Derleme
BibTex RIS Kaynak Göster

Hidrofobinler: Çevre Dostu Kimyasallar ve Tekstilde Uygulamaları

Yıl 2018, Cilt: 25 Sayı: 112, 362 - 369, 31.12.2018

Öz

 Hidrofobinler, birkaç
nanometre çapında, yarısı hidrofil diğer yarısı hidrofob yapıda olan küresel
proteinlerdir. Ayrıca lifli mantarların protein amfifilleri (hem hidrofil hem
de hidrofob özellik taşıyan kimyasal bileşik) olarak da tanımlanırlar. Son
zamanlarda hidrofobin kullanımı belirgin bir artış göstermekle birlikte
tekstildeki uygulamaları henüz sınırlıdır. Moleküler yapıları ve kendi kendine
birleşme mekanizmaları sayesinde çeşitli yüzey uygulamalarında kullanımları
mümkün olup yapışma, yüzey modifikasyonu veya yüzey aktif benzeri özellikleri ile
tekstil malzemeleri için uygundur. Özellikle tekstil yaş kimyasal işlemlerinde
hidrofobinler, toksik olmayan çevre dostu bir malzeme olarak kullanım alanı
bulmuştur. Bu amaçla tekstil malzemelerinin fonksiyonel özelliklerini
geliştirmede hidrofobinlerin kullanımı üzerine yapılmış çalışmalar
araştırılmıştır.

