membranes, Smart Materials and Structures, 22(8), 085020.
  • Tan, L., Hu, J., Ying Rena, K., Zhu, Y., & Liu, P. (2017), Quick Water‐responsive Shape Memory Hybrids with Cellulose Nanofibers, Journal of Polymer Science Part A: Polymer Chemistry, 55(4), 767-775.
  • Tan, L., Gan, L., Hu, J., Zhu, Y., & Han, J. (2015), Functional Shape Memory Composite Nanofibers with Graphene Oxide Filler, Composites Part A: Applied Science and Manufacturing, 76, 115-123.
  • Gong, T., Li, W., Chen, H., Wang, L., Shao, S., & Zhou, S. (2012), Remotely Actuated Shape Memory Effect of Electrospun Composite Nanofibers, Acta Biomaterialia, 8(3), 1248-1259.
  • Mather, P. T., and Luo, X. F. (2011), Shape Memory Elastomer, Useful e.g. to Form Adaptive Seals Such as Heat-shrinkable Seals that Prevent Water Leaking and Produce Configurable Surgical Tools, Comprises Non-Woven Mat, and Resin Matrix Infiltrated Throughout the Mat. US2011021097-A1.
  • Mather, P. T., Torbati, A., and Mather, R. (2014), Near Infrared Fluorescent Marker for Use in e.g. Medical Device During Surgical Procedure in e.g. Mouse, has Electrospun Fibrous Web Formed from Shape Memory Polymer and Near Infrared Dye with Excitation and Emission Wavelength. US2014303490-A1.
  • Mejía, M. A., Hoyos, L. M., Zapata, J., Restrepo, L. M., & Moneada, M. E. (2016). Electrospinning of Gelatin and SMPU with Carbon Nanotubes for Tissue Engineering Scaffolds. In Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the (pp. 4181-4184). IEEE.
  • Tan, L., Hu, J., Huang, H., Han, J., & Hu, H. (2015), Study of Multi-functional Electrospun Composite Nanofibrous Mats for Smart Wound Healing, International Journal of Biological Macromolecules, 79, 469-476.
  • Zhuo, H. T., Hu, J. L., & Chen, S. J. (2011), Coaxial Electrospun Polyurethane Core-shell Nanofibers for Shape Memory and Antibacterial Nanomaterials, Express Polymer Letters, 5(2), 182-187.
  • Aslan, S. (2017), “Şekil Hafızalı Polimer Esaslı Fonksiyonel Tekstil Yapılarının Geliştirilmesi”, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Tekstil Mühendisliği Anabilim Dalı, Doktora Tezi, 150s, Isparta.
  • Kobayashi, K., & Hayashi, S. (1992), U.S. Patent No. 5,128,197. Washington, DC: U.S. Patent and Trademark Office.
  • Stylios, G. K., Chan, Y. Y. F., Wan, T., Lam, P., & Tang, S. (2005), Engineering Textile Aesthetics by Shape and Colour Changing Materials, In 5th AUTEX World Textile Conference, Portoroz, Slovenia.
  • Chan Vili, Y. Y. F. (2007), Investigating Smart Textiles Based on Shape Memory Materials, Textile Research Journal, 77(5), 290-300.
  • Katie, P. K. K. (2010), The Study of Woven Jaqourd Fabrics Using Shape Memory Polymers, The Hong Kong Polytechnic University Institute of Textiles & Clothing, 109p, Hong Kong.
  • Heung Yang, J. Chul Chun, B., Chung, Y. C., Whan Cho, J., & Gyoo Cho, B. (2004), Vibration Control Ability of Multilayered Composite Material Made of Epoxy Beam and Polyurethane Copolymer with Shape Memory Effect, Journal of Applied Polymer Science, 94(1), 302-307.
  • Lim, K. Y., Kim, B. C., & Yoon, K. J. (2002), Effect of Structural Characteristic on Physical Properties of Copolyesters from Poly (Ethylene Terephthalate) Oligomer and Polycaprolactone, Journal of Polymer Science Part B: Polymer Physics, 40(22), 2552-2560.
  • Cho, J. W., Jung, Y. C., Chun, B. C., & Chung, Y. C. (2004), Water Vapor Permeability and Mechanical Properties of Fabrics Coated with Shape‐memory Polyurethane. Journal of Applied Polymer Science, 92(5), 2812-2816.
  • Jeong, H. M., Ahn, B. K., Cho, S. M., & Kim, B. K. (2000), Water Vapor Permeability of Shape Memory Polyurethane with Amorphous Reversible Phase, Journal of Polymer Science Part B: Polymer Physics, 38(23), 3009-3017.
  • Hu, J. L., Zeng, Y. M., & Yan, H. J. (2003), Influence of Processing Conditions on the Microstructure and Properties of Shape Memory Polyurethane Membranes, Textile Research Journal, 73(2), 172-178.
  • Yeqiu, L., Jinlian, H., Yong, Z., & Zhuohong, Y. (2005), Surface Modification of Cotton Fabric by Grafting of Polyurethane, Carbohydrate Polymers, 61(3), 276-280.
  • Hu, J. L., & Yang, Z. H. (2004), CN 1648143.
  • Hu, J. L., & Fan, H. J. (2004), CN 1648145.
  • Hu, J. L., & Liu, Y. Q. (2004), China Patent: CN1704523.
  • Hu, J. L., Liu, Y. J. Zheng, G. H., & Liu, Y. (2006), China Patent: CN1818198.
  • Hu, J. L., Liu, Y. J., & Liu, Y. (2008), China Patent: CN1818198.
  • Fan, H. J., Hu, J. L., & Ji, F. L. (2004, June), Environmental-benign Thermal-sensitive Polyurethane for Textile Finishing, In World Textile Conference 4th AUTEX Conference, Roubaix, France (Vol. 22).
  • Tobushi, H., Hara, H., Yamada, E., & Hayashi, S. (1996), Thermomechanical Properties in a Thin Film of Shape Memory Polymer of Polyurethane Series, Smart Materials and Structures, 5(4), 483.
  • Knight, P. T., Lee, K. M., Qin, H., & Mather, P. T. (2008), Biodegradable Thermoplastic Polyurethanes Incorporating Polyhedral Oligosilsesquioxane, Biomacromolecules, 9(9), 2458-2467.
  • Wagermaier, W., Kratz, K., Heuchel, M. & Lendlein, A. (2010), Characterization Methods for Shape Memory Polymers, Shape-Memory Polymers, 226, 97-145.
  • Lendlein, A., Schmidt, A.M. & Langer, R. (2001), AB-polymer Networks Based on Oligo(epsiloncaprolactone) Segments Showing Shape-memory Properties, Proceedings of the National Academy of Sciences of the United States of America, 98 (3), 842-847.
  • Xie, T. (2010), Tunable Polymer Multi-shape Memory Effect, Nature, 464 (7286), 267-270.
