Derleme
BibTex RIS Kaynak Göster

DOĞAL RADYASYONUN YÖNETİMİYLE TASARLANAN KİŞİSEL TERMAL YÖNETİM SAĞLAYAN PASİF AKILLI YAPILAR

Yıl 2023, Cilt: 30 Sayı: 131, 210 - 225, 30.09.2023
https://doi.org/10.7216/teksmuh.1271662

Öz

Kişisel termal yönetimin sağlanmasına yönelik, değişen vücut ve çevre şartlarına adapte olabilen pasif ve aktif akıllı tekstil yapıları ile artırılmış konfor ve azalan enerji gereksinimi gibi konularda avantajlar sağlanabilmektedir. Bu çalışmada, dünya için gün geçtikçe önem kazanan enerji kısıtlarına bağlı olarak, ekstra enerji harcanmadan doğal radyasyon enerji bileşenleri (ultraviyole, görünür, infrared) ve mekanizmalarının (yayılım, yansıtma, absorpsiyon, geçirgenlik) yönetimiyle vücudun termal dengesini ısıtma/soğutma veya ısıtma-soğutmayı birlikte sağlayarak koruyan yapılar, etkili radyasyon ısı transfer mekanizmaları ışığında incelenmiştir. Bu tür pasif akıllı yapılar için kullanılan ölçüm yöntemleri, mevcut çalışmaların eksik noktaları ve ilerleme yönü konularında da literatür ışığında değerlendirmeler yapılmıştır. Mevcut çalışmaların son dönemde, küresel ısınmanın etkilerinin de somut olarak hissedilmesiyle birlikte, radyasyonla iç ortamlarda kişisel soğutma konusunda yoğunlaştığı, dış ortamda geçerli olan karmaşık mekanizmaların tasarım ve ölçümleri zorlaştırdığı sonucuna varılmıştır. Ayrıca, çalışmalarda yapıların giyilebilirlikleri açısından önemli olan tutum, konfor ve radyasyon dışındaki ısı ve kütle transfer mekanizmalarının bütüncül olarak incelenmeleri konusunda eksiklikler tespit edilmiştir. Çalışmalar, konfor ve enerji tasarrufu beklentilerinin hızla değiştiği günümüzde radyasyon enerjisi yönetimiyle ısıtma/soğutma yapan yapıların vücut ve ortam koşullarına otonom olarak uyum sağlayabilecek şekilde tasarlanması yönünde ilerlemektedir.

Kaynakça

  • Zhu, F. L., Feng, Q. Q. (2021). Recent Advances in Textile Materials for Personal Radiative Thermal Management in Indoor and Outdoor Environments, International Journal of Thermal Sciences, 165, 106899, 1-14.
  • Cai, L., Song, A. Y., Li, W., Hsu, P. C., Lin, D., Catrysse, P. B., Lu, Y., Peng, Y., Chen, J., Wang, H., Xu, J., Yang, A., Fan, S., Cui, Y. (2018). Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling, Advanced Materials, 30, 1802152, 1-7.
  • Tabor, J., Chatterjee, K., Ghosh, T. K. (2020). Smart Textile‐Based Personal Thermal Comfort Systems: Current Status and Potential Solutions, Advanced Materials Technologies, 5(5), 1901155, 2-40.
  • Tong, J. K., Huang, X., Boriskina, S. V., Loomis, J., Xu, Y., Chen, G. (2015). Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management, ACS Photonics, 2, 769-778.
  • Peng, L., Su, B., Yu, A., Jiang, X. (2019). Review of Clothing for Thermal Management with Advanced Materials, Cellulose, 26, 6415-6448.
  • Lan, X., Wang, Y., Peng, J., Si, Y., Ren, J., Ding, B., Li, B. (2021). Designing Heat Transfer Pathways for Advanced Thermoregulatory Textiles, Materials Today Physics, 17, 100342, 3-28.
  • Hu, R., Liu, Y., Shin, S., Huang, S., Ren, X., Shu, W., Ceng, J., Tao, G., Xu, W., Luo, X. (2020). Emerging Materials and Strategies for Personal Thermal Management, Advanced Energy Materials, 10, 1903921,4-23.
  • Chatterjee, K., Ghosh, T. K. (2021). Thermoelectric Materials for Textile Applications, Molecules, 26, 3154, 1-27.
  • Luo, H., Zhu, Y., Xu, Z., Hong, Y., Ghosh, P., Kaur, S., Wu, M., Yang, C., Qui, M., Li, Q. (2021). Outdoor Personal Thermal Management with Simultaneous Electricity Generation, Nano Letters, 21(9), 3879-3886.