Kaynakça

  • Wessels, J.G.H., de Vries, O.M.H., Asgeirsdottir, S.A. and Springer, J. (1991), The thn Mutation of Schizophyllum Commune, which Suppresses Formation of Aerial Hyphae, Affects Expression of The Sc3 Hydrophobin Gene. Journal of General Microbiology, 137, 2439–2445.
  • Wessels, J.G.H., de Vries, O.M.H., Asgeirsdottir, S.A., Schuren, F.H.J., (1991), Hydrophobin Genes Involved in Formation of Aerial Hyphae and Fruit Bodies in Schizophyllum, Plant Cell, 3:793-799.
  • Sunde, M., Kwan A.H.Y., Templeton, M.D., Beever R.E., Mackay, J.P., (2008), Structural Analysis of Hydrophobins, Micron 39, 773–784.
  • Janssen M.I., van Leeuwen M.B.M., van Kooten T.G., de Vries, J., Dijkhuizen L., Wösten H.A.B., (2004), Promotion of Fibroblast Activity by Coating with Hydrophobins in the Β-Sheet End State, Biomaterials 25, 2731–2739.
  • Wei Q., (2009), Surface Modification of Textiles, Woodhead Publishing Limited and CRC Press LLC, 139-163.
  • Linder, M.B., Szilvay, G.R., Nakari-Setala, T., Penttila, M.E., (2005), Hydrophobins: The Protein-Amphiphiles of Filamentous Fungi, FEMS Microbiology Reviews 29, 877–896.
  • Linder M.B., (2009), Hydrophobins: Proteins that Self Assemble at Interfaces, Current Opinion in Colloid & Interface Science 14, 356–363.
  • Scholtmeijer, K., Wessels, J.G.H., Wösten, H.A.B., (2001), Fungal Hydrophobins in Medical and Technical Applications, Applied Microbiology and Biotechnology, 56, 1–8.
  • Wösten, H.A.B., Scholtmeijer, K., (2015), Applications of Hydrophobins: Current State and Perspectives, Applied Microbiology and Biotechnology, 99, 1587–1597.
  • Opwis, K., ve Gutmann, J.S., (2011), Surface Modification of Textile Materials with Hydrophobins, Textile Research Journal, 81, 1594.
  • Hektor, H.J. ve Scholtmeijer, K., (2005), Hydrophobins: Proteins with Potential, Current Opinion in Biotechnology, 16, 434–439.
  • Malucelli, G., Bosco, F., Alongi, J., Carosio, F., Di Blasio, A., Mollea, C., Cuttica, F., ve Casale, A., (2014), Biomacromolecules as Novel Green Flame Retardant Systems for Textiles: an Overview, RSC Advances, 4, 46024–46039.
  • Wessels J.G.H., (1994), Developmental Regulation of Fungal Cell Wall Formation, Annual Review of Phytopathology, 32, 413–37.
  • de Vries, O.M., Fekkes, M.P., Wösten, H.A.B., Wessels, J.G., (1993), Insoluble Hydrophobin Complexes in the Walls of Schizophyllum Commune and Other Filamentous Fungi, Archives of Microbiology, 159, 330-335.
  • Bayry, J., Aimanianda, V., Guijarro, J.I., Sunde M., Latge, J.P., (2012), Hydrophobins-Unique Fungal Proteins, PLoS Pathogens, 8(5): e1002700.
  • Wessels, J.G.H., (1997), Hydrophobins: Proteins That Change the Nature of the Fungal Surface, Advances in Microbial Physiology, 38, 1-45.
  • Wösten, H.A.B., (2001), Hydrophobins: Multipurpose Proteins, Annual Review of Microbiology, 55, 625–646.
  • Wessels, J.G.H., (1996), Fungal Hydrophobins: Proteins That Function at an Interface, Trends in Plant Science, 1(1), 9-15.
  • Scholtmeijer, K., Janssen, M.I., Gerssen, B., de Vocht, M.L., van Leeuwen, B.M., van Kooten, T.G., Wösten, H.A.B. and Wessels, J.G.H., (2002), Surface Modifications Created by Using Engineered Hydrophobins, Applied and Environmental Microbiology, 1367–1373.
  • Gras, S.L. ve Claessen, D., (2014), Natural Products Analysis: Instrumentation, Methods, and Applications, Editörler, Vladimír Havlícek, Jaroslav Spízek, John Wiley & Sons, Inc., Hoboken, New Jersey, 573-600.
  • Wösten, H.A.B., de Vocht, M.L., (2000), Hydrophobins, the Fungal Coat Unravelled, Biochimica et Biophysica Acta, 1469, 79-86.
  • Lugones, L.G., Bosscher, J., Scholtmeyer, K., de Vries, O.M. H. veWessels, J. G. H., (1996), An Abundant Hydrophobin (ABHI) Forms Hydrophobic Rodlet Layers in Agarics Bisporus Fruiting Bodies, Microbiology, 142, 1321-1329.
  • Wösten, H.A.B., de Vries, O.M.H., Wessels, J.G.H., (1993), Interfacial Self Assembly of a Fungal Hydrophobin into a Hydrophobic Rodlet Layer, Plant Cell, 5, 1567-1574.
