Araştırma Makalesi
BibTex RIS Kaynak Göster

Nylon 6,6 Nanolif Membranların Mekanik Özelliklerinin İncelenmesi

Yıl 2018, Cilt: 25 Sayı: 112, 286 - 291, 31.12.2018

Öz

Çalışmada naylon 6,6 nanolif membranlar elektroeğirme tekniği ile
üretilmiştir ve değişik çözücü sistemleri ile üretilmiş nylon 6,6 nanolif
membranların mekanik özellikleri incelenmiştir. Naylon 6,6 çözeltileri naylon
6,6 nın formik asit/trifloroetil alkol çözücü sisteminde 50/50, 75/25 ve 100/0
oranlarında çözünmesiyle hazırlanmıştır. Sonuçlar çözücü tipinin ortalama
nanolif çaplarında ve mekanik özelliklerde belirgin etkisi olduğunu
göstermiştir. Formik asit artışı düşük nanolif çaplarına ve artan mekanik
mukavemete neden olmuştur. Formik asit kullanılarak hazırlanan membran 400 nm
ortalama nanolif çapı ile 20MPa civarı mukavemet göstermiştir.

Kaynakça

  • Ayaz O, Uçar N, Bahar E., Oksuz M., Ucar M., Onen A., Demir A., Wang Y. (2012), "Production And Analysis of Composite Nanofiber And Heat Applied Nanofiber".Tekstil ve Mühendis, 19(85) 6-9.
  • Çallioğlu, F.C. and Jirsak O. (2013), "The Effect of Polymer and Salt Concentration on Fiber Properties in Electrospinning of Polyurethane Nanofibers" Tekstil ve Mühendis, 20 (90) 1-6.
  • Lee, H., et al., (2014), A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 7(12), 3857-3886.
  • Zhang, X., et al. (2011), Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polymer Reviews, 51(3) 239-264.
  • Erdem, R. and Erdem, Ö., (2017), Investigation the Morphological and Luminescence Properties of Ligand Doped Polyurethane Nanofibers Produced by Electrospinning. Tekstil ve Mühendis 24 (105), 18-24.
  • Pant, H.R., et al. (2010), Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects,.370(1-3), p. 87-94.
  • Bagheri, H. and Aghakhani A. (2012), Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction. Analytica chimica acta, 713, 63-69.
  • Beachley, V. and Wen X., (2009) Effect of electrospinning parameters on the nanofiber diameter and length. Materials Science and Engineering: C, 29(3), 663-668.
  • Pillay, V., et al., (2013), A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials.
  • Son, W.K., et al., (2004), The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers. Polymer, 45(9), 2959-2966.
  • Casasola, R., et al., (2014), Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer 55(18), 4728-4737.
  • Chuangchote, S., Sagawa T., and Yoshikawa S., (2009), Electrospinning of poly (vinyl pyrrolidone): Effects of solvents on electrospinnability for the fabrication of poly (p‐phenylene vinylene) and TiO2 nanofibers. Journal of applied polymer science, 114(5), 2777-2791.
  • Jarusuwannapoom, T., et al., (2005), Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. European Polymer Journal, 41(3), 409-421.
  • Choktaweesap, N., et al. (2007), Electrospun gelatin fibers: effect of solvent system on morphology and fiber diameters. Polymer Journal, 39(6), 622-631.
  • Mit‐uppatham, C., Nithitanakul M., and Supaphol P., (2004), Ultrafine electrospun polyamide‐6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromolecular Chemistry and Physics, 205(17), 2327-2338.
  • Yanilmaz, M., Dirican M., and Zhang X, (2014). Evaluation of electrospun SiO 2/nylon 6, 6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochimica Acta, 133, 501-508.
  • Pant, H.R., et al., (2011), Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: a multifunctional nanocomposite textile material. Journal of hazardous materials, 185(1), 124-130.
  • Palazzetti, R., Zucchelli A., and Trendafilova I., (2013), The self-reinforcing effect of Nylon 6, 6 nano-fibres on CFRP laminates subjected to low velocity impact. Composite Structures, 106, 661-671.
  • Shrestha, B.K., et al., (2016), Development of polyamide-6, 6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application. Carbohydrate Polymers, 148,107-114.
  • Yanilmaz, M., et al., (2017), High-strength, thermally stable nylon 6, 6 composite nanofiber separators for lithium-ion batteries. Journal of Materials Science, 52(9), 5232-5241.
