Araştırma Makalesi
BibTex RIS Kaynak Göster

Alkali Ön-İşlemin Farklı Kumaş Örgüsündeki Lyocell Dokuma Kumaşların Görünüm ve Yapısal Özelliklerine Etkisi

Yıl 2019, Cilt: 26 Sayı: 113, 52 - 62, 26.03.2019

Öz

Selülozik liflerin alkali işlemi, tekstil prosesleri içerisinde boyama kabiliyetini arttırması ve yüzey özelliklerini iyileştirmesi bakımından önemli bir işlemdir. Alkali tipi ve konsantrasyonu, materyal formu, proses sıcaklığı ve kullanılan yardımcı kimyasallara bağlı olarak, Lyocell liflerinin mekanik ve yapısal özellikleri, yüzey görünümleri, renk özellikleri ve fibrilasyon eğilimleri değişmektedir. Bu çalışmada, farklı konsantrasyonlardaki alkali ön-işlemin, farklı kumaş örgüsündeki %100 Lyocell kumaşların fibrilasyon, aşınma ve boncuklanma gibi görünüm ve sıklık, kalınlık ve gramaj gibi yapısal özelliklerine etkileri incelenmiştir. Bu çalışmada gerçekleştirilen alkali ön-işlem, Lyocell liflerinin fibrilasyon eğilimini azaltmış, buna bağlı olarak da aşınma dayanımı artmış ve boncuklanma eğilimi azalmıştır. Alkali ön-işlem, Lyocell lif çapındaki artışa bağlı olarak kumaşlardaki ipliklerin hacmini arttırmış ve bükümünü açarak kumaşta büzülmeye neden olmuştur. Alkali konsantrasyonu arttıkça, her üç kumaş örgüsünde de çözgü ve atkı yönündeki sıklık değerleri, kumaş kalınlık ve gramajları artmıştır. 