  • Wösten H.A.B, ve Willey J.M., (2000), Surface-Active Proteins Enable Microbial Aerial Hyphae to Grow into The Air, Microbiology 146, 767–773.
  • Wessels, J. G. H., (1999), Fungi in Their Own Right, Fungal Genetics and Biology, 27, 134−145.
  • Wösten, H. A. B., ve Wessels, J. G. H. (1997), Hydrophobins, from Molecular Structure to Multiple Functions in Fungal Development, Mycoscience, 38: 363–374.
  • Wösten, H.A.B., van Wetter, M-A, Lugones, L.G., van der Mei, H.C., Busscher, H.J., Wessels, J.G.H., (1999), How a Fungus Escapes the Water to Grow into the Air, Current Biology, 9, 85-88.
  • Wösten, H.A.B., Ruardy, T.G., van der Mei, H.C., Busscher, H.J., ve Wessels, J.G.H., (1995), Interfacial Self-Assembly of a Schizophyllum Commune Hydrophobin into an Insoluble Amphipathic Membrane Depends on Surface Hydrophobicity, Coll. Surf. B: Biointerfaces 5, 189-195.
  • Wösten, H.A.B., Schuren, F.H.J. ve Wessels, J.G.H. (1994), Interfacial Self-Assembly of a Hydrophobin into an Amphipathic Membrane Mediates Fungal Attachment to Hydrophobic Surfaces, EMBO Journal, 13, 5848-5854.
  • Wohlleben, W., Subkowski, T., Bollschweiler, C., von Vacano, B., Liu Y., Schrepp, W., Baus, U., (2010), Recombinantly Produced Hydrophobins from Fungal Analogues as Highly Surface-Active Performance Proteins, European Biophysics Journal, 39, 457–468.
  • Janssen M.I., van Leeuwen M.B.M., Scholtmeijer K., van Kooten T.G., Dijkhuizen L., Wösten H.A.B., (2002), Coating with Genetic Engineered Hydrophobin Promotes Growth of Fibroblasts on a Hydrophobic Solid, Biomaterials, 23(24), 4847–4854.
  • de Vocht, M.L., Reviakine, I., Ulrich, W.P., Bergsma-Schutter, W., Wösten, H.A.B., Vogel, H., Brisson, A., Wessels, J.G.H., Robillard, G.T., (2002), Self-assembly of the Hydrophobin SC3 Proceeds via two Structural Intermediates, Protein Science, 11, 1199–1205.
  • Wang, X., de Vocht, M.L., de Jonge, J., Poolman, B., and Robillard, G.T. (2002), Structural Changes and Molecular Interactions of Hydrophobin SC3 in Solution and on A Hydrophobic Surface, Protein Science, 11, 1172–1181.
  • Qin, M., Wang, L.K., Feng, X.Z., Yang, Y.L., Wang, R., Wang, C., Yu, L., Shao, B., Qiao, M.Q., (2007), Bioactive Surface Modification of Mica and Poly(Dimethylsiloxane) with Hydrophobins for Protein Immobilization, Langmuir, 23, 4465-4471.
  • Boeuf S., Throm T., Gutt B., Strunk T., Hoffmann M., Seebach E., Muhlberg L., Brocher J., Gotterbarm T., Wenzel W., Fischer R., Richter W. (2012), Engineering Hydrophobin DewA to Generate Surfaces that Enhance Adhesion of Human but not Bacterial Cells, ActaBiomaterialia, 8(3), 1037–1047.
  • Schönherr, M., Faust, T., Richter, U., Subkowski, T., Karos, M., (2012), Method for the Production of Dry Free-Flowing Hydrophobin Preparations, U.S. Patent No. 8,096,484.
  • Subkowski, T., Karos, M., Lemaire H.G., Barg, H., Bollschweiler, C., (2011), Hydrophobin Fusion Products, Production and Use Thereof, US 7,892,788.
  • de Vocht, M. L., Wosten, H.A. B., Wessels, J. G. H., (2003), Method of Treating a Surface of an Object with a Hydrophobin-Containing Solution, US 20030134042.
  • de Vocht, M. L., Wösten, H.A. B., Wessels, J. G. H., (2003), Method Of Purifying A Hydrophobin Present In A Hydrophobin-Containing Solution, US6903191.
  • Montag,T., Baus,U., Karos, M., Subkowski, T., Schwendemann, V., Baur, R., Mendera, C., Bollschweiler, C., Lemaire, H.G., Brodt, G., (2009), Method for Coating Fibre Substrate Surfaces, US20090117796.
  • Boeckh, D., Schwendemann, V., Baus,U., Montag,T., Karos, M., Subkowski, T., Bollschweiler, C., Lemaire, H.G., (2009), Use of Surface-Active Non-Enzymatic Proteins for Washing Textiles, US20090101167.
  • Carosio, F., Di Blasio, A., Cuttica, F., Alongi, J., Malucelli, G., (2014), Flame Retardancy of Polyester and Polyester-Cotton Blends Treated with Caseins, Industrial & Engineering Chemistry Research, 53, 3917–3923.