  • Zhai, H., Fan, D., Li, Q. (2022). Dynamic Radiation Regulations for Thermal Comfort, Nano Energy, 107435, 1-32.
  • Pakdel, E., Naebe, M., Sun, L., Wang, X. (2019). Advanced Functional Fibrous Materials for Enhanced Thermoregulating Performance, ACS Applied Materials & Interfaces, 11, 13039-13057.
  • Farooq, A. S., Zhang, P. (2021). Fundamentals, Materials and Strategies for Personal Thermal Management by Next-Generation Textiles, Composites Part A: Applied Science and Manufacturing, 142, 106249, 1-16.
  • Habibi, P., Moradi, G., Moradi, A., Golbabaei, F. (2021). A review on Advanced Functional Photonic Fabric for Enhanced Thermoregulating Performance, Environmental Nanotechnology, Monitoring & Management, 16, 100504, 1-10.
  • Tong, J. K., Huang, X., Boriskina, S. V., Loomis, J., Xu, Y., Chen, G. (2015). Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management, ACS Photonics, 2, 769-778.
  • Peng, L., Su, B., Yu, A., Jiang, X. (2019). Review of Clothing for Thermal Management with Advanced Materials, Cellulose, 26, 6415-6448.
  • Yu, X., Chan, J., Chen, C. (2021). Review of Radiative Cooling Materials: Performance Evaluation and Design Approaches, Nano Energy, 106259, 1-24.
  • Wang, X., Liu, X., Li, Z., Zhang, H., Yang, Z., Zhou, H., Fan, T. (2020). Scalable Flexible Hybrid Membranes with Photonic Structures for Daytime Radiative Cooling, Advanced Functional Materials, 30, 1907562, 1-9.
  • Peng, L., Fan, W., Li, D., Wang, S., Liu, Z., Yu, A., Jiang, X. (2020). Smart Thermal Management Textiles with Anisotropic and Thermoresponsive Electrical Conductivity, Advanced Materials Technologies, 5(1), 1900599, 1-9.
  • 1Song, Y. N., Lei, M. Q., Deng, L. F., Lei, J., Li, Z. M. (2020). Hybrid Metamaterial Textiles for Passive Personal Cooling Indoors and Outdoors, ACS Applied Polymer Materials, 2, 4379-4386.
  • Jing, W., Zhang, S., Zhang, W., Chen, Z., Zhang, C., Wu, D., Gao, Y., Zhu, H. (2021). Scalable and Flexible Electrospun Film for Daytime Subambient Radiative Cooling, ACS Applied Materials & Interfaces, 13(25), 29558-29566.
  • Siadat, S. A., Mokhtari, J. (2021). Influence of Ceramic Nano-Powders and Cross-Linker on Diffuse Reflectance Behavior of Printed Cotton/Nylon Blend Fabrics in Near Infrared and Short-Wave Infrared Spectral Ranges, The Journal of The Textile Institute, 112(7), 1108-1119.
  • Miao, D., Li, A., Jiang, S., Shang, S. (2015). Fabrication of Ag and AZO/Ag/AZO Ceramic Films on Cotton Fabrics for Solar Control, Ceramics International, 41(5), 6312-6317.
  • Wei, W., Zhu, Y., Li, Q., Cheng, Z., Yao, Y., Zhao, Q., Zhang, P., Liu, X., Chen, Z., Xu, F., Gao, Y. (2020). An Al2O3-Cellulose Acetate-Coated Textile for Human Body Cooling, Solar Energy Materials and Solar Cells, 211, 110525, 1-7.
  • Zhong, S., Yi, L., Zhang, J., Xu, T., Xu, L., Zhang, X., Zuo, T., Cai, Y. (2021). Self-Cleaning and Spectrally Selective Coating on Cotton Fabric for Passive Daytime Radiative Cooling, Chemical Engineering Journal, 407, 127104, 1-11.
  • Shams-Nateri, A., Kazemian, S., Piri, N. (2020). Nano-TiO2 Coated Cotton Fabrics with Temperature Regulating Properties, The Journal of The Textile Institute, 111(8), 1223-1230.
  • Zhong, H., Zhang, P., Li, Y., Yang, X., Zhao, Y., Wang, Z. (2020). Highly Solar-Reflective Structures for Daytime Radiative Cooling under High Humidity, ACS Applied Materials & Interfaces, 46, 51409-51417.
  • Zhang, J., Zhou, Z., Quan, J., Zhang, D., Sui, J., Yu, J., Liu, J. (2021). A Flexible Film to Block Solar Radiation for Daytime Radiative Cooling, Solar Energy Materials and Solar Cells, 225, 111029, 1-12.