  • Lin, J. R., & Chen, L. W. (1998), Study on Shape‐memory Behavior of Polyether‐based Polyurethanes. I. Influence of the Hard‐segment Content, Journal of Applied Polymer Science, 69(8), 1563-1574.
  • Luo, H. (2012), Study on Stimulus-responsive Cellulose-based Polymeric Materials, (Doctoral dissertation, The Hong Kong Polytechnic University).
  • Li, F., Chen, Y., Zhu, W., Zhang, X., & Xu, M. (1998), Shape Memory Effect of Polyethylene/Nylon 6 Graft Copolymers, Polymer, 39(26), 6929-6934.
  • Ma, D., Wang, M., Wang, M., Zhang, X., & Luo, X. (1998), Compositional Heterogeneity, Thermostable, and Shape Memory Properties of Ethylene Oxide‐ethylene Terephthalate Segmented Copolymer with Long Soft Segment, Journal of Applied Polymer Science, 69(5), 947-955.
  • Luo, X., Zhang, X., Wang, M., Ma, D., Xu, M. & Li, F. (1997), Thermally Stimulated Shape-memory Behavior of Ethylene Oxide-ethylene Terephthalate Segmented Copolymer, Journal of Applied Polymer Science, 64, 2433-2440.
  • Tey, S. J., Huang, W. M., & Sokolowski, W. M. (2001), Influence of Long-term Storage in Cold Hibernation on Strain Recovery and Recovery Stress of Polyurethane Shape Memory Polymer Foam, Smart Materials and Structures, 10(2), 321.
  • Gall, K., Dunn, M. L., Liu, Y., Finch, D., Lake, M., & Munshi, N. A. (2002), Shape Memory Polymer Nanocomposites, Acta Materialia, 50(20), 5115-5126.
  • Wagermaier W., Kratz K., Heuchel M., Lendlein A. (2009), Characterization Methods for Shape-memory Polymers. In: Lendlein A. (eds) Shape-memory Polymers, Advances in Polymer Science, vol 226, Springer, Berlin, Heidelberg.
  • Yahia, L. (Ed.). (2015), Shape Memory Polymers for Biomedical Applications, Elsevier.
  • Huang, H., Zhang, D., Wang, T. J., Mao, Z. P., Yu, W. D. and Yan, H. J. (2007), Proceedings of the 2007 International Conference on Advanced Fibers and Polymer Materials, Vols. 1 and 2, 546.
  • http://www2.smptechno.com/en/smp/
  • Shen, H., & Chou, J. J. (2008), MemBrain: Improving the Accuracy of Predicting Transmembrane Helices, PloS one, 3(6), e2399.
  • http://www.toray.com/products/textiles/tex_0050.html
  • http://www.gradozero.eu/gzenew/index.php?pg=sonesuit&lang=en
  • Sáenz-Pérez, M., Bashir, T., Laza, J. M., García-Barrasa, J., Vilas, J. L., Skrifvars, M., & León, L. M. (2018), Novel Shape-memory Polyurethane Fibers for Textile Applications, Textile Research Journal, 0040517518760756.
  • Nike 2007 Featured Technology, Nike Sphere React Cool http://store.nike.com/?country=US&lang locale=en US& l=shop,pdp,ctr-inline/cid-100701/pid-240998#l=shop,pdp, ctr-inline/cid-100701/pid-240998.
  • Mei, Z., Ren, H., Chen, S., Ge, Z., & Hu, J. (2017), Study on the Moisture Absorption of Zwitterionic Copolymers for Moisture‐sensitive Shape Memory Applications, Polymers for Advanced Technologies.
  • Topolkaraev, V. A., & Soerens, D. A. (2003), Methods of Making Humidity Activated Materials Having Shape-memory. U.S. Patent No 6,627, 673.

Shape Memory Polymers and Textile Applications

Yıl 2018, Cilt: 25 Sayı: 111, 264 - 283, 01.10.2018

Öz

Shape
memory polymers are smart materials that could exhibit significant changes in
their properties with effect of environmental stimuli. In recent years, studies
covering shape memory polymers, a branch of smart textiles, have focused on temperature
and water/humidity sensitivity. In literature, textile applications of shape
memory polymers consist of fibre spinning, yarn and fabric formation, film,
coating, lamination and finishing applications. In this study, structural and
shape memory mechanisms of shape memory polymers were explained and applications
related to transformation of shape memory property from polymer to textile
material were examined in detail. Furthermore, limitations of shape memory
polymers in the mentioned textile production processes and their potential
applications in near future were also discussed.
     

Kaynakça

  • Leng, J. S., Lan, X., Liu, Y. J., & Du, S. Y. (2011), Shape-memory Polymers and Their Composites: Stimulus Methods and Applications, Progress in Materials Science, 56, 1077-1135.
  • Liu, C., Qin, H., & Mather, P. T. (2007), Review of Progress in Shape-memory Polymers, Journal of Materials Chemistry, 17, 1543-1558.
  • Lendlein, A., & Langer, R. (2002), Biodegradable, Elastic Shape-memory Polymers for Potential Biomedical Applications, Science, 296, 1673-1676.
  • Ratna, D., & Karger-Kocsis, J. (2008), Recent Advances in Shape Memory Polymers and Composites: A Review, Journal of Materials Science, 43, 254-269.
  • Jiang, H. Y., Kelch, S., & Lendlein, A. (2006), Polymers Move in Response to Light, Advanced Materials, 18, 1471-1475.
  • Lendlein, A., Jiang, H. Y., Jünger, O., & Langer, R. (2005), Light-induced Shape-memory Polymers, Nature, 434, 879-882.
  • Cho, J. W., Kim, J. W., Jung, Y. C., & Goo, N. S. (2005), Electroactive Shape-memory Polyurethane Composites Incorporating Carbon Nanotubes, Macromolecular Rapid Communications, 26, 412-416.
  • 8. Luo, X. F., & Mather, P. T. (2010), Conductive Shape Memory Nanocomposites for High Speed Electrical Actuation, Soft Matter, 6, 2146-2149.
  • Liu, Y. J., Lv, H. B., Lan, X., Leng, J. S., & Du, S. Y. (2009), Review of Electro-active Shape-memory Polymer Composite, Composites Science and Technology, 69, 2064-2068.
  • Xiao, Y., Zhou, S. B., Wang, L., & Gong, T. (2010), Electro-active Shape Memory Properties of Poly(epsilon-caprolactone)/Functionalized Multiwalled Carbon Nanotube Nanocomposite, ACS Applied Materials & Interfaces, 2, 3506-3514.
  • Feil, H., Bae, Y. H., Feijen, T., & Kim, S. W. (1992), Mutual Influence of pH and Temperature on the Swelling of Ionizable and Thermosensitive Hydrogels, Macromolecules, 25, 5228-30.
  • Han, X. J., Dong, Z. Q., Fan, M. M., Liu, Y., Wang, Y. F., Yuan, Q. J., & Zhang, S. (2012), pH‐induced Shape‐memory Polymers, Macromolecular Rapid Communications, 33(12), 1055-1060.