  • Alongi, J., Carletto, R.A., Bosco, F., Carosio, F., Di Blasio, A., Cuttica, F., Antonucci, V., Giordano, M., Malucelli, G., (2014), Caseins and Hydrophobins as Novel Green Flame Retardants for Cotton Fabrics, Polymer Degradation and Stability, 99, 111-117.
  • Bosco, F.; Carletto, R.A.; Alongi, J.; Marmo, L.; Di Blasio, A.; Malucelli, G. (2013), Thermal Stability and Flame Resistance of Cotton Fabrics Treated with Whey Proteins, Carbohydrate Polymer, 94, 372–377.
  • Alongi, J.; Carletto, R.A.; Di Blasio, A.; Carosio, F.; Bosco, F.; Malucelli, G. (2013), DNA: A novel, green, natural flame retardant and suppressant for cotton, Journal of Materials Chemistry A, 1, 4779–4785.
  • Alongi, J.; Carletto, R.A.; Di Blasio, A.; Cuttica, F.; Carosio, F.; Bosco, F.; Malucelli, G. (2013), Intrinsic Intumescent-Like Flame Retardant Properties of DNA-Treated Cotton Fabrics, Carbohydrate Polymer, 96, 296–304.
  • Alongi, J., Bosco, F., Carosio, F., Di Blasio, A., Malucelli, G., (2014), A New Era for Flame Retardant Materials? Think proteins and nucleic acids, and flame proofing might not spring to mind. But recent research suggests biomacromolecules may play a part in the future of textile flame retardation, Materials Today, 17(4), 152-153.
  • Malucelli, G., (2016), Layer-by-Layer Nanostructured Assemblies for the Fire Protection of Fabrics, Materials Letters, 166, 339–342.
  • Salmeia, K.A., Gaan, S., ve Malucelli, G., (2016), Recent Advances for Flame Retardancy of Textiles Based on Phosphorus Chemistry, Polymers, 8, 319.
  • Basak, S., Ali S.W., (2016), Sustainable Fire Retardancy of Textiles Using Bio-Macromolecules, Polymer Degradation and Stability 133, 47-64.
  • Popescu, A.C., Stan, G.E., Duta, L., Dorcioman, G., Iordache, O., Dumitrescu, I., Pasuk, I., Mihailescu, I.N., (2013), Influence of a Hydrophobin Underlayer on The Structuring and Antimicrobial Properties of ZnO Films, Journal of Materials Science, 48, 8329–8336.
  • Dumitrescu, I., Iordache, O.G., Mocioiu, A.M., Nicula, G., (2013), Antimicrobial Functionalization of Textile Materials with Hydrophobins and Ag/ZnO Composite Nanopowders, IndustriaTextila, 64(6), 303- 312. Mahltig, B. (2015). Hydrophobic and Oleophobic Finishes for Textiles, Functional finishes for Textiles Improving Comfort, Performance and Protection, Paul, R. (Editör), Woodhead Publishing, 387–428.
  • Ezechiáš, M., Covino, S., Cajthaml, T., (2014), Ecotoxicity and Biodegradability of New Brominated Flame Retardants: A review, Ecotoxicology and Environmental Safety 110, 153–167.
  • Hendriks, H.S., Westerink, R.H.S., (2015), Neurotoxicity and Risk Assessment of Brominated and Alternative Flame Retardants, Neurotoxicology and Teratology, 52, 248–269.
  • van der Veen, I., de Boer, J., (2012), Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis, Chemosphere 88, 1119–1153.
  • Horrocks, A. R., (2011), Flame Retardant Challenges for Textiles and Fibres: New Chemistry versus Innovatory Solutions, Polymer Degradation and Stability 96, 377-392.
  • Magovac, E., Bischof, S., (2015), Non-halogen FR Treatment of Cellulosic Textiles, Tekstil, 64 (9-10), 298-309.
  • Malucelli, G., (2015), Biomacromolecules as Effective Green Flame Retardants for Textiles: An Overview, International Journal of Energy, Environment, and Economics, 23(4/5), 663-683.
  • Samanta, K.K., Basak, S. ve Chattopadhyay, S.K., (2017), Sustainable Dyeing and Finishing of Textiles Using Natural Ingredients and Water-Free Technologies, Textiles and Clothing Sustainability, Editör, Muthu S.S., Springer, 99-131.
  • Duta, L., Popescu, A.C., Zgura, I., Preda, N. and Mihailescu, I.N., (2015), Wettability of Nanostructured Surfaces, Wetting and Wettability, Editör, Mahmood Aliofkhazraei, InTech, DOI: 10.5772/60808. Available from: https://www.intechopen.com/books/wetting-and-wettability/wettability-of-nanostructured-surfaces.