  • Zhou, K., Li, W., Patel, B. B., Tao, R., Chang, Y., Fan, S., .Cai, L. (2021). Three-Dimensional Printable Nanoporous Polymer Matrix Composites for Daytime Radiative Cooling, Nano Letters, 3, 1493-1499.
  • Li, D., Liu, X., Li, W., Lin, Z., Zhu, B., Li, Z., Zhu, J. (2021). Scalable and Hierarchically Designed Polymer Film as a Selective Thermal Emitter for High-Performance All-Day Radiative Cooling, Nature Nanotechnology, 2, 153-158.
  • Sun, Y., Ji, Y., Javed, M., Li, X., Fan, Z., Wang, Y., Xu, B. (2022). Preparation of Passive Daytime Cooling Fabric with the Synergistic Effect of Radiative Cooling and Evaporative Cooling, Advanced Materials Technologies, 3, 2100803, 1-8.
  • Qi, M., Wang, Y., Chang, G., Li, R. (2022). Energy-Saving Cooling Coated Fabric with Robust Solar Reflection and Water Repellent Properties, Fibers and Polymers, 1-7.
  • Hsu, P. C., Li, X. (2020). Photon-Engineered Radiative Cooling Textiles, Science, 370(6518), 784-785.
  • Fang, B., Wang, Z., Gao, S., Zhu, S., Li, T. (2021). Manipulating Guided Wave Radiation with Integrated Geometric Metasurface, Nanophotonics, 11(9), 1923-1930. Feng, J., Santamouris, M., Gao, K. (2020). The Radiative Cooling Efficiency of Silica Sphere Embedded Polymethylpentene (TPX) Systems, Solar Energy Materials and Solar Cells, 215, 110671, 1-12.
  • Chen, M., Pang, D., Mandal, J., Chen, X., Yan, H., He, Y., Yu, N., Yang, Y. (2021). Designing Mesoporous Photonic Structures for High-Performance Passive Daytime Radiative Cooling, Nano Letters, 21(3), 1412-1418.
  • Xiang, B., Zhang, R., Luo, Y., Zhang, S., Xu, L., Min, H., Meng, X. (2021). 3D Porous Polymer Film with Designed Pore Architecture and Auto-Deposited SiO2 for Highly Efficient Passive Radiative Cooling, Nano Energy, 81, 105600, 1-29.
  • Song, Y. N., Lei, M. Q., Lei, J., Li, Z. M. (2020). A Scalable Hybrid Fiber and its Textile with Pore and Wrinkle Structures for Passive Personal Cooling, Advanced Materials Technologies, 5(7), 2000287, 1-9.
  • Bijarniya, J. P., Sarkar, J., Maiti, P. (2020). Review on Passive Daytime Radiative Cooling: Fundamentals, Recent Researches, Challenges and Opportunities, Renewable and Sustainable Energy Reviews, 133, 110263, 1-11.
  • Catrysse, P. B., Song, A. Y., Fan, S. (2016). Photonic Structure Textile Design for Localized Thermal Cooling Based on a Fiber Blending Scheme, ACS Photonics, 3, 2420-2426.
  • Aili, A., Wei, Z. Y., Chen, Y. Z., Zhao, D. L., Yang, R. G., Yin, X. B. (2019). Selection of Polymers with Functional Groups for Daytime Radiative Cooling, Materials Today Physics, 10, 100127, 1-5.
  • Jing, W., Zhang, S., Zhang, W., Chen, Z., Zhang, C., Wu, D., Gao, Y., Zhu, H. (2021). Scalable and Flexible Electrospun Film for Daytime Subambient Radiative Cooling, ACS Applied Materials & Interfaces, 13(25), 29558-29566.
  • Yu, X., Chan, J., Chen, C. (2021). Review of Radiative Cooling Materials: Performance Evaluation and Design Approaches, Nano Energy, 88, 106259, 1-24.
  • Song, Y. N., Ma, R. J., Xu, L., Huang, H. D., Yan, D. X., Xu, J. Z., Zhong, G. J., Lei, J., Li, Z. M. (2018). Wearable Polyethylene/Polyamide Composite Fabric for Passive Human Body Cooling, ACS Applied Materials & Interfaces, 10, 41637-41644, 1-8.
  • Xiao, R., Hou, C., Yang, W., Su, Y., Li, Y., Zhang, Q., Gao, P., Wang, H. (2019). Infrared-Radiation-Enhanced Nanofiber Membrane for Sky Radiative Cooling of the Human Body, ACS Applied Materials & Interfaces, 11, 44673-44681.
  • Cai, L., Peng, Y., Xu, J., Zhou, C., Zhou, C., Wu, P., Lin, D., Fan, S., Cui, Y. (2019). Temperature Regulation in Colored Infrared-Transparent Polyethylene Textiles, Joule, 3, 1478-1486.