  • Chen, H., Li, Y., Liu, Y., Gong, T., Wang, L., & Zhou, S. (2014), Highly pH-sensitive Polyurethane Exhibiting Shape Memory and Drug Release, Polymer Chemistry, 5(17), 5168-5174.
  • Chen, S. J., Hu, J. L., Yuen, C.-W., & Chan, L. (2009), Novel Moisture-sensitive Shape Memory Polyurethanes Containing Pyridine Moieties, Polymer, 50, 4424-4428.
  • Chen, S. J., Hu, J. L., & Zhuo, H. T. (2011), Study on the Moisture Absorption of Pyridine Containing Polyurethane for Moisture-responsive Shape Memory Effects, Journal of Materials Science, 46, 6581-6588.
  • Huang, W. M., Yang, B., An, L., Li, C., & Chan, Y. S. (2005), Water-driven Programmable Polyurethane Shape Memory Polymer: Demonstration and Mechanism, Applied Physics Letters, 86, 114105.
  • Yang, B., Huang, W. M., Li, C., Lee, C., & Li, L. (2004), On the Effects of Moisture in a Polyurethane Shape Memory Polymer, Smart Materials and Structures, 13, 191-195.
  • Yang, B., Huang, W. M., Li, C., & Li, L. (2006), Effects of Moisture on the Thermo-mechanical Properties of a Polyurethane Shape Memory Polymer, Polymer, 47, 1348-1356.
  • Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M., & Lendlein, A. (2006), Initiation of Shape-memory Effect by Inductive Heating of Magnetic Nanoparticles in Thermoplastic Polymers, Proceedings of the National Academy of Sciences of the United States of America, 103, 3540-3545.
  • Schmidt, A. M. (2006), Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles, Macromolecular Rapid Communications, 27, 1168-1172.
  • Yu, X. J., Zhou, S. B., Zheng, X. T., Guo, T., Xiao, Y., & Song, B. T. (2009), A Biodegradable Shape-memory Nanocomposite with Excellent Magnetism Sensitivity, Nanotechnology, 20, 235702.
  • Zheng, X. T., Zhou, S. B., Xiao, Y., Yu, X. J., Li, X. H., & Wu, P. Z. (2009), Shape Memory Effect of Poly(d,l-lactide)/Fe3O4 Nanocomposites by Inductive Heating of Magnetite Particles, Colloids and Surfaces B: Biointerfaces, 71, 67-72.
  • Yu, X., Zhou, S., Zheng, X., Guo, T., Xiao, Y., & Song, B. (2009), A Biodegradable Shape-memory Nanocomposite with Excellent Magnetism Sensitivity, Nanotechnology, 20 (23), 235702.
  • Zhao, Q., Qi, H. J., & Xie, T. (2015), Recent Progress in Shape Memory Polymer: New Behavior, Enabling Materials, and Mechanistic Understanding, Progress in Polymer Science, 49, 79-120.
  • Behl, M., & Lendlein, A. (2007), Actively Moving Polymers, Soft Matter, 3(1), 58-67.
  • Lendlein, A., & Kelch, S. (2002), Shape‐memory Polymers, Angewandte Chemie International Edition, 41(12), 2034-2057.
  • Bedeloğlu, A. Ç. (2011), Şekil Hafızalı Alaşımlar ve Tekstil Malzemelerindeki Uygulamaları, Tekstil ve Mühendis, 18(83), 27-37.
  • Hu, J., Meng, Q., Zhu, Y., Lu, J., & Zhuo, H. (2007), U.S. Patent Application No. 11/907,012.
  • Lendlein, A., & Langer, R. (2002), Biodegradable, Elastic Shape-memory Polymers for Potential Biomedical Applications, Science, 296(5573), 1673-1676.
  • Scrosati, B. (Ed.). (1993), Applications of Electroactive Polymers (Vol. 75). London: Chapman & Hall.
  • Bar-Cohen, Y. (2001), Proc. 42nd AIAA Structures, Structural Dynamics, and Materials Conf. (SDM), Gossamer Spacecraft Forum (GSF) (Seattle, WA).
  • Xie, T., & Xiao, X. (2008), Self-peeling Reversible Dry Adhesive System, Chemistry of Materials, 20(9), 2866-2868.
  • Charlesby, A. (2016), Atomic Radiation and Polymers: International Series of Monographs on Radiation Effects in Materials. Elsevier.
  • Gall, K., Dunn, M.L., Liu, Y., Finch, D., Lake, M., & Munshi, N. A. (2002), Shape Memory Polymer Nanocomposites, Acta Materialia, 50, 5115-26.
  • Sokolowski, W. M., Chmielewski, A. B., Hayashi, S., & Yamada, T. (1999), Cold Hibernated Elastic Memory (CHEM) Self-Deployable Structures SPIE Int. Symp. on Smart Structures and Materials (Newport Beach, CA).
  • Smela, E., Ingan¨as, O., & Lundstr¨om, I. (1995), Controlled Folding of Micrometer-Size Structures, Science, 268, 1735-8.
  • Bar-Cohen, Y., & Zhang, Q. (2008), Electroactive Polymer Actuators and Sensors, MRS Bulletin, 3(3), 173-81.
  • Hu, J., & Chen, S. (2010), A Review of Actively Moving Polymers in Textile Applications, Journal of Materials Chemistry, 20(17), 3346-3355.
  • Mattila, H. (Ed.). (2006), Intelligent Textiles and Clothing, Woodhead Publishing.
  • Hu, J., Meng, H., Li, G., & Ibekwe, S. I. (2012). A Review of Stimuli-responsive Polymers for Smart Textile Applications, Smart Materials and Structures, 21(5), 053001.
  • Cho, G., Lee, S., & Cho, J. (2009), Review and Reappraisal of Smart Clothing, International Journal of Human-Computer Interaction, 25(6), 582-617.
  • Gu, J. F., Gorgutsa, S., & Skorobogatiy, M. (2010), Soft Capacitor Fibers Using Conductive Polymers for Electronic Textiles, Smart Materials and Structures, 19(11), 115006.
  • Kongolo, D. (2008), Assignee. Luminescent Textiles WIPO Patent Application WO/2008/148138.
  • Lee, S. and Starner, T. (2008), Stop Burdening Your Eyes: A Wearable Electro-tactile Display 12th IEEE Int. Symp. Wearable Computers (Pittsburgh, PA).
  • Sayed, I., Berzowska, J., & Skorobogatiy, M. (2010), Jacquard-woven Photonic Bandgap Fiber Displays, Research Journal of Textile and Apparel, 14(4), 97-105.
  • Studstill, K. (2010), Emotion Sensing Dress Releases Mood Driven Scents www.psfk.com/2010/01/ emotion-sensing-dress-releases-mood-driven-scents.html.