Kaynakça

  • Gindl, W., Martinschitz, K. J., Boesecke, P., Keckes, J., (2006), Changes in the Molecular Orientation and Tensile Properties of Uniaxially Drawn Cellulose Films, Biomacromolecules, 7, 3146-3150.
  • Klemm, D., Heublein, B., Fink, H. P., Bohn, A., (2005), Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angewandte Chemie International Edition, 44(22), 3358-3393.
  • Mukhopadhyay, S. K., (1992), Advances in Fiber Science, The Textile Institute, Manchester, UK..
  • Shore, J., (1995), Cellulosics Dyeing, Society of Dyers and Colourists, Bradford, UK.
  • Franks, N. E., Varga, J. K., (1980), U.S. Patent, 4145532.
  • Broadbent, A. D., (2001). Basic Principles of Textile Coloration, Society of Dyers and Colourists, Bradford, UK.
  • Kreze, T., Malej, S., (2003), Structural Characteristics of New and Convetional Regenerated Cellulosic Fibers, Textile Research Journals, 73 (8), 675-684.
  • Smole, S. M., Persin, Z., Kreze, T., Kleinschek, K. S., Ribitsch, V., Neumayer, S., (2003), X-Ray Study of PreTreated Regenerated Cellulose Fibres, Materials Research Innovations, 7, 275-282.
  • Nicolai, M., Nechwatal, A., Mieck, K. P., (1996), Textile Crosslinking Reactions to Reduce the Fibrillation Tendency of Lyocell Fibers, Textile Research Journal, 66(9), 575-580.
  • Öztürk, H. B., Potthast, A., Rosenau, T., Abu-Rous, M., MacNaughtan, B., Schuster, C., Mitchell, J. R., Bechtold, T., (2009), Changes in the Intra- and Inter-Fibrillar Structure of Lyocell (TENCEL®) Fibers Caused by NaOH Treatment, Cellulose, 16, 37-52.
  • Zhang, W., Okubayashi, S., Bechtold, T., (2005), Fibrillation Tendency of Cellulosic Fibers-Part 3: Effects of Alkali Pretreatment of Lyocell Fiber, Carbohydrate Polymers, 59, 173-179.
  • Zhang, H., Shao, H., Hu, X., (2006), Effect of Heat Treatment on the Structure and Properties of Lyocell Fibers, Journal of Applied Polymer Science,101, 1738-1743.
  • Lenzing Group, http://www.stepitn.eu/wpcontent/uploads/2010/05/Bartsch_Lenzing_Group_Leading_ Fiber_Innovation.pdf, (Erişim tarihi: 30.05.2018).
  • Nemec, A., (1994), Fibrillation of Cellulosic Materials-Can Previous Literature offer Solution, Lenzinger Berichte, 9, 69-72.
  • Öztürk, B. H., Beckhtold, T., (2008), Splitting Tendency of Cellulosic Fibers. Part 3: Splitting Tendency of Viscose and Modal Fibers, Cellulose, 15,101-109.
  • Burrow, T. R, (2005), Recent Advances in Chemically Treated Lyocell Fibres, Lenzinger Berichte, 84, 110-115.
  • Nechwatal, A., Nicolai, M., Mieck, K. P., Heublein, B., Kuhne, G., Klemm D., (1999), Studies on the Wet Fibrillation of Lyocell Fibers, Angewandte Makromolekulare Chemie, 271, 84-92.
  • Renfrew, A. H. M., Phillips, D. A. S., (2003), Protection of Lyocell Fibres Against Fibrillation: Mode of Action of the Crosslinking Agent 2,4-Dichloro-6-(B-Sulphatoethylsulphonyl) Aniline-S-Triazine, Coloration Technolgy, 119: 116-120.
  • Perisamy, A. P., Khanum, M. R., (2012), Efffect of fibrillation on Pilling Tendency of Lyocell Fiber, Bangladesh Textile Today, 4, 31-39.
  • Zhang, S., Chen, C., Duan, C., Hu, H., Li, H., Li, J., Liu, J., Ma, X., Stavik, J., Ni, Y., (2018), Regenerated Cellulose by the Lyocell Process, A Brief Review of the Process and Properties, BioResources, 13, 4577-4592.
  • Goswami, P., Blackburn, R. S., El-Dessouky, H. M., Taylor, J., White, P., (2009), Effect of Sodium Hydroxide Pre-Treatment on the Optical and Structural Properties of Lyocell, European Polymer Journal, 45, 455-465.
  • Periyasamy, A. P., (2012), Effect of Alkali Pretreatment and Dyeing on Fibrillation Properties of Lyocell Fiber, RMUTP International Conference: Textiles & Fashion, 26 June, Bangkok, Thailand.
  • Okubayashi, S., Bechtold, T., (2005), Alkali Uptake and Swelling Behavior of Lyocell Fiber And Their Effects on Crosslinking Reaction, Cellulose, 12, 459-467.
  • Manian, A. P., Jaturapiree, A., Bechtold, T., (2018), Salt Sorption on Regenerated Cellulosic Fibers: Electrokinetic Measurements, Cellulose, 25, 3307-3314.
  • Xu, Y., Xu, Y., Yue, X., (2017), Changes of Hydrogen Bonding and Aggregation Structure of Cellulose Fiber due to Microwaveassisted Alkali Treatment and its Impacts on the Application as Fluff Pulp, Cellulose, 24, 967-976.
  • Fang, K., Hao, L., Hu, X., Shao, H., (2003), Ester Crosslinking Treatmen for Reducing the Fibrillation Tendency of Lyocell Fibers, Textile Research Journal, 73(11), 1013-1016.
  • Yolacan, G., (2009), Effects of Alkali Pre-treatment on Dye Exhaustion, Color Values, Color Fastness, Tensile and Surface Properties of Lyocell Yarns, Fibers and Polymers, 10(5), 625-635.
  • Manian, A. P., Aldred, A. K., Lenninger, M., (2017), Bechtold, T., Alkali Pretreatments and Crosslinking of Lyocell Fabrics, Cellulose, 24, 3991-4002.
  • TS 250 EN 1049-2, Birim Uzunluktaki İplik Sayısının Tayini, 1996.
  • ISO 5084, Tekstil ve Tekstil Mamullerinin Kalınlık Tayini, 1998.
  • ISO 6348, Kumaşların Birim Alan Kütlesinin Tayini, 1999.
  • TS EN ISO 12947-3, Martindale Metoduyla Kumaşların Aşınmaya Karşı Dayanımının Tayini- Kütle Kaybının Tayini, 2001.
  • TS EN ISO 12945-2, Kumaşlarda Yüzey Tüylenmesi ve Boncuklanma Yatkınlığının Tayini- Martindale Metodu, 2002.
  • Öztürk, H. B., Okubayashi, S., Bechtold, T., (2006). Splitting Tendency of Cellulosic Fibers - Part 1. The Effect of Shear Force on Mechanical Stability of Swollen Lyocell Fibers, Cellulose, 13(4), 393-402.