  • Ke, Y., Wang, F., Xu, P., Yang, B. (2018). On the Use of a Novel Nanoporous Polyethylene (nanoPE) Passive Cooling Material for Personal Thermal Comfort Management under Uniform Indoor Environments, Building and Environment, 145, 85-95.
  • Assaf, S., Boutghatin, M., Pennec, Y., Thomy, V., Korovin, A., Treizebre, A., Carette, M., Akjouj, A., Djafari-Rouhani, B. (2020). Polymer Photonic Crystal Membrane for Thermo-Regulating Textile, Scientific Reports, 10, 1-9.
  • Feng, S., Zhou, Y., He, M., Wang, R., Shi, S., Liu, C., Huang, Y. (2022). 3D Sustainable Polysiloxane/ZnO Hybrid Membrane with Enhanced Reflectivity and Flame Retardancy for Daytime Radiative Cooling, Optical Materials, 129, 112472, 1-9.
  • Mandal, J., Fu, Y., Overvig, A. C., Jia, M., Sun, K., Shi, N. N., Yang, Y. (2018). Hierarchically Porous Polymer Coatings for Highly Efficient Passive Daytime Radiative Cooling, Science, 6412, 315-319.
  • Liu, R., Wang, X., Yu, J., Wang, Y., Zhu, J., Hu, Z. (2018). A Novel Approach to Design Nanoporous Polyethylene/Polyester Composite Fabric via TIPS for Human Body Cooling, Macromolecular Materials and Engineering, 303, 1700456, 1-10.
  • Huang, W., Chen, Y., Luo, Y., Mandal, J., Li, W., Chen, M., Tsai, C., Shan, Z., Yu, N., Yang, Y. (2021). Scalable Aqueous Processing‐Based Passive Daytime Radiative Cooling Coatings, Advanced Functional Materials, 31, 2010334, 1-7.
  • Ni, Y., Shen, G., Ng, K. H., Zhu, T., Li, S., Li, X., Cai, W., Chen, Z., Huang, J. (2022). Rational Construction of Superhydrophobic PDMS/PTW@ Cotton Fabric for Efficient UV/NIR Light Shielding, Cellulose, 29(8), 4673-4685.
  • Chen, M., Liu, Y., Zhao, X. (2023). Emerging Passive Thermoregulatory Textiles Through Tailoring Different Heat Transfer Routes, Textile Research Journal, 00405175231154018, 1-26.
  • Lei, L., Shi, S., Wang, D., Meng, S., Dai, J. G., Fu, S., Hu, J. (2023). Recent Advances in Thermoregulatory Clothing: Materials, Mechanisms, and Perspectives, ACS Nano, 17(3), 1803-1830.
  • Hsu, P. C., Liu, X., Liu, C., Xie, X., Lee, H. R., Welch, A. J., Zhao, T., Cui, Y. (2015). Personal Thermal Management by Metallic Nanowire-Coated Textile, Nano Letters, 15(1), 365-371.
  • Yu, Z., Gao, Y., Di, X., Luo, H. (2016). Cotton Modified with Silver-Nanowires/Polydopamine for a Wearable Thermal Management Device, RSC Advances, 6(72), 67771-67777.
  • Hazarika, A., Deka, B. K., Kim, D., Jeong, H. E., Park, Y. B., Park, H. W. (2018). Woven Kevlar Fiber/Polydimethylsiloxane/Reduced Graphene Oxide Composite-Based Personal Thermal Management with Freestanding Cu–Ni Core-Shell Nanowires, Nano Letters, 18(11), 6731-6739.
  • Yue, X., Zhang, T., Yang, D., Qiu, F., Li, Z., Wei, G., Qiao, Y. (2019). Ag Nanoparticles Coated Cellulose Membrane with High Infrared Reflection, Breathability and Antibacterial Property for Human Thermal Insulation, Journal of Colloid and Interface Science, 535, 363-370.
  • Zhou, H., Zhang, T., Yue, X., Peng, Y., Qiu, F., Yang, D. (2019). Fabrication of Flexible and Superhydrophobic Melamine Sponge with Aligned Copper Nanoparticle Coating for Self-Cleaning and Dual Thermal Management Properties, Industrial & Engineering Chemistry Research, 58(12), 4844-4852.
  • Cai, L., Song, A. Y., Wu, P., Hsu, P. C., Peng, Y., Chen, J., Cui, Y. (2017). Warming up Human Body by Nanoporous Metallized Polyethylene Textile, Nature Communications, 8(1), 496, 1-8.