Hydrophobins: Eco-Friendly Chemicals and Textile Applications

Yıl 2018, Cilt: 25 Sayı: 112, 362 - 369, 31.12.2018

Öz

Hydrophobins
are spherical proteins with a few nanometers in diameter, a hydrophilic half and
a hydrophobic half. They are also referred to as protein amphiphiles of
filamentous fungi. In recent years, the use of hydrophobins has increased
noticeably, but the textile applications are still limited. Due to its
molecular structure and self-assembly mechanisms it is possible to use them on
various surface treatments and suitable for textile materials with adhesion,
surface modification or surfactant-like properties. Especially in textiles wet
chemical processes; hydrophobins have found an area for using as a non-toxic eco-friendly
material. For this purpose, studies on the usage of hydrophobins to improve the
functional properties of textile materials have been investigated.

Kaynakça

  • Wessels, J.G.H., de Vries, O.M.H., Asgeirsdottir, S.A. and Springer, J. (1991), The thn Mutation of Schizophyllum Commune, which Suppresses Formation of Aerial Hyphae, Affects Expression of The Sc3 Hydrophobin Gene. Journal of General Microbiology, 137, 2439–2445.
  • Wessels, J.G.H., de Vries, O.M.H., Asgeirsdottir, S.A., Schuren, F.H.J., (1991), Hydrophobin Genes Involved in Formation of Aerial Hyphae and Fruit Bodies in Schizophyllum, Plant Cell, 3:793-799.
  • Sunde, M., Kwan A.H.Y., Templeton, M.D., Beever R.E., Mackay, J.P., (2008), Structural Analysis of Hydrophobins, Micron 39, 773–784.
  • Janssen M.I., van Leeuwen M.B.M., van Kooten T.G., de Vries, J., Dijkhuizen L., Wösten H.A.B., (2004), Promotion of Fibroblast Activity by Coating with Hydrophobins in the Β-Sheet End State, Biomaterials 25, 2731–2739.
  • Wei Q., (2009), Surface Modification of Textiles, Woodhead Publishing Limited and CRC Press LLC, 139-163.
  • Linder, M.B., Szilvay, G.R., Nakari-Setala, T., Penttila, M.E., (2005), Hydrophobins: The Protein-Amphiphiles of Filamentous Fungi, FEMS Microbiology Reviews 29, 877–896.
  • Linder M.B., (2009), Hydrophobins: Proteins that Self Assemble at Interfaces, Current Opinion in Colloid & Interface Science 14, 356–363.
  • Scholtmeijer, K., Wessels, J.G.H., Wösten, H.A.B., (2001), Fungal Hydrophobins in Medical and Technical Applications, Applied Microbiology and Biotechnology, 56, 1–8.
  • Wösten, H.A.B., Scholtmeijer, K., (2015), Applications of Hydrophobins: Current State and Perspectives, Applied Microbiology and Biotechnology, 99, 1587–1597.
  • Opwis, K., ve Gutmann, J.S., (2011), Surface Modification of Textile Materials with Hydrophobins, Textile Research Journal, 81, 1594.
  • Hektor, H.J. ve Scholtmeijer, K., (2005), Hydrophobins: Proteins with Potential, Current Opinion in Biotechnology, 16, 434–439.
  • Malucelli, G., Bosco, F., Alongi, J., Carosio, F., Di Blasio, A., Mollea, C., Cuttica, F., ve Casale, A., (2014), Biomacromolecules as Novel Green Flame Retardant Systems for Textiles: an Overview, RSC Advances, 4, 46024–46039.
  • Wessels J.G.H., (1994), Developmental Regulation of Fungal Cell Wall Formation, Annual Review of Phytopathology, 32, 413–37.
  • de Vries, O.M., Fekkes, M.P., Wösten, H.A.B., Wessels, J.G., (1993), Insoluble Hydrophobin Complexes in the Walls of Schizophyllum Commune and Other Filamentous Fungi, Archives of Microbiology, 159, 330-335.
  • Bayry, J., Aimanianda, V., Guijarro, J.I., Sunde M., Latge, J.P., (2012), Hydrophobins-Unique Fungal Proteins, PLoS Pathogens, 8(5): e1002700.
  • Wessels, J.G.H., (1997), Hydrophobins: Proteins That Change the Nature of the Fungal Surface, Advances in Microbial Physiology, 38, 1-45.
  • Wösten, H.A.B., (2001), Hydrophobins: Multipurpose Proteins, Annual Review of Microbiology, 55, 625–646.
  • Wessels, J.G.H., (1996), Fungal Hydrophobins: Proteins That Function at an Interface, Trends in Plant Science, 1(1), 9-15.
  • Scholtmeijer, K., Janssen, M.I., Gerssen, B., de Vocht, M.L., van Leeuwen, B.M., van Kooten, T.G., Wösten, H.A.B. and Wessels, J.G.H., (2002), Surface Modifications Created by Using Engineered Hydrophobins, Applied and Environmental Microbiology, 1367–1373.
  • Gras, S.L. ve Claessen, D., (2014), Natural Products Analysis: Instrumentation, Methods, and Applications, Editörler, Vladimír Havlícek, Jaroslav Spízek, John Wiley & Sons, Inc., Hoboken, New Jersey, 573-600.