  • Qi, K., Chen, X., & Liu, Y., (2007), Facile Preparation of Anatase/SiO2 Spherical Nanocomposites and Their Application in Self-cleaning Textiles, Journal of Materials Chemistry, 17, 3504-8.
  • Mondal, S. (2008), Phase Change Materials for Smart Textiles-An Overview, Applied Thermal Engineering, 28, 1536-50.
  • Hu, J., Zhu, Y., Lu, J., Yeung, L. Y., & and Yeung, K.W. (2007), Uniqueness of Shape Memory Fibers in Comparison with Existing Man-made Fibers, 9th Asian Textile Conf. Federation of Asian Professional Textile Associations (Taiwan).
  • Li, F., Zhang, X., Hou, J., Xu, M., Luo, X., Ma, D., & Kim, B. K., (1997), Studies on Thermally Stimulated Shape Memory Effect of Segmented Polyurethanes, Journal of Applied Polymer Science, 64(8), 1511-1527.
  • Hu, J., Yang, Z., Yeung, L., Ji, F., & Liu, Y. (2005), Crosslinked Polyurethanes with Shape Memory Properties, Polymer International, 54(5), 854-859.
  • Luo, H., Liu, Y., Yu, Z., Zhang, S., & Li, B. (2008), Novel Biodegradable Shape Memory Material Based on Partial Inclusion Complex Formation Between α-Cyclodextrin and Poly (ϵ-caprolactone), Biomacromolecules, 9(10), 2573-2577.
  • Zhang, S., Yu, Z., Govender, T., Luo, H., & Li, B. (2008), A Novel Supramolecular Shape Memory Material Based on Partial α-CD-PEG Inclusion Complex. Polymer, 49(15), 3205-3210.
  • Lee, B. S., Chun, B. C., Chung, Y. C., Sul, K. I., & Cho, J. W. (2001), Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect, Macromolecules, 34(18), 6431-6437.
  • Ping, P., Wang, W., Chen, X., & Jing, X. (2005), Poly (ε-caprolactone) Polyurethane and its Shape-memory Property, Biomacromolecules, 6(2), 587-592.
  • Hiraoka, K., Tagawa, N., & Baba, K. (2008), Shape‐memory Effect Controlled by the Crosslinking Topology in Uniaxially‐deformed Smectic C* Elastomers, Macromolecular Chemistry and Physics, 209(3), 298-307.
  • Neuss, S., Blomenkamp, I., Stainforth, R., Boltersdorf, D., Jansen, M., Butz, N., & Knüchel, R. (2009), The Use of a Shape-memory Poly (ε-caprolactone) Dimethacrylate Network as a Tissue Engineering Scaffold, Biomaterials, 30(9), 1697-1705.
  • Thomsen, D. L., Keller, P., Naciri, J., Pink, R., Jeon, H., Shenoy, D., & Ratna, B. R. (2001), Liquid Crystal Elastomers with Mechanical Properties of a Muscle, Macromolecules, 34(17), 5868-5875.
  • Li, M. H., Keller, P., Yang, J., & Albouy, P. A. (2004), An Artificial Muscle with Lamellar Structure Based on a Nematic Triblock Copolymer, Advanced Materials, 16(21), 1922-1925.
  • Yan, L., Aggie, C., JinLian, H., & Jing, L., (2007), Shape Memory Behavior of SMPU Knitted Fabric, Journal of Zhejiang University Science A, 8(5):830-834.
  • Liu, Y., Lu, J., Hu, J., & Chung, A., (2013), Study on the Bagging Behavior of Knitted Fabrics by Shape Memory Polyurethane Fiber, The Journal of The Textile Institute, 104(11), 1230-1236.
  • Jing, L., & Hu, J., (2010), Study on the Properties of Core Spun Yarn and Fabrics of Shape Memory Polyurethane, Fibres & Textiles in Eastern Europe, 18, 4 (81), 39-42.
  • Mondal, S. (2009), Recent Developments in Temperature Responsive Shape Memory Polymers, Mini-Reviews in Organic Chemistry, 6(2), 114-119.
  • Hu, J., Zhu, Y., Huang, H., & Lu, J. (2012), Recent Advances in Shape-memory Polymers: Structure, Mechanism, Functionality, Modeling and Applications, Progress in Polymer Science, 37(12), 1720-1763.
  • Hu, J. (2007), Shape Memory Polymers and Textiles, Elsevier.
  • Hager, M. D., Bode, S., Weber, C., & Schubert, U. S. (2015), Shape Memory Polymers: Past, Present and Future Developments, Progress in Polymer Science, 49, 3-33.
  • Yuan, H., Chen, S., Chen, S., & Ge, Z. (2013), Studies on Moisture-sensitive Shape Memory Behavior of IPDI-BINA Based Polyurethane. International Journal of Chemical Engineering and Applications, 4(4), 191.
  • Huang, W. M., Yang, B., An, L., Li, C., & Chan, Y. S. (2005), Water-driven Programmable Polyurethane Shape Memory Polymer: Demonstration and Mechanism, Applied Physics Letters, 86(11), 114105.
  • Chen, S., Hu, J., Yuen, C. W., & Chan, L. (2009), Novel Moisture-sensitive Shape Memory Polyurethanes Containing Pyridine Moieties, Polymer, 50(19), 4424-4428.
  • Chae Jung, Y., Hwa So, H., & Whan Cho, J. (2006), Water‐responsive Shape Memory Polyurethane Block Copolymer Modified with Polyhedral Oligomeric Silsesquioxane, Journal of Macromolecular Science, Part B, 45(4), 453-461.
  • Chen, M. C., Tsai, H. W., Chang, Y., Lai, W. Y., Mi, F. L., Liu, C. T., & Sung, H. W. (2007), Rapidly Self-expandable Polymeric Stents with a Shape-memory Property, Biomacromolecules, 8(9), 2774-2780.
  • Huang, W. M., Yang, B., Zhao, Y., & Ding, Z. (2010), Thermo-moisture Responsive Polyurethane Shape-memory Polymer and Composites: A Review, Journal of Materials Chemistry, 20(17), 3367-3381.
  • Meng, H., & Li, G. (2013), A Review of Stimuli-responsive Shape Memory Polymer Composites, Polymer, 54(9), 2199-2221.
  • Qi, X., Yao, X., Deng, S., Zhou, T., & Fu, Q. (2014), Water-induced Shape Memory Effect of Graphene Oxide Reinforced Polyvinyl Alcohol Nanocomposites, Journal of Materials Chemistry A, 2(7), 2240-2249.
  • Correia, C. O., & Mano, J. F. (2014), Chitosan Scaffolds with a Shape Memory Effect Induced by Hydration, Journal of Materials Chemistry B, 2(21), 3315-3323.
  • Correia, C. O., Leite, Á. J., & Mano, J. F. (2015), Chitosan/Bioactive Glass Nanoparticles Scaffolds with Shape Memory Properties, Carbohydrate Polymers, 123, 39-45.