  • Shi, M., Shen, M., Guo, X., Jin, X., Cao, Y., Yang, Y., Wang, J. (2021). Ti3C2Tx MXene-Decorated Nanoporous Polyethylene Textile for Passive and Active Personal Precision Heating, ACS Nano, 15(7), 11396-11405.
  • Li, Q., Lu, J., Gupta, P., Qiu, M. (2019). Engineering Optical Absorption in Graphene and Other 2D Materials: Advances and Applications, Advanced Optical Materials, 7(20), 1900595, 1-23.
  • Furchi, M., Urich, A., Pospischil, A., Lilley, G., Unterrainer, K., Detz, H., Mueller, T. (2012). Microcavity-Integrated Graphene Photodetector, Nano Letters, 12(6), 2773-2777.
  • Zhu, L., Liu, F., Lin, H., Hu, J., Yu, Z., Wang, X., Fan, S. (2016). Angle-Selective Perfect Absorption with Two-Dimensional Materials, Light: Science & Applications, 5(3), e16052-e16052, 1-6.
  • Chen, C. J., Chen, D. H. (2012). Preparation of LaB6 Nanoparticles as a Novel and Effective Near-Infrared Photothermal Conversion Material, Chemical Engineering Journal, 180, 337-342.
  • Hong, J., Park, C., Kim, Y. (2019). Photothermal Properties of Wool Fabrics Colored with SiO2@ AuNPs, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 574, 115-121.
  • Ignatieva, N., Zakharkina, O., Dadasheva, A., Shekhter, A., Sviridov, A., Lunin, V. (2019). Transformation of the Dermal Collagen Framework under Laser Heating, Journal of Biophotonics, 12(12), e201960024, 1-10.
  • Woo, Y. E., Oh, K. W. (2023). Fabrication of Polyester Fabrics with Tungsten Bronze Nanorods and a Silane Coupling Agent for Improved Thermal Storage and Washing Durability, Fashion and Textiles, 10(1), 1-12.
  • Chala, T. F., Wu, C. M., Chou, M. H., Gebeyehu, M. B., Cheng, K. B. (2017). Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites, Nanomaterials, 7(7), 191, 1-13.
  • Thongrattanasiri, S., Koppens, F. H., De Abajo, F. J. G. (2012). Complete Optical Absorption in Periodically Patterned Graphene, Physical Review Letters, 108(4), 04740, 1-5.
  • Fang, Z., Thongrattanasiri, S., Schlather, A., Liu, Z., Ma, L., Wang, Y., García de Abajo, F. J. (2013). Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene, ACS Nano, 7(3), 2388-2395.
  • Liu, Y., Chadha, A., Zhao, D., Piper, J. R., Jia, Y., Shuai, Y., Zhou, W. (2014). Approaching Total Absorption at Near Infrared in a Large Area Monolayer Graphene by Critical Coupling, Applied Physics Letters, 105(18), 181105, 1-5.
  • Piper, J. R., Fan, S. (2014). Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance, ACS Photonics, 1(4), 347-353.
  • Grande, M., Vincenti, M. A., Stomeo, T., Bianco, G. V., De Ceglia, D., Aközbek, N., D’Orazio, A. (2015). Graphene-Based Perfect Optical Absorbers Harnessing Guided Mode Resonances, Optics Express, 23(16), 21032-21042.
  • Huang, L., Li, G., Gurarslan, A., Yu, Y., Kirste, R., Guo, W., Cao, L. (2016). Atomically Thin MoS2 Narrowband and Broadband Light Superabsorbers, ACS Nano, 10(8), 7493-7499.
  • Xu, J., Jiang, S., Wang, Y., Shang, S., Miao, D., Guo, R. (2017). Photo-Thermal Conversion and Thermal Insulation Properties of ZrC Coated Polyester Fabric, Fibers and Polymers, 18, 1938-1944.
  • Dong, J., Luo, S., Ning, S., Yang, G., Pan, D., Ji, Y., Liu, C. (2021). MXene-Coated Wrinkled Fabrics for Stretchable and Multifunctional Electromagnetic Interference Shielding and Electro/Photo-Thermal Conversion Applications, ACS Applied Materials & Interfaces, 13(50), 60478-60488, 1-11.
  • Hazarika, A., Deka, B. K., Kim, D. C., Jaiswal, A. P., Seo, J., Park, Y. B., Park, H. W. (2022). Multidimensional Wearable Self-Powered Personal Thermal Management with Scalable Solar Heating and a Triboelectric Nanogenerator, Nano Energy, 98, 107323, 1-12.
  • Huang, L. Z., Yuan, Q., Ji, X. X., Li, D. D., Zhang, W., Guo, W. Y., Ma, M. G. (2022). Multifunctional MXene-Decorated Cotton Fabric with Different Weaves, Outstanding Photothermal Effect, and Rapid Response, Cellulose, 29(12), 6997-7010.