  • Wösten, H.A.B., de Vocht, M.L., (2000), Hydrophobins, the Fungal Coat Unravelled, Biochimica et Biophysica Acta, 1469, 79-86.
  • Lugones, L.G., Bosscher, J., Scholtmeyer, K., de Vries, O.M. H. veWessels, J. G. H., (1996), An Abundant Hydrophobin (ABHI) Forms Hydrophobic Rodlet Layers in Agarics Bisporus Fruiting Bodies, Microbiology, 142, 1321-1329.
  • Wösten, H.A.B., de Vries, O.M.H., Wessels, J.G.H., (1993), Interfacial Self Assembly of a Fungal Hydrophobin into a Hydrophobic Rodlet Layer, Plant Cell, 5, 1567-1574.
  • Wösten H.A.B, ve Willey J.M., (2000), Surface-Active Proteins Enable Microbial Aerial Hyphae to Grow into The Air, Microbiology 146, 767–773.
  • Wessels, J. G. H., (1999), Fungi in Their Own Right, Fungal Genetics and Biology, 27, 134−145.
  • Wösten, H. A. B., ve Wessels, J. G. H. (1997), Hydrophobins, from Molecular Structure to Multiple Functions in Fungal Development, Mycoscience, 38: 363–374.
  • Wösten, H.A.B., van Wetter, M-A, Lugones, L.G., van der Mei, H.C., Busscher, H.J., Wessels, J.G.H., (1999), How a Fungus Escapes the Water to Grow into the Air, Current Biology, 9, 85-88.
  • Wösten, H.A.B., Ruardy, T.G., van der Mei, H.C., Busscher, H.J., ve Wessels, J.G.H., (1995), Interfacial Self-Assembly of a Schizophyllum Commune Hydrophobin into an Insoluble Amphipathic Membrane Depends on Surface Hydrophobicity, Coll. Surf. B: Biointerfaces 5, 189-195.
  • Wösten, H.A.B., Schuren, F.H.J. ve Wessels, J.G.H. (1994), Interfacial Self-Assembly of a Hydrophobin into an Amphipathic Membrane Mediates Fungal Attachment to Hydrophobic Surfaces, EMBO Journal, 13, 5848-5854.
  • Wohlleben, W., Subkowski, T., Bollschweiler, C., von Vacano, B., Liu Y., Schrepp, W., Baus, U., (2010), Recombinantly Produced Hydrophobins from Fungal Analogues as Highly Surface-Active Performance Proteins, European Biophysics Journal, 39, 457–468.
  • Janssen M.I., van Leeuwen M.B.M., Scholtmeijer K., van Kooten T.G., Dijkhuizen L., Wösten H.A.B., (2002), Coating with Genetic Engineered Hydrophobin Promotes Growth of Fibroblasts on a Hydrophobic Solid, Biomaterials, 23(24), 4847–4854.
  • de Vocht, M.L., Reviakine, I., Ulrich, W.P., Bergsma-Schutter, W., Wösten, H.A.B., Vogel, H., Brisson, A., Wessels, J.G.H., Robillard, G.T., (2002), Self-assembly of the Hydrophobin SC3 Proceeds via two Structural Intermediates, Protein Science, 11, 1199–1205.
  • Wang, X., de Vocht, M.L., de Jonge, J., Poolman, B., and Robillard, G.T. (2002), Structural Changes and Molecular Interactions of Hydrophobin SC3 in Solution and on A Hydrophobic Surface, Protein Science, 11, 1172–1181.
  • Qin, M., Wang, L.K., Feng, X.Z., Yang, Y.L., Wang, R., Wang, C., Yu, L., Shao, B., Qiao, M.Q., (2007), Bioactive Surface Modification of Mica and Poly(Dimethylsiloxane) with Hydrophobins for Protein Immobilization, Langmuir, 23, 4465-4471.
  • Boeuf S., Throm T., Gutt B., Strunk T., Hoffmann M., Seebach E., Muhlberg L., Brocher J., Gotterbarm T., Wenzel W., Fischer R., Richter W. (2012), Engineering Hydrophobin DewA to Generate Surfaces that Enhance Adhesion of Human but not Bacterial Cells, ActaBiomaterialia, 8(3), 1037–1047.
  • Schönherr, M., Faust, T., Richter, U., Subkowski, T., Karos, M., (2012), Method for the Production of Dry Free-Flowing Hydrophobin Preparations, U.S. Patent No. 8,096,484.
  • Subkowski, T., Karos, M., Lemaire H.G., Barg, H., Bollschweiler, C., (2011), Hydrophobin Fusion Products, Production and Use Thereof, US 7,892,788.
  • de Vocht, M. L., Wosten, H.A. B., Wessels, J. G. H., (2003), Method of Treating a Surface of an Object with a Hydrophobin-Containing Solution, US 20030134042.
  • de Vocht, M. L., Wösten, H.A. B., Wessels, J. G. H., (2003), Method Of Purifying A Hydrophobin Present In A Hydrophobin-Containing Solution, US6903191.
  • Montag,T., Baus,U., Karos, M., Subkowski, T., Schwendemann, V., Baur, R., Mendera, C., Bollschweiler, C., Lemaire, H.G., Brodt, G., (2009), Method for Coating Fibre Substrate Surfaces, US20090117796.
  • Boeckh, D., Schwendemann, V., Baus,U., Montag,T., Karos, M., Subkowski, T., Bollschweiler, C., Lemaire, H.G., (2009), Use of Surface-Active Non-Enzymatic Proteins for Washing Textiles, US20090101167.