  • Matulevicius, J., et al., (2016), The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. Journal of Aerosol Science, 92, 27-37.
  • Huang, L. and McCutcheon J.R., (2014) Hydrophilic nylon 6, 6 nanofibers supported thin film composite membranes for engineered osmosis. Journal of membrane science, 457, 162-169.
  • Jeong, J., et al., (2006), Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning. Diamond and related materials, 15 (11-12), 1839-1843.
  • Choi, J., et al., (2010), MWCNT–OH adsorbed electrospun nylon 6, 6 nanofibers chemiresistor and their application in low molecular weight alcohol vapours sensing. Synthetic Metals, 160 (23-24), 2664-2669.
  • Navarro-Pardo, F., et al., (2013), Effects on the thermo-mechanical and crystallinity properties of nylon 6, 6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon. Materials, 6(8), 3494-3513.
  • Li, Y., Huang Z., and Lǚ Y., (2006), Electrospinning of nylon-6, 66, 1010 terpolymer. European polymer journal, 42(7), 1696-1704.
  • Van der Schueren, L., et al., (2011), An alternative solvent system for the steady state electrospinning of polycaprolactone. European Polymer Journal, 47(6),1256-1263.
  • Lee, K., et al., (2003), Characterization of nano-structured poly (ε-caprolactone) nonwoven mats via electrospinning. Polymer, 44(4), 1287-1294.
  • Shawon, J. and Sung C., (2004) Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF. Journal of materials science, 39(14), 4605-4613.
  • Han, S.O., et al., (2008), Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effects of solvent composition on the fiber diameter. Materials Letters, 62(4-5), 759-762.
  • Tungprapa, S., et al., (2007), Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose, 14(6),563-575.32. Celebioglu, A. and Uyar T., (2011), Electrospun porous cellulose acetate fibers from volatile solvent mixture. Materials Letters, 65(14), 2291-2294.
  • Luo, C., Nangrejo M., and Edirisinghe M., (2010), A novel method of selecting solvents for polymer electrospinning. Polymer, 51(7), 1654-1662.
  • Erdem, R., et al., (2015), The impact of solvent type and mixing ratios of solvents on the properties of polyurethane based electrospun nanofibers. Applied Surface Science, 2015. 334: p. 227-230.
  • Qi, Z., et al., (2009), Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly (l-lactic acid). Materials Letters, 63(3-4), 415-418.
  • Nirmala, R., et al., (2010), Effect of solvents on high aspect ratio polyamide-6 nanofibers via electrospinning. Macromolecular research, 18(8), 759-765.
  • Qian, Y.-F., et al., (2010), Electrospinning of polymethyl methacrylate nanofibres in different solvents. 2010.
  • Huang, Z.-M., et al., (2004), Electrospinning and mechanical characterization of gelatin nanofibers. Polymer, 45(15), 5361-5368.
  • Baji, A., et al., (2010), Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Composites science and technology, 70(5), 703-718.
  • Abbasi, A., et al., (2014), Electrospinning of nylon-6, 6 solutions into nanofibers: rheology and morphology relationships. Chinese Journal of Polymer Science, 32(6), 793-804.

Mechanical Properties Of Nylon 6,6 Nanofiber Membranes

Yıl 2018, Cilt: 25 Sayı: 112, 286 - 291, 31.12.2018

Öz

 Nylon 6,6 nanofiber membranes were produced by electrospinning
technique and mechanical properties of the nylon 6,6 membranes prepared with
different solvent systems were investigated. Nylon 6,6 solutions were prepared
by dissolving nylon 6,6 in the solvent system of formic acid/trifluoroethyl
alcohol with the ratios of 50/50, 75/25 and 100/0 (v/v). Results showed that
solvent type has a pronounced effect on average fiber diameters and mechanical
properties. Increasing formic acid led to lower average fiber diameters and
enhanced mechanical strength. The nylon 6,6 membrane prepared by using formic
acid exhibited the tensile strength of about 20 MPa with the average fiber
diameter of about 400 nm.