  • Liu, X., Du, X., Li, L., Cao, Y., Yang, Y., Wang, W., Wang, J. (2022). Multifunctional AgNW@ MXene Decorated Polymeric Textile for Highly-Efficient Electro-/Photothermal Conversion and Triboelectric Nanogenerator, Composites Part A: Applied Science and Manufacturing, 156, 106883, 1-9.
  • Dong, X. X., Cao, Y. M., Wang, C., Wu, B., Zheng, M., Xue, Y. B., Zhuo, M. P. (2023). MXene-Decorated Smart Textiles with the Desired Mid-Infrared Emissivity for Passive Personal Thermal Management, ACS Applied Materials & Interfaces, 1-9.
  • Cao, Y. M., Zheng, M., Li, Y. F., Zhai, W. Y., Yuan, G. T., Zheng, M., Liao, L. S. (2021). Smart Textiles Based on MoS2 Hollow Nanospheres for Personal Thermal Management, ACS Applied Materials & Interfaces, 13(41), 48988-48996.
  • Qin, Y., Zhang, Q., Pan, W., Zhang, J., Wang, Z., Qi, Y., Yu, H. (2022). Dyeable PAN/CuS Nanofiber Membranes with Excellent Mechanical and Photothermal Conversion Properties via Electrospinning, ACS Applied Polymer Materials, 4(12), 9144-9150.
  • Zhang, Q., Liu, D., Pan, W., Pei, H., Wang, K., Xu, S., Cao, S. (2022). Flexible Stretchable Electrothermally/Photothermally Dual-Driven Heaters from Nano-Embedded Hierarchical CuxS-Coated PET Fabrics for All-Weather Wearable Thermal Management, Journal of Colloid and Interface Science, 624, 564-578.
  • Pu, H., He, P., Yang, D., Dang, Y., Ma, J. (2023). Polydopamine Modified CuS Particles Filled Cellulose Fiber for Photothermal Conversion Performance, Industrial Crops and Products, 193, 116188, 1-9.
  • Butterworth, M.D.; Bell, S.A.; Armes, S.P., Simpson, A.W. (1996). Synthesis and Characterization of Polypyrrole-Magnetite-Silica Particles. Journal of Colloid and Interface Science, 183, 91-99.
  • Lee, D., Shin, T. J., Yoo, P. J., Oh, K. W., Park, J. (2018). Conjugated Polymer Nano-Ellipsoids Assembled with Octanoic Acid and Their Polyurethane Nanocomposites with Simultaneous Thermal Storage and Antibacterial Activity, Journal of Industrial and Engineering Chemistry, 63, 33-40.
  • Lee, D., Sang, J. S., Yoo, P. J., Shin, T. J., Oh, K. W., Park, J. (2018). Machine-Washable Smart Textiles with Photothermal and Antibacterial Activities from Nanocomposite Fibers of Conjugated Polymer Nanoparticles and Polyacrylonitrile, Polymers, 11(1), 16, 1-14.
  • Lyu, S., He, Y., Yao, Y., Zhang, M., Wang, Y. (2019). Photothermal Clothing for Thermally Preserving Pipeline Transportation of Crude Oil, Advanced Functional Materials, 29(27), 1900703, 1-10.
  • Zhao, N., Wang, Z., Cai, C., Shen, H., Liang, F., Wang, D., Xu, J. (2014). Bioinspired Materials: From Low to High Dimensional Structure, Advanced Materials, 26(41), 6994-7017.
  • Jia, H., Guo, J., Zhu, J. (2017). Comparison of the Photo-Thermal Energy Conversion Behavior of Polar Bear Hair and Wool of Sheep, Journal of Bionic Engineering, 14(4), 616-621.
  • Jia, H., Zhu, J., Debeli, D. K., Li, Z., & Guo, J. (2018). Solar Thermal Energy Harvesting Properties of Spacer Fabric Composite used for Transparent Insulation Materials, Solar Energy Materials and Solar Cells, 174, 140-145.
  • Yue, X., He, M., Zhang, T., Yang, D., Qiu, F. (2020). Laminated Fibrous Membrane Inspired by Polar Bear Pelt for Outdoor Personal Radiation Management, ACS Applied Materials & Interfaces, 12(10), 12285-12293.
  • Wang, Y., Cui, Y., Shao, Z., Gao, W., Fan, W., Liu, T., Bai, H. (2020). Multifunctional Polyimide Aerogel Textile Inspired by Polar Bear Hair for Thermoregulation in Extreme Environments, Chemical Engineering Journal, 390, 124623, 1-8.