  • Liu, Y., Li, Y., Yang, G., Zheng, X., & Zhou, S. (2015), Multi-stimulus-responsive Shape-memory Polymer Nanocomposite Network Cross-linked by Cellulose Nanocrystals, ACS Applied Materials & Interfaces, 7(7), 4118-4126.
  • Luo, H., Hu, J., & Zhu, Y. (2011), Polymeric Shape Memory Nanocomposites with Heterogeneous Twin Switches, Macromolecular Chemistry and Physics, 212(18), 1981-1986.
  • Luo, H., Hu, J., & Zhu, Y. (2012), Path-dependent and Selective Multi-shape Recovery of a Polyurethane/Cellulose-whisker Nanocomposite, Materials Letters, 89, 172-175.
  • Dagnon, K. L., Way, A. E., Carson, S. O., Silva, J., Maia, J., & Rowan, S. J. (2013), Controlling the Rate of Water-induced Switching in Mechanically Dynamic Cellulose Nanocrystal Composites, Macromolecules, 46(20), 8203-8212.
  • Zhu, Y., Hu, J., Luo, H., Young, R. J., Deng, L., Zhang, S., & Ye, G. (2012), Rapidly Switchable Water-sensitive Shape-memory Cellulose/Elastomer Nano-composites, Soft Matter, 8(8), 2509-2517.
  • Yeqiu, L., Jinlian, H., Yong, Z., & Zhuohong, Y. (2005), Surface Modification of Cotton Fabric by Grafting of Polyurethane, Carbohydrate Polymers, 61(3), 276-280.
  • Hu, J.L., Liu, Y.J., Wang, Q.M., Liu, Y., & Lu, J. (2006), Shape Memory Finishing for Wool: Synthesis of Polyurethane and Application Methods, CN Pat 1818198.
  • Tobushi, H., Hara, H., Yamada, E., & Hayashi, S. (1996), Thermomechanical Properties in a Thin Film of Shape Memory Polymer of Polyurethane Series, Smart Materials and Structures, 5(4), 483.
  • Chen, S., Hu, J., Liu, Y., Liem, H., Zhu, Y., & Meng, Q. (2007), Effect of Molecular Weight on Shape Memory Behavior in Polyurethane Films, Polymer International, 56(9), 1128-1134.
  • Mondal, S., & Hu, J. L. (2006), Segmented Shape Memory Polyurethane and its Water Vapor Transport Properties, Designed Monomers and Polymers, 9(6), 527-550.
  • Ding, X. M., Hu, J. L., & Tao, X. M. (2004), Effect of Crystal Melting on Water Vapor Permeability of Shape-memory Polyurethane Film, Textile Research Journal, 74(1), 39-43.
  • Tobushi, H., Okumura, K., Endo, M., & Hayashi, S. (2001), Thermomechanical Properties of Polyurethane-shape Memory Polymer Foam, Journal of Intelligent Material Systems and Structures, 12(4), 283-287.
  • Tobushi, H., Shimada, D., Hayashi, S., & Endo, M. (2003), Shape Fixity and Shape Recovery of Polyurethane Shape-memory Polymer Foams, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 217(2), 135-143.
  • Mondal, S., & Hu, J. L. (2007), Water Vapor Permeability of Cotton Fabrics Coated with Shape Memory Polyurethane, Carbohydrate Polymers, 67(3), 282-287.
  • Bakhshi, R., Darbyshire, A., Evans, J. E., You, Z., Lu, J., & Seifalian, A. M. (2011), Polymeric Coating of Surface Modified Nitinol Stent with Poss-nanocomposite Polymer, Colloids and Surfaces B: Biointerfaces, 86(1), 93-105.
  • Liem, H., Yeung, L. Y., & Hu, J. L. (2007), A Prerequisite for the Effective Transfer of the Shape-memory Effect to Cotton Fibers, Smart Materials and Structures, 16(3), 748.
  • Hu, J.L., Zeng, Y., & Yan, H.J. (2003), Influence of Processing Conditions on the Microstructure and Properties of Shape Memory Polyurethane Membranes, Textile Research Journal, 73, 172-178.
  • Walczak, J., Chrzanowski, M., & Krucińska, I. (2017), Research on a Nonwoven Fabric Made From Multi-block Biodegradable Copolymer Based on L-Lactide, Glycolide, and Trimethylene Carbonate with Shape Memory, Molecules, 22(8), 1325.
  • Safranski, D. L., Boothby, J. M., Kelly, C. N., Beatty, K., Lakhera, N., Frick, C. P., & Griffis, J. C. (2016), Thermo-mechanical Behavior and Structure of Melt Blown Shape-memory Polyurethane Nonwovens, Journal of the Mechanical Behavior of Biomedical Materials, 62, 545-555.
  • Liu, Y., Chung, A., Hu, J., & Lv, J. (2007), Shape Memory Behavior of SMPU Knitted Fabric, Journal of Zhejiang University-Science A, 8(5), 830-834.
  • Çakmak, E. G. (2013), “Şekil Hafızalı Poliüretanların Performanslarına Zincir Uzatıcı Miktarı Etkisinin Belirlenmesi”, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul.
  • Zhu, Y., Hu, J., Yeung, L. Y., Liu, Y., Ji, F., & Yeung, K. W. (2006), Development of Shape Memory Polyurethane Fiber with Complete Shape Recoverability, Smart Materials and Structures, 15(5), 1385.
  • Zhu, Y., Hu, J., Yeung, L. Y., Lu, J., Meng, Q., Chen, S., & Yeung, K. W. (2007), Effect of Steaming on Shape Memory Polyurethane Fibers with Various Hard Segment Contents, Smart Materials and Structures, 16(4), 969.
  • Meng, Q., Hu, J., Zhu, Y., Lu, J., & Liu, Y. (2007), Morphology, Phase Separation, Thermal and Mechanical Property Differences of Shape Memory Fibres Prepared by Different Spinning Methods, Smart Materials and Structures, 16(4), 1192.
  • Meng, Q., Hu, J., Zhu, Y., Lu, J., & Liu, Y. (2007), Polycaprolactone‐based Shape Memory Segmented Polyurethane Fiber, Journal of Applied Polymer Science, 106(4), 2515-2523.
  • Kaursoin, J., & Agrawal, A. K. (2007), Melt Spun Thermoresponsive Shape Memory Fibers Based on Polyurethanes: Effect of Drawing and Heat‐setting on Fiber Morphology and Properties, Journal of Applied Polymer Science, 103(4), 2172-2182.
  • Meng, Q., Hu, J., Zhu, Y., Lu, J., & Liu, Y. (2007), Morphology, Phase Separation, Thermal and Mechanical Property Differences of Shape Memory Fibres Prepared by Different Spinning Methods, Smart Materials and Structures, 16(4), 1192.