Effects of Alkali Pre-Treatment on the Appearance and Structural Properties of Lyocell Woven Fabrics with Different Weave Types

Yıl 2019, Cilt: 26 Sayı: 113, 52 - 62, 26.03.2019

Öz

Alkali process of cellulosic fibres is an important process in terms of improving dyeability and surface properties of fibres. Mechanical and structural properties, appearances, colours and fibrillation tendencies of Lyocell fibres change depending on types and concentration of  alkali,  material form, process temperature and  auxiliary chemicals used. In this study, effects of alkali pre-treatment at different concentrations on appearance as fibrillation, abrasion and pilling resistance and on structural properties as density, thickness and weight of 100% Lyocell fabrics in different weave types (plain, twill, ribs) are investigated. Alkali pre-treatment decreased the tendency of fibrillation of Lyocell fibres, resulting in increased abrasion resistance and reduced pilling tendencies. Alkali pre-treatment increased the volume of yarns in the fabric due to increase in the Lyocell fibre diameter and caused to open  twist spirals and shrinkage in the fabric. Warp and weft densities, fabric thickness and weight of Lyocell fabrics in all weave types increased by the increase in alkali concentrations. 

Kaynakça

  • Gindl, W., Martinschitz, K. J., Boesecke, P., Keckes, J., (2006), Changes in the Molecular Orientation and Tensile Properties of Uniaxially Drawn Cellulose Films, Biomacromolecules, 7, 3146-3150.
  • Klemm, D., Heublein, B., Fink, H. P., Bohn, A., (2005), Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angewandte Chemie International Edition, 44(22), 3358-3393.
  • Mukhopadhyay, S. K., (1992), Advances in Fiber Science, The Textile Institute, Manchester, UK..
  • Shore, J., (1995), Cellulosics Dyeing, Society of Dyers and Colourists, Bradford, UK.
  • Franks, N. E., Varga, J. K., (1980), U.S. Patent, 4145532.
  • Broadbent, A. D., (2001). Basic Principles of Textile Coloration, Society of Dyers and Colourists, Bradford, UK.
  • Kreze, T., Malej, S., (2003), Structural Characteristics of New and Convetional Regenerated Cellulosic Fibers, Textile Research Journals, 73 (8), 675-684.
  • Smole, S. M., Persin, Z., Kreze, T., Kleinschek, K. S., Ribitsch, V., Neumayer, S., (2003), X-Ray Study of PreTreated Regenerated Cellulose Fibres, Materials Research Innovations, 7, 275-282.
  • Nicolai, M., Nechwatal, A., Mieck, K. P., (1996), Textile Crosslinking Reactions to Reduce the Fibrillation Tendency of Lyocell Fibers, Textile Research Journal, 66(9), 575-580.
  • Öztürk, H. B., Potthast, A., Rosenau, T., Abu-Rous, M., MacNaughtan, B., Schuster, C., Mitchell, J. R., Bechtold, T., (2009), Changes in the Intra- and Inter-Fibrillar Structure of Lyocell (TENCEL®) Fibers Caused by NaOH Treatment, Cellulose, 16, 37-52.
  • Zhang, W., Okubayashi, S., Bechtold, T., (2005), Fibrillation Tendency of Cellulosic Fibers-Part 3: Effects of Alkali Pretreatment of Lyocell Fiber, Carbohydrate Polymers, 59, 173-179.
  • Zhang, H., Shao, H., Hu, X., (2006), Effect of Heat Treatment on the Structure and Properties of Lyocell Fibers, Journal of Applied Polymer Science,101, 1738-1743.
  • Lenzing Group, http://www.stepitn.eu/wpcontent/uploads/2010/05/Bartsch_Lenzing_Group_Leading_ Fiber_Innovation.pdf, (Erişim tarihi: 30.05.2018).