  • Cui, Y., Gong, H., Wang, Y., Li, D., Bai, H. (2018). A Thermally Insulating Textile Inspired by Polar Bear Hair, Advanced Materials, 30(14), 1706807, 1-8.
  • Shao, Z., Wang, Y., Bai, H. (2020). A Superhydrophobic Textile Inspired by Polar Bear Hair for Both in Air and Underwater Thermal Insulation, Chemical Engineering Journal, 397, 125441, 1-8.
  • Luo, H., Li, Q., Du, K., Xu, Z., Zhu, H., Liu, D., Qiu, M. (2019). An Ultra-Thin Colored Textile with Simultaneous Solar and Passive Heating Abilities, Nano Energy, 65, 103998, 1-9.
  • Hu, X., Tian, M., Qu, L., Zhu, S., Han, G. (2015). Multifunctional Cotton Fabrics with Graphene/Polyurethane Coatings with Far-Infrared Emission, Electrical Conductivity, and Ultraviolet-Blocking Properties, Carbon, 95, 625-633.
  • Kubiliene, D., Sankauskaite, A., Abraitienė, A., Krauledas, S., Barauskas, R. (2016). Investigation of Thermal Properties of Ceramic-Containing Knitted Textile Materials, Fibres & Textiles in Eastern Europe, 3 (117), 63-66.
  • Stygienė, L., Varnaitė-Žuravliova, S., Abraitienė, A., Krauledas, S., Baltušnikaitė-Guzaitienė, J., Padleckienė, I. (2020). Investigation of Thermoregulation Properties of Various Ceramic-Containing Knitted Fabric Structures, Journal of Industrial Textiles, 50(5), 716-73.
  • Gu, B., He, M., Yang, D., Yue, X., Qiu, F., Zhang, T., Chen, M. (2020). Wearable Janus MnO2 Hybrid Membranes for Thermal Comfort Management Applications, Applied Surface Science, 509, 145170, 1-9.
  • Bahng, G. W., Lee, J. D. (2014). Development of Heat-Generating Polyester Fiber Harnessing Catalytic Ceramic Powder Combined with Heat-Generating Super Microorganisms, Textile Research Journal, 84(11), 1220-1230.
  • Kuo, C. F. J., Fan, C. C., Su, T. L., Chen, S. H., Lan, W. L. (2016). Nano Composite Fiber Process Optimization for Polypropylene with Antibacterial and Far-Infrared Ray Emission Properties, Textile Research Journal, 86(16), 1677-1687.
  • Escamilla-Martínez, E., Gómez-Martín, B., Sánchez-Rodríguez, R., Fernández-Seguín, L. M., Pérez-Soriano, P., Martínez-Nova, A. (2022). Running Thermoregulation Effects using Bioceramics versus Polyester Fibres Socks, Journal of Industrial Textiles, 51(8), 1236-1249.
  • Qiu, K., Elhassan, A., Tian, T., Yin, X., Yu, J., Li, Z., Ding, B. (2020). Highly Flexible, Efficient, and Sandwich-Structured Infrared Radiation Heating Fabric, ACS Applied Materials & Interfaces, 12(9), 11016-11025.
  • Gordon, I. L., Casden, S., Vangel, M., Hamblin, M. R. (2019). Effect of Shirts with 42% Celliant™ Fiber on tcPO2 Levels and Grip Strength in Healthy Subjects: A Placebo-Controlled Clinicals Trial, Journal of Textile Science & Engineering, 9(4), 1-15.
  • Yuce, I., Canoglu, S., Yukseloglu, S. M., Li Voti, R., Cesarini, G., Sibilia, C., Larciprete, M. C. (2022). Titanium and Silicon Dioxide-Coated Fabrics for Management and Tuning of Infrared Radiation, Sensors, 22(10), 3918,1-15.
  • Kim, H. (2022). Heat Release and Wear Comfort Characteristics of the Ceramic Imbedded Fabrics for Cold Weather Protective Clothing, Journal of Industrial Textiles, 52, 15280837221109638, 1-21.
  • Kim, H. A. (2022). Wear Comfort of Heat Storage/Release Fabrics Containing Al2O3/Graphite Yarns, Fibers and Polymers, 23(2), 554-564.
  • Tian, T., Wei, X., Elhassan, A., Yu, J., Li, Z., Ding, B. (2021). Highly Flexible, Efficient, and Wearable Infrared Radiation Heating Carbon Fabric, Chemical Engineering Journal, 417, 128114, 1-7.
  • Zhang, Q., Lv, Y., Wang, Y., Yu, S., Li, C., Ma, R., Chen, Y. (2022). Temperature-Dependent Dual-Mode Thermal Management Device with Net Zero Energy for Year-Round Energy Saving, Nature Communications, 13(1), 4874, 1-10.