  • Carosio, F., Di Blasio, A., Cuttica, F., Alongi, J., Malucelli, G., (2014), Flame Retardancy of Polyester and Polyester-Cotton Blends Treated with Caseins, Industrial & Engineering Chemistry Research, 53, 3917–3923.
  • Alongi, J., Carletto, R.A., Bosco, F., Carosio, F., Di Blasio, A., Cuttica, F., Antonucci, V., Giordano, M., Malucelli, G., (2014), Caseins and Hydrophobins as Novel Green Flame Retardants for Cotton Fabrics, Polymer Degradation and Stability, 99, 111-117.
  • Bosco, F.; Carletto, R.A.; Alongi, J.; Marmo, L.; Di Blasio, A.; Malucelli, G. (2013), Thermal Stability and Flame Resistance of Cotton Fabrics Treated with Whey Proteins, Carbohydrate Polymer, 94, 372–377.
  • Alongi, J.; Carletto, R.A.; Di Blasio, A.; Carosio, F.; Bosco, F.; Malucelli, G. (2013), DNA: A novel, green, natural flame retardant and suppressant for cotton, Journal of Materials Chemistry A, 1, 4779–4785.
  • Alongi, J.; Carletto, R.A.; Di Blasio, A.; Cuttica, F.; Carosio, F.; Bosco, F.; Malucelli, G. (2013), Intrinsic Intumescent-Like Flame Retardant Properties of DNA-Treated Cotton Fabrics, Carbohydrate Polymer, 96, 296–304.
  • Alongi, J., Bosco, F., Carosio, F., Di Blasio, A., Malucelli, G., (2014), A New Era for Flame Retardant Materials? Think proteins and nucleic acids, and flame proofing might not spring to mind. But recent research suggests biomacromolecules may play a part in the future of textile flame retardation, Materials Today, 17(4), 152-153.
  • Malucelli, G., (2016), Layer-by-Layer Nanostructured Assemblies for the Fire Protection of Fabrics, Materials Letters, 166, 339–342.
  • Salmeia, K.A., Gaan, S., ve Malucelli, G., (2016), Recent Advances for Flame Retardancy of Textiles Based on Phosphorus Chemistry, Polymers, 8, 319.
  • Basak, S., Ali S.W., (2016), Sustainable Fire Retardancy of Textiles Using Bio-Macromolecules, Polymer Degradation and Stability 133, 47-64.
  • Popescu, A.C., Stan, G.E., Duta, L., Dorcioman, G., Iordache, O., Dumitrescu, I., Pasuk, I., Mihailescu, I.N., (2013), Influence of a Hydrophobin Underlayer on The Structuring and Antimicrobial Properties of ZnO Films, Journal of Materials Science, 48, 8329–8336.
  • Dumitrescu, I., Iordache, O.G., Mocioiu, A.M., Nicula, G., (2013), Antimicrobial Functionalization of Textile Materials with Hydrophobins and Ag/ZnO Composite Nanopowders, IndustriaTextila, 64(6), 303- 312. Mahltig, B. (2015). Hydrophobic and Oleophobic Finishes for Textiles, Functional finishes for Textiles Improving Comfort, Performance and Protection, Paul, R. (Editör), Woodhead Publishing, 387–428.
  • Ezechiáš, M., Covino, S., Cajthaml, T., (2014), Ecotoxicity and Biodegradability of New Brominated Flame Retardants: A review, Ecotoxicology and Environmental Safety 110, 153–167.
  • Hendriks, H.S., Westerink, R.H.S., (2015), Neurotoxicity and Risk Assessment of Brominated and Alternative Flame Retardants, Neurotoxicology and Teratology, 52, 248–269.
  • van der Veen, I., de Boer, J., (2012), Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis, Chemosphere 88, 1119–1153.
  • Horrocks, A. R., (2011), Flame Retardant Challenges for Textiles and Fibres: New Chemistry versus Innovatory Solutions, Polymer Degradation and Stability 96, 377-392.
  • Magovac, E., Bischof, S., (2015), Non-halogen FR Treatment of Cellulosic Textiles, Tekstil, 64 (9-10), 298-309.
  • Malucelli, G., (2015), Biomacromolecules as Effective Green Flame Retardants for Textiles: An Overview, International Journal of Energy, Environment, and Economics, 23(4/5), 663-683.
  • Samanta, K.K., Basak, S. ve Chattopadhyay, S.K., (2017), Sustainable Dyeing and Finishing of Textiles Using Natural Ingredients and Water-Free Technologies, Textiles and Clothing Sustainability, Editör, Muthu S.S., Springer, 99-131.
  • Duta, L., Popescu, A.C., Zgura, I., Preda, N. and Mihailescu, I.N., (2015), Wettability of Nanostructured Surfaces, Wetting and Wettability, Editör, Mahmood Aliofkhazraei, InTech, DOI: 10.5772/60808. Available from: https://www.intechopen.com/books/wetting-and-wettability/wettability-of-nanostructured-surfaces.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Esra Topel Zeren Bu kişi benim 0000-0001-8683-1689