Kaynakça

  • Ayaz O, Uçar N, Bahar E., Oksuz M., Ucar M., Onen A., Demir A., Wang Y. (2012), "Production And Analysis of Composite Nanofiber And Heat Applied Nanofiber".Tekstil ve Mühendis, 19(85) 6-9.
  • Çallioğlu, F.C. and Jirsak O. (2013), "The Effect of Polymer and Salt Concentration on Fiber Properties in Electrospinning of Polyurethane Nanofibers" Tekstil ve Mühendis, 20 (90) 1-6.
  • Lee, H., et al., (2014), A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 7(12), 3857-3886.
  • Zhang, X., et al. (2011), Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polymer Reviews, 51(3) 239-264.
  • Erdem, R. and Erdem, Ö., (2017), Investigation the Morphological and Luminescence Properties of Ligand Doped Polyurethane Nanofibers Produced by Electrospinning. Tekstil ve Mühendis 24 (105), 18-24.
  • Pant, H.R., et al. (2010), Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects,.370(1-3), p. 87-94.
  • Bagheri, H. and Aghakhani A. (2012), Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction. Analytica chimica acta, 713, 63-69.
  • Beachley, V. and Wen X., (2009) Effect of electrospinning parameters on the nanofiber diameter and length. Materials Science and Engineering: C, 29(3), 663-668.
  • Pillay, V., et al., (2013), A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials.
  • Son, W.K., et al., (2004), The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers. Polymer, 45(9), 2959-2966.
  • Casasola, R., et al., (2014), Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer 55(18), 4728-4737.
  • Chuangchote, S., Sagawa T., and Yoshikawa S., (2009), Electrospinning of poly (vinyl pyrrolidone): Effects of solvents on electrospinnability for the fabrication of poly (p‐phenylene vinylene) and TiO2 nanofibers. Journal of applied polymer science, 114(5), 2777-2791.
  • Jarusuwannapoom, T., et al., (2005), Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. European Polymer Journal, 41(3), 409-421.
  • Choktaweesap, N., et al. (2007), Electrospun gelatin fibers: effect of solvent system on morphology and fiber diameters. Polymer Journal, 39(6), 622-631.
  • Mit‐uppatham, C., Nithitanakul M., and Supaphol P., (2004), Ultrafine electrospun polyamide‐6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromolecular Chemistry and Physics, 205(17), 2327-2338.
  • Yanilmaz, M., Dirican M., and Zhang X, (2014). Evaluation of electrospun SiO 2/nylon 6, 6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochimica Acta, 133, 501-508.
  • Pant, H.R., et al., (2011), Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: a multifunctional nanocomposite textile material. Journal of hazardous materials, 185(1), 124-130.
  • Palazzetti, R., Zucchelli A., and Trendafilova I., (2013), The self-reinforcing effect of Nylon 6, 6 nano-fibres on CFRP laminates subjected to low velocity impact. Composite Structures, 106, 661-671.
  • Shrestha, B.K., et al., (2016), Development of polyamide-6, 6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application. Carbohydrate Polymers, 148,107-114.
  • Yanilmaz, M., et al., (2017), High-strength, thermally stable nylon 6, 6 composite nanofiber separators for lithium-ion batteries. Journal of Materials Science, 52(9), 5232-5241.
  • Matulevicius, J., et al., (2016), The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. Journal of Aerosol Science, 92, 27-37.
  • Huang, L. and McCutcheon J.R., (2014) Hydrophilic nylon 6, 6 nanofibers supported thin film composite membranes for engineered osmosis. Journal of membrane science, 457, 162-169.
  • Jeong, J., et al., (2006), Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning. Diamond and related materials, 15 (11-12), 1839-1843.
  • Choi, J., et al., (2010), MWCNT–OH adsorbed electrospun nylon 6, 6 nanofibers chemiresistor and their application in low molecular weight alcohol vapours sensing. Synthetic Metals, 160 (23-24), 2664-2669.
  • Navarro-Pardo, F., et al., (2013), Effects on the thermo-mechanical and crystallinity properties of nylon 6, 6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon. Materials, 6(8), 3494-3513.
  • Li, Y., Huang Z., and Lǚ Y., (2006), Electrospinning of nylon-6, 66, 1010 terpolymer. European polymer journal, 42(7), 1696-1704.
  • Van der Schueren, L., et al., (2011), An alternative solvent system for the steady state electrospinning of polycaprolactone. European Polymer Journal, 47(6),1256-1263.
  • Lee, K., et al., (2003), Characterization of nano-structured poly (ε-caprolactone) nonwoven mats via electrospinning. Polymer, 44(4), 1287-1294.
  • Shawon, J. and Sung C., (2004) Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF. Journal of materials science, 39(14), 4605-4613.
  • Han, S.O., et al., (2008), Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effects of solvent composition on the fiber diameter. Materials Letters, 62(4-5), 759-762.
  • Tungprapa, S., et al., (2007), Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose, 14(6),563-575.32. Celebioglu, A. and Uyar T., (2011), Electrospun porous cellulose acetate fibers from volatile solvent mixture. Materials Letters, 65(14), 2291-2294.
  • Luo, C., Nangrejo M., and Edirisinghe M., (2010), A novel method of selecting solvents for polymer electrospinning. Polymer, 51(7), 1654-1662.
  • Erdem, R., et al., (2015), The impact of solvent type and mixing ratios of solvents on the properties of polyurethane based electrospun nanofibers. Applied Surface Science, 2015. 334: p. 227-230.
  • Qi, Z., et al., (2009), Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly (l-lactic acid). Materials Letters, 63(3-4), 415-418.
  • Nirmala, R., et al., (2010), Effect of solvents on high aspect ratio polyamide-6 nanofibers via electrospinning. Macromolecular research, 18(8), 759-765.
  • Qian, Y.-F., et al., (2010), Electrospinning of polymethyl methacrylate nanofibres in different solvents. 2010.
  • Huang, Z.-M., et al., (2004), Electrospinning and mechanical characterization of gelatin nanofibers. Polymer, 45(15), 5361-5368.
  • Baji, A., et al., (2010), Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Composites science and technology, 70(5), 703-718.
  • Abbasi, A., et al., (2014), Electrospinning of nylon-6, 6 solutions into nanofibers: rheology and morphology relationships. Chinese Journal of Polymer Science, 32(6), 793-804.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Meltem Yanılmaz 0000-0003-0562-5715