  • Meng, Q., Hu, J., Zhu, Y., Lu, J., & Liu, Y. (2007), Polycaprolactone‐based Shape Memory Segmented Polyurethane Fiber, Journal of Applied Polymer Science, 106(4), 2515-2523.
  • Meng, Q., & Hu, J. (2008), Study on Poly (e‐caprolactone)‐based Shape Memory Copolymer Fiber Prepared by Bulk Polymerization and Melt Spinning, Polymers for Advanced Technologies, 19(2), 131-136.
  • Meng, Q., & Hu, J. (2008), A Temperature-regulating Fiber Made of PEG-based Smart Copolymer, Solar Energy Materials and Solar Cells, 92(10), 1245-1252.
  • Meng, Q., Hu, J., Yeung, L. Y., & Hu, Y. (2009), The Influence of Heat Treatment on the Properties of Shape Memory Fibers. II. Tensile Properties, Dimensional Stability, Recovery Force Relaxation, and Thermomechanical Cyclic Properties, Journal of Applied Polymer Science, 111(3), 1156-1164.
  • Meng, Q., & Hu, J. (2008), Influence of Heat Treatment on the Properties of Shape Memory Fibers. I. Crystallinity, Hydrogen Bonding, and Shape Memory Effect, Journal of Applied Polymer Science, 109(4), 2616-2623.
  • Hu, J. L., Meng, Q. H., Zhu, Y., Lu, J., & Zhuo, H. T. (2007), Shape Memory Fibers Prepared by Wet, Reaction, Dry, Melt, and Electro Spinning. US Patent, 11(907,012), 6.
  • Yang, Q., & Li, G. (2014), Investigation into Stress Recovery Behavior of Shape Memory Polyurethane Fiber, Journal of Polymer Science Part B: Polymer Physics, 52(21), 1429-1440.
  • Hu, J., & Lu, J. (2015), Shape Memory Fibers, In Handbook of Smart Textiles (pp. 183-207). Springer Singapore.
  • Meng, Q., Hu, J., & Yeung, L. (2007), An Electro-active Shape Memory Fibre by Incorporating Multi-walled Carbon Nanotubes, Smart Materials and Structures, 16(3), 830.
  • Meng, Q., Liu, J., Shen, L., Hu, Y., & Han, J. (2009), A Smart Hollow Filament with Thermal Sensitive Internal Diameter, Journal of Applied Polymer Science, 113(4), 2440-2449.
  • Kumar, B., Hu, J., & Pan, N. (2016), Smart Medical Stocking Using Memory Polymer for Chronic Venous Disorders, Biomaterials, 75, 174-181.
  • Kumar, B., Hu, J., & Pan, N. (2016), Memory Bandage for Functional Compression Management for Venous Ulcers, Fibers, 4(1), 10.
  • Narayana, H., Hu, J., Kumar, B., Shang, S., Han, J., Liu, P., & Zhu, Y. (2017), Stress-memory Polymeric Filaments for Advanced Compression Therapy, Journal of Materials Chemistry B, 5(10), 1905-1916.
  • Debnath, K., & Singh, I. (Eds.). (2017), Primary and Secondary Manufacturing of Polymer Matrix Composites, CRC Press.
  • Maksimkin, A. V., Kharitonov, A. P., Mostovaya, K. S., Kaloshkin, S. D., Gorshenkov, M. V., Senatov, F. S., & Tcherdyntsev, V. V. (2016), Bulk Oriented Nanocomposites of Ultrahigh Molecular Weight Polyethylene Reinforced with Fluorinated Multiwalled Carbon Nanotubes with Nanofibrillar Structure, Composites Part B: Engineering, 94, 292-298.
  • Litvinov, V. M., Xu, J., Melian, C., Demco, D. E., Moller, M., & Simmelink, J. (2011), Morphology, Chain Dynamics, and Domain Sizes in Highly Drawn Gel-spun Ultrahigh Molecular Weight Polyethylene Fibers at the Final Stages of Drawing by SAXS, WAXS, and 1H solid-state NMR, Macromolecules, 44(23), 9254-9266.
  • Jung, Y. C., Kim, J. W., Chun, B. C., Chung, Y. C., & Cho, J. W. (2004), Shape Memory Polyurethane Nanofibers, Quality Textiles for Quality Life Vols 1, 4, 43-46.
  • Zhuo, H., Hu, J., Chen, S., & Yeung, L. (2008), Preparation of Polyurethane Nanofibers by Electrospinning, Journal of Applied Polymer Science, 109(1), 406-411.
  • Zhuo, H. T., Hu, J. L., Chen, S. J., & Zhu, Y. (2008), Study of Shape Memory Nanofibre Nonwoven Fabrics, In proceedings of the International Conference on Advanced Textile Materials & Manufacturing Technology (pp. 463-6).
  • Zhuo, H., Hu, J., & Chen, S. (2011), Study of the Thermal Properties of Shape Memory Polyurethane Nanofibrous Nonwoven, Journal of Materials Science, 46(10).
  • So, J. H., Jung, S. H., J., Yoon, K. J. and Cho, J. W. (2004), Quality Textiles for Quality Life, Vols. 1-4, 121.
  • Zhuo, H., Hu, J., & Chen, S. (2011), Study of Water Vapor Permeability of Shape Memory Polyurethane Nanofibrous Nonwovens, Textile Research Journal, 81(9), 883-891.
  • Han, H. R., Chung, S. E., & Park, C. H. (2013), Shape Memory and Breathable Waterproof Properties of Polyurethane Nanowebs, Textile Research Journal, 83(1), 76-82. ISO 690.
  • Chung, S. E., Park, C. H., Yu, W. R., & Kang, T. J. (2011), Thermoresponsive Shape Memory Characteristics of Polyurethane Electrospun Web, Journal of Applied Polymer Science, 120(1), 492-500.
  • Cha, D. I., Kim, H. Y., Lee, K. H., Jung, Y. C., Cho, J. W., & Chun, B. C. (2005), Electrospun Nonwovens of Shape‐memory Polyurethane Block Copolymers. Journal of Applied Polymer Science, 96(2), 460-465.
  • Chen, S., Hu, J., Zhuo, H., & Chen, S. (2011), Effect of MDI-BDO Hard Segment on Pyridine-containing Shape Memory Polyurethanes, Journal of Materials Science, 46(15), 5294-5304.
  • Zhuo, H., Hu, J., & Chen, S. (2008), Electrospun Polyurethane Nanofibres Having Shape Memory Effect, Materials Letters, 62(14), 2074-2076.
  • Budun, S., İşgören, E., Erdem, R., & Yüksek, M. (2016), Morphological and Mechanical Analysis of Electrospun Shape Memory Polymer Fibers, Applied Surface Science, 380, 294-300.
  • Leng, J., Lv, H., Liu, Y., & Du, S. (2007), Electroactivate Shape-memory Polymer Filled with Nanocarbon Particles and Short Carbon Fibers, Applied Physics Letters, 91(14), 144105.