  • Nemec, A., (1994), Fibrillation of Cellulosic Materials-Can Previous Literature offer Solution, Lenzinger Berichte, 9, 69-72.
  • Öztürk, B. H., Beckhtold, T., (2008), Splitting Tendency of Cellulosic Fibers. Part 3: Splitting Tendency of Viscose and Modal Fibers, Cellulose, 15,101-109.
  • Burrow, T. R, (2005), Recent Advances in Chemically Treated Lyocell Fibres, Lenzinger Berichte, 84, 110-115.
  • Nechwatal, A., Nicolai, M., Mieck, K. P., Heublein, B., Kuhne, G., Klemm D., (1999), Studies on the Wet Fibrillation of Lyocell Fibers, Angewandte Makromolekulare Chemie, 271, 84-92.
  • Renfrew, A. H. M., Phillips, D. A. S., (2003), Protection of Lyocell Fibres Against Fibrillation: Mode of Action of the Crosslinking Agent 2,4-Dichloro-6-(B-Sulphatoethylsulphonyl) Aniline-S-Triazine, Coloration Technolgy, 119: 116-120.
  • Perisamy, A. P., Khanum, M. R., (2012), Efffect of fibrillation on Pilling Tendency of Lyocell Fiber, Bangladesh Textile Today, 4, 31-39.
  • Zhang, S., Chen, C., Duan, C., Hu, H., Li, H., Li, J., Liu, J., Ma, X., Stavik, J., Ni, Y., (2018), Regenerated Cellulose by the Lyocell Process, A Brief Review of the Process and Properties, BioResources, 13, 4577-4592.
  • Goswami, P., Blackburn, R. S., El-Dessouky, H. M., Taylor, J., White, P., (2009), Effect of Sodium Hydroxide Pre-Treatment on the Optical and Structural Properties of Lyocell, European Polymer Journal, 45, 455-465.
  • Periyasamy, A. P., (2012), Effect of Alkali Pretreatment and Dyeing on Fibrillation Properties of Lyocell Fiber, RMUTP International Conference: Textiles & Fashion, 26 June, Bangkok, Thailand.
  • Okubayashi, S., Bechtold, T., (2005), Alkali Uptake and Swelling Behavior of Lyocell Fiber And Their Effects on Crosslinking Reaction, Cellulose, 12, 459-467.
  • Manian, A. P., Jaturapiree, A., Bechtold, T., (2018), Salt Sorption on Regenerated Cellulosic Fibers: Electrokinetic Measurements, Cellulose, 25, 3307-3314.
  • Xu, Y., Xu, Y., Yue, X., (2017), Changes of Hydrogen Bonding and Aggregation Structure of Cellulose Fiber due to Microwaveassisted Alkali Treatment and its Impacts on the Application as Fluff Pulp, Cellulose, 24, 967-976.
  • Fang, K., Hao, L., Hu, X., Shao, H., (2003), Ester Crosslinking Treatmen for Reducing the Fibrillation Tendency of Lyocell Fibers, Textile Research Journal, 73(11), 1013-1016.
  • Yolacan, G., (2009), Effects of Alkali Pre-treatment on Dye Exhaustion, Color Values, Color Fastness, Tensile and Surface Properties of Lyocell Yarns, Fibers and Polymers, 10(5), 625-635.
  • Manian, A. P., Aldred, A. K., Lenninger, M., (2017), Bechtold, T., Alkali Pretreatments and Crosslinking of Lyocell Fabrics, Cellulose, 24, 3991-4002.
  • TS 250 EN 1049-2, Birim Uzunluktaki İplik Sayısının Tayini, 1996.
  • ISO 5084, Tekstil ve Tekstil Mamullerinin Kalınlık Tayini, 1998.
  • ISO 6348, Kumaşların Birim Alan Kütlesinin Tayini, 1999.
  • TS EN ISO 12947-3, Martindale Metoduyla Kumaşların Aşınmaya Karşı Dayanımının Tayini- Kütle Kaybının Tayini, 2001.
  • TS EN ISO 12945-2, Kumaşlarda Yüzey Tüylenmesi ve Boncuklanma Yatkınlığının Tayini- Martindale Metodu, 2002.
  • Öztürk, H. B., Okubayashi, S., Bechtold, T., (2006). Splitting Tendency of Cellulosic Fibers - Part 1. The Effect of Shear Force on Mechanical Stability of Swollen Lyocell Fibers, Cellulose, 13(4), 393-402.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Arzu Atıcı 0000-0002-2226-8337