Aysun Akşit Bu kişi benim 0000-0002-6187-9288

Evren Sergin Bu kişi benim 0000-0002-9954-0394

Yayımlanma Tarihi 31 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 25 Sayı: 112

Kaynak Göster

APA Topel Zeren, E., Akşit, A., & Sergin, E. (2018). Hidrofobinler: Çevre Dostu Kimyasallar ve Tekstilde Uygulamaları. Tekstil Ve Mühendis, 25(112), 362-369.
AMA Topel Zeren E, Akşit A, Sergin E. Hidrofobinler: Çevre Dostu Kimyasallar ve Tekstilde Uygulamaları. Tekstil ve Mühendis. Aralık 2018;25(112):362-369.
Chicago Topel Zeren, Esra, Aysun Akşit, ve Evren Sergin. “Hidrofobinler: Çevre Dostu Kimyasallar Ve Tekstilde Uygulamaları”. Tekstil Ve Mühendis 25, sy. 112 (Aralık 2018): 362-69.
EndNote Topel Zeren E, Akşit A, Sergin E (01 Aralık 2018) Hidrofobinler: Çevre Dostu Kimyasallar ve Tekstilde Uygulamaları. Tekstil ve Mühendis 25 112 362–369.
IEEE E. Topel Zeren, A. Akşit, ve E. Sergin, “Hidrofobinler: Çevre Dostu Kimyasallar ve Tekstilde Uygulamaları”, Tekstil ve Mühendis, c. 25, sy. 112, ss. 362–369, 2018.
ISNAD Topel Zeren, Esra vd. “Hidrofobinler: Çevre Dostu Kimyasallar Ve Tekstilde Uygulamaları”. Tekstil ve Mühendis 25/112 (Aralık 2018), 362-369.
JAMA Topel Zeren E, Akşit A, Sergin E. Hidrofobinler: Çevre Dostu Kimyasallar ve Tekstilde Uygulamaları. Tekstil ve Mühendis. 2018;25:362–369.
MLA Topel Zeren, Esra vd. “Hidrofobinler: Çevre Dostu Kimyasallar Ve Tekstilde Uygulamaları”. Tekstil Ve Mühendis, c. 25, sy. 112, 2018, ss. 362-9.
Vancouver Topel Zeren E, Akşit A, Sergin E. Hidrofobinler: Çevre Dostu Kimyasallar ve Tekstilde Uygulamaları. Tekstil ve Mühendis. 2018;25(112):362-9.