  • Sahoo, N. G., Rana, S., Cho, J. W., Li, L., & Chan, S. H. (2010), Polymer Nanocomposites Based on Functionalized Carbon Nanotubes, Progress in Polymer Science, 35(7), 837-867.
  • Zhang, F. H., Zhang, Z. C., Liu, Y. J., and Leng, J. S. (2014), Electrospun Nanofiber Membranes for Electrically Activated Shape Memory Nanocomposites, Smart Materials and Structures, 23(6), 065020.
  • Jeon, H. J., Kim, J. S., Kim, T. G., Kim, J. H., Yu, W. R., & Youk, J. H. (2008), Preparation of Poly (ɛ-caprolactone)-based Polyurethane Nanofibers Containing Silver Nanoparticles, Applied Surface Science, 254(18), 5886-5890.
  • 136. Zhang, F., Zhang, Z., Liu, Y., Lu, H., & Leng, J. (2013), The Quintuple-shape Memory Effect in Electrospun Nanofiber Membranes, Smart Materials and Structures, 22(8), 085020.
  • Tan, L., Hu, J., Ying Rena, K., Zhu, Y., & Liu, P. (2017), Quick Water‐responsive Shape Memory Hybrids with Cellulose Nanofibers, Journal of Polymer Science Part A: Polymer Chemistry, 55(4), 767-775.
  • Tan, L., Gan, L., Hu, J., Zhu, Y., & Han, J. (2015), Functional Shape Memory Composite Nanofibers with Graphene Oxide Filler, Composites Part A: Applied Science and Manufacturing, 76, 115-123.
  • Gong, T., Li, W., Chen, H., Wang, L., Shao, S., & Zhou, S. (2012), Remotely Actuated Shape Memory Effect of Electrospun Composite Nanofibers, Acta Biomaterialia, 8(3), 1248-1259.
  • Mather, P. T., and Luo, X. F. (2011), Shape Memory Elastomer, Useful e.g. to Form Adaptive Seals Such as Heat-shrinkable Seals that Prevent Water Leaking and Produce Configurable Surgical Tools, Comprises Non-Woven Mat, and Resin Matrix Infiltrated Throughout the Mat. US2011021097-A1.
  • Mather, P. T., Torbati, A., and Mather, R. (2014), Near Infrared Fluorescent Marker for Use in e.g. Medical Device During Surgical Procedure in e.g. Mouse, has Electrospun Fibrous Web Formed from Shape Memory Polymer and Near Infrared Dye with Excitation and Emission Wavelength. US2014303490-A1.
  • Mejía, M. A., Hoyos, L. M., Zapata, J., Restrepo, L. M., & Moneada, M. E. (2016). Electrospinning of Gelatin and SMPU with Carbon Nanotubes for Tissue Engineering Scaffolds. In Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the (pp. 4181-4184). IEEE.
  • Tan, L., Hu, J., Huang, H., Han, J., & Hu, H. (2015), Study of Multi-functional Electrospun Composite Nanofibrous Mats for Smart Wound Healing, International Journal of Biological Macromolecules, 79, 469-476.
  • Zhuo, H. T., Hu, J. L., & Chen, S. J. (2011), Coaxial Electrospun Polyurethane Core-shell Nanofibers for Shape Memory and Antibacterial Nanomaterials, Express Polymer Letters, 5(2), 182-187.
  • Aslan, S. (2017), “Şekil Hafızalı Polimer Esaslı Fonksiyonel Tekstil Yapılarının Geliştirilmesi”, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Tekstil Mühendisliği Anabilim Dalı, Doktora Tezi, 150s, Isparta.
  • Kobayashi, K., & Hayashi, S. (1992), U.S. Patent No. 5,128,197. Washington, DC: U.S. Patent and Trademark Office.
  • Stylios, G. K., Chan, Y. Y. F., Wan, T., Lam, P., & Tang, S. (2005), Engineering Textile Aesthetics by Shape and Colour Changing Materials, In 5th AUTEX World Textile Conference, Portoroz, Slovenia.
  • Chan Vili, Y. Y. F. (2007), Investigating Smart Textiles Based on Shape Memory Materials, Textile Research Journal, 77(5), 290-300.
  • Katie, P. K. K. (2010), The Study of Woven Jaqourd Fabrics Using Shape Memory Polymers, The Hong Kong Polytechnic University Institute of Textiles & Clothing, 109p, Hong Kong.
  • Heung Yang, J. Chul Chun, B., Chung, Y. C., Whan Cho, J., & Gyoo Cho, B. (2004), Vibration Control Ability of Multilayered Composite Material Made of Epoxy Beam and Polyurethane Copolymer with Shape Memory Effect, Journal of Applied Polymer Science, 94(1), 302-307.
  • Lim, K. Y., Kim, B. C., & Yoon, K. J. (2002), Effect of Structural Characteristic on Physical Properties of Copolyesters from Poly (Ethylene Terephthalate) Oligomer and Polycaprolactone, Journal of Polymer Science Part B: Polymer Physics, 40(22), 2552-2560.
  • Cho, J. W., Jung, Y. C., Chun, B. C., & Chung, Y. C. (2004), Water Vapor Permeability and Mechanical Properties of Fabrics Coated with Shape‐memory Polyurethane. Journal of Applied Polymer Science, 92(5), 2812-2816.
  • Jeong, H. M., Ahn, B. K., Cho, S. M., & Kim, B. K. (2000), Water Vapor Permeability of Shape Memory Polyurethane with Amorphous Reversible Phase, Journal of Polymer Science Part B: Polymer Physics, 38(23), 3009-3017.
  • Hu, J. L., Zeng, Y. M., & Yan, H. J. (2003), Influence of Processing Conditions on the Microstructure and Properties of Shape Memory Polyurethane Membranes, Textile Research Journal, 73(2), 172-178.
  • Yeqiu, L., Jinlian, H., Yong, Z., & Zhuohong, Y. (2005), Surface Modification of Cotton Fabric by Grafting of Polyurethane, Carbohydrate Polymers, 61(3), 276-280.
  • Hu, J. L., & Yang, Z. H. (2004), CN 1648143.
  • Hu, J. L., & Fan, H. J. (2004), CN 1648145.
  • Hu, J. L., & Liu, Y. Q. (2004), China Patent: CN1704523.
  • Hu, J. L., Liu, Y. J. Zheng, G. H., & Liu, Y. (2006), China Patent: CN1818198.
  • Hu, J. L., Liu, Y. J., & Liu, Y. (2008), China Patent: CN1818198.
  • Fan, H. J., Hu, J. L., & Ji, F. L. (2004, June), Environmental-benign Thermal-sensitive Polyurethane for Textile Finishing, In World Textile Conference 4th AUTEX Conference, Roubaix, France (Vol. 22).
  • Tobushi, H., Hara, H., Yamada, E., & Hayashi, S. (1996), Thermomechanical Properties in a Thin Film of Shape Memory Polymer of Polyurethane Series, Smart Materials and Structures, 5(4), 483.