Gaye Kaya 0000-0003-1866-4799

Yayımlanma Tarihi 26 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 26 Sayı: 113

Kaynak Göster

APA Atıcı, A., & Kaya, G. (2019). Alkali Ön-İşlemin Farklı Kumaş Örgüsündeki Lyocell Dokuma Kumaşların Görünüm ve Yapısal Özelliklerine Etkisi. Tekstil Ve Mühendis, 26(113), 52-62.
AMA Atıcı A, Kaya G. Alkali Ön-İşlemin Farklı Kumaş Örgüsündeki Lyocell Dokuma Kumaşların Görünüm ve Yapısal Özelliklerine Etkisi. Tekstil ve Mühendis. Mart 2019;26(113):52-62.
Chicago Atıcı, Arzu, ve Gaye Kaya. “Alkali Ön-İşlemin Farklı Kumaş Örgüsündeki Lyocell Dokuma Kumaşların Görünüm Ve Yapısal Özelliklerine Etkisi”. Tekstil Ve Mühendis 26, sy. 113 (Mart 2019): 52-62.
EndNote Atıcı A, Kaya G (01 Mart 2019) Alkali Ön-İşlemin Farklı Kumaş Örgüsündeki Lyocell Dokuma Kumaşların Görünüm ve Yapısal Özelliklerine Etkisi. Tekstil ve Mühendis 26 113 52–62.
IEEE A. Atıcı ve G. Kaya, “Alkali Ön-İşlemin Farklı Kumaş Örgüsündeki Lyocell Dokuma Kumaşların Görünüm ve Yapısal Özelliklerine Etkisi”, Tekstil ve Mühendis, c. 26, sy. 113, ss. 52–62, 2019.
ISNAD Atıcı, Arzu - Kaya, Gaye. “Alkali Ön-İşlemin Farklı Kumaş Örgüsündeki Lyocell Dokuma Kumaşların Görünüm Ve Yapısal Özelliklerine Etkisi”. Tekstil ve Mühendis 26/113 (Mart 2019), 52-62.
JAMA Atıcı A, Kaya G. Alkali Ön-İşlemin Farklı Kumaş Örgüsündeki Lyocell Dokuma Kumaşların Görünüm ve Yapısal Özelliklerine Etkisi. Tekstil ve Mühendis. 2019;26:52–62.
MLA Atıcı, Arzu ve Gaye Kaya. “Alkali Ön-İşlemin Farklı Kumaş Örgüsündeki Lyocell Dokuma Kumaşların Görünüm Ve Yapısal Özelliklerine Etkisi”. Tekstil Ve Mühendis, c. 26, sy. 113, 2019, ss. 52-62.
Vancouver Atıcı A, Kaya G. Alkali Ön-İşlemin Farklı Kumaş Örgüsündeki Lyocell Dokuma Kumaşların Görünüm ve Yapısal Özelliklerine Etkisi. Tekstil ve Mühendis. 2019;26(113):52-6.