Yayımlanma Tarihi 31 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 25 Sayı: 112

Kaynak Göster

APA Yanılmaz, M. (2018). Mechanical Properties Of Nylon 6,6 Nanofiber Membranes. Tekstil Ve Mühendis, 25(112), 286-291.
AMA Yanılmaz M. Mechanical Properties Of Nylon 6,6 Nanofiber Membranes. Tekstil ve Mühendis. Aralık 2018;25(112):286-291.
Chicago Yanılmaz, Meltem. “Mechanical Properties Of Nylon 6,6 Nanofiber Membranes”. Tekstil Ve Mühendis 25, sy. 112 (Aralık 2018): 286-91.
EndNote Yanılmaz M (01 Aralık 2018) Mechanical Properties Of Nylon 6,6 Nanofiber Membranes. Tekstil ve Mühendis 25 112 286–291.
IEEE M. Yanılmaz, “Mechanical Properties Of Nylon 6,6 Nanofiber Membranes”, Tekstil ve Mühendis, c. 25, sy. 112, ss. 286–291, 2018.
ISNAD Yanılmaz, Meltem. “Mechanical Properties Of Nylon 6,6 Nanofiber Membranes”. Tekstil ve Mühendis 25/112 (Aralık 2018), 286-291.
JAMA Yanılmaz M. Mechanical Properties Of Nylon 6,6 Nanofiber Membranes. Tekstil ve Mühendis. 2018;25:286–291.
MLA Yanılmaz, Meltem. “Mechanical Properties Of Nylon 6,6 Nanofiber Membranes”. Tekstil Ve Mühendis, c. 25, sy. 112, 2018, ss. 286-91.
Vancouver Yanılmaz M. Mechanical Properties Of Nylon 6,6 Nanofiber Membranes. Tekstil ve Mühendis. 2018;25(112):286-91.