  • Knight, P. T., Lee, K. M., Qin, H., & Mather, P. T. (2008), Biodegradable Thermoplastic Polyurethanes Incorporating Polyhedral Oligosilsesquioxane, Biomacromolecules, 9(9), 2458-2467.
  • Wagermaier, W., Kratz, K., Heuchel, M. & Lendlein, A. (2010), Characterization Methods for Shape Memory Polymers, Shape-Memory Polymers, 226, 97-145.
  • Lendlein, A., Schmidt, A.M. & Langer, R. (2001), AB-polymer Networks Based on Oligo(epsiloncaprolactone) Segments Showing Shape-memory Properties, Proceedings of the National Academy of Sciences of the United States of America, 98 (3), 842-847.
  • Xie, T. (2010), Tunable Polymer Multi-shape Memory Effect, Nature, 464 (7286), 267-270.
  • Lin, J. R., & Chen, L. W. (1998), Study on Shape‐memory Behavior of Polyether‐based Polyurethanes. I. Influence of the Hard‐segment Content, Journal of Applied Polymer Science, 69(8), 1563-1574.
  • Luo, H. (2012), Study on Stimulus-responsive Cellulose-based Polymeric Materials, (Doctoral dissertation, The Hong Kong Polytechnic University).
  • Li, F., Chen, Y., Zhu, W., Zhang, X., & Xu, M. (1998), Shape Memory Effect of Polyethylene/Nylon 6 Graft Copolymers, Polymer, 39(26), 6929-6934.
  • Ma, D., Wang, M., Wang, M., Zhang, X., & Luo, X. (1998), Compositional Heterogeneity, Thermostable, and Shape Memory Properties of Ethylene Oxide‐ethylene Terephthalate Segmented Copolymer with Long Soft Segment, Journal of Applied Polymer Science, 69(5), 947-955.
  • Luo, X., Zhang, X., Wang, M., Ma, D., Xu, M. & Li, F. (1997), Thermally Stimulated Shape-memory Behavior of Ethylene Oxide-ethylene Terephthalate Segmented Copolymer, Journal of Applied Polymer Science, 64, 2433-2440.
  • Tey, S. J., Huang, W. M., & Sokolowski, W. M. (2001), Influence of Long-term Storage in Cold Hibernation on Strain Recovery and Recovery Stress of Polyurethane Shape Memory Polymer Foam, Smart Materials and Structures, 10(2), 321.
  • Gall, K., Dunn, M. L., Liu, Y., Finch, D., Lake, M., & Munshi, N. A. (2002), Shape Memory Polymer Nanocomposites, Acta Materialia, 50(20), 5115-5126.
  • Wagermaier W., Kratz K., Heuchel M., Lendlein A. (2009), Characterization Methods for Shape-memory Polymers. In: Lendlein A. (eds) Shape-memory Polymers, Advances in Polymer Science, vol 226, Springer, Berlin, Heidelberg.
  • Yahia, L. (Ed.). (2015), Shape Memory Polymers for Biomedical Applications, Elsevier.
  • Huang, H., Zhang, D., Wang, T. J., Mao, Z. P., Yu, W. D. and Yan, H. J. (2007), Proceedings of the 2007 International Conference on Advanced Fibers and Polymer Materials, Vols. 1 and 2, 546.
  • http://www2.smptechno.com/en/smp/
  • Shen, H., & Chou, J. J. (2008), MemBrain: Improving the Accuracy of Predicting Transmembrane Helices, PloS one, 3(6), e2399.
  • http://www.toray.com/products/textiles/tex_0050.html
  • http://www.gradozero.eu/gzenew/index.php?pg=sonesuit&lang=en
  • Sáenz-Pérez, M., Bashir, T., Laza, J. M., García-Barrasa, J., Vilas, J. L., Skrifvars, M., & León, L. M. (2018), Novel Shape-memory Polyurethane Fibers for Textile Applications, Textile Research Journal, 0040517518760756.
  • Nike 2007 Featured Technology, Nike Sphere React Cool http://store.nike.com/?country=US&lang locale=en US& l=shop,pdp,ctr-inline/cid-100701/pid-240998#l=shop,pdp, ctr-inline/cid-100701/pid-240998.
  • Mei, Z., Ren, H., Chen, S., Ge, Z., & Hu, J. (2017), Study on the Moisture Absorption of Zwitterionic Copolymers for Moisture‐sensitive Shape Memory Applications, Polymers for Advanced Technologies.
  • Topolkaraev, V. A., & Soerens, D. A. (2003), Methods of Making Humidity Activated Materials Having Shape-memory. U.S. Patent No 6,627, 673.
Toplam 184 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Nazife Korkmaz Memiş 0000-0003-1605-0670

Sibel Kaplan 0000-0002-7247-135X

Yayımlanma Tarihi 1 Ekim 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 25 Sayı: 111

Kaynak Göster

APA Korkmaz Memiş, N., & Kaplan, S. (2018). Şekil Hafızalı Polimerler ve Tekstil Uygulamaları. Tekstil Ve Mühendis, 25(111), 264-283.
AMA Korkmaz Memiş N, Kaplan S. Şekil Hafızalı Polimerler ve Tekstil Uygulamaları. Tekstil ve Mühendis. Ekim 2018;25(111):264-283.
Chicago Korkmaz Memiş, Nazife, ve Sibel Kaplan. “Şekil Hafızalı Polimerler Ve Tekstil Uygulamaları”. Tekstil Ve Mühendis 25, sy. 111 (Ekim 2018): 264-83.
EndNote Korkmaz Memiş N, Kaplan S (01 Ekim 2018) Şekil Hafızalı Polimerler ve Tekstil Uygulamaları. Tekstil ve Mühendis 25 111 264–283.
IEEE N. Korkmaz Memiş ve S. Kaplan, “Şekil Hafızalı Polimerler ve Tekstil Uygulamaları”, Tekstil ve Mühendis, c. 25, sy. 111, ss. 264–283, 2018.
ISNAD Korkmaz Memiş, Nazife - Kaplan, Sibel. “Şekil Hafızalı Polimerler Ve Tekstil Uygulamaları”. Tekstil ve Mühendis 25/111 (Ekim 2018), 264-283.
JAMA Korkmaz Memiş N, Kaplan S. Şekil Hafızalı Polimerler ve Tekstil Uygulamaları. Tekstil ve Mühendis. 2018;25:264–283.
MLA Korkmaz Memiş, Nazife ve Sibel Kaplan. “Şekil Hafızalı Polimerler Ve Tekstil Uygulamaları”. Tekstil Ve Mühendis, c. 25, sy. 111, 2018, ss. 264-83.
Vancouver Korkmaz Memiş N, Kaplan S. Şekil Hafızalı Polimerler ve Tekstil Uygulamaları. Tekstil ve Mühendis. 2018;25(111):264-83.