  • Kim, H. A., Kim, S. J. (2017). Far-Infrared Emission Characteristics and Wear Comfort property of ZrC-Imbedded Heat Storage Knitted Fabrics for Emotional Garments, Autex Research Journal, 17(2), 142-151.
  • http://www.kuraray.com/products/fiber, Erişim tarihi: 30 Haziran 2019.
  • http://mrcfac.com/wp-content/uploads/2013/09/SDS-Grafil-precision_cut-unsize-_05-17-12. pdf?1475465251, Erişim tarihi: 19 Temmuz 2019.
  • https://www.unitica.co.jp, Erişim tarihi: 15 Ağustos 2019.
  • Li, Y., Wu, D. X., Hu, J. Y., Wang, S. X. (2007). Novel Infrared Radiation Properties of Cotton Fabric Coated with Nano Zn/ZnO Particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 300 (1-2), 140-144.
  • Larciprete, M. C., Paoloni, S., Orazi, N., Mercuri, F., Orth, M., Gloy, Y., Sibilia, C. (2019). Infrared Emissivity Characterization of Carbon Nanotubes Dispersed Poly (Ethylene Terephthalate) Fibers, International Journal of Thermal Sciences, 146, 106109, 1-6.
  • Tao, Y., Li, T., Yang, C., Wang, N., Yan, F., Li, L. (2018). The Influence of Fiber Cross-Section on Fabric Far-Infrared Properties, Polymers, 10(10), 1147, 1-13.
  • Rao, J., Gold, M. H., Goldman, M. P. (2005). A Two‐Center, Double‐Blinded, Randomized Trial Testing the Tolerability and Efficacy of a Novel Therapeutic Agent for Cellulite Reduction, Journal of cosmetic dermatology, 4(2), 93-102.
  • York, R. M., Gordon, I. L. (2009). Effect of Optically Modified Polyethylene Terephthalate Fiber Socks on Chronic Foot Pain, BMC Complementary and Alternative Medicine, 9, 1-7.
  • Lee, C. H., Roh, J. W., Lim, C. Y., Hong, J. H., Lee, J. K., Min, E. G. (2011). A Multicenter, Randomized, Double-blind, Placebo-Controlled Trial Evaluating the Efficacy and Safety of a Far Infrared-Emitting Sericite Belt in Patients with Primary Dysmenorrhea, Complementary Therapies in Medicine, 19(4), 187-193.
  • Liau, B. Y., Leung, T. K., Ou, M. C., Ho, C. K., Yang, A., Lin, Y. S. (2012). Inhibitory Effects of Far-Infrared Ray-Emitting Belts on Primary Dysmenorrhea, International Journal of Photoenergy, 2012, 1-7.
  • Hsu, P. C., Liu, C., Song, A. Y., Zhang, Z., Peng, Y., Xie, J., Cui, Y. (2017). A Dual-Mode Textile for Human Body Radiative Heating and Cooling, Science Advances, 3(11), e1700895, 1-9.
  • Yue, X., Zhang, T., Yang, D., Qiu, F., Wei, G., Zhou, H. (2019). Multifunctional Janus Fibrous Hybrid Membranes with Sandwich Structure for On-Demand Personal Thermal Management, Nano Energy, 63, 103808, 1-10.
  • Gu, B., Liang, K., Zhang, T., Yue, X., Qiu, F., Yang, D., Chen, M. (2019). Fabrication of Sandwich-Structured Cellulose Composite Membranes for Switchable Infrared Radiation, Cellulose, 26, 8745-8757.
  • Shi, N. N., Tsai, C. C., Camino, F., Bernard, G. D., Yu, N., Wehner, R. (2015). Keeping Cool: Enhanced Optical Reflection and Radiative Heat Dissipation in Saharan Silver Ants, Science, 349(6245), 298-301.
  • Tang, K., Dong, K., Li, J., Gordon, M. P., Reichertz, F. G., Kim, H., Wu, J. (2021). Temperature-Adaptive Radiative Coating for All-Season Household Thermal Regulation, Science, 374(6574), 1504-1509.
  • Liu, J., Zhu, L., Gao, S., Liu, Y., Wang, S., Xia, Y. (2023). An Artificial Chameleon Skin for Dynamic Thermoregulation, Advanced Materials Interfaces, 2202124, 1-9.
  • Yuan, H., Liu, R., Cheng, S., Li, W., Ma, M., Huang, K., Liu, Z. (2023). Scalable Fabrication of Dual‐Function Fabric for Zero‐Energy Thermal Environmental Management Through Multiband, Synergistic, and Asymmetric Optical Modulations, Advanced Materials, 2209897, 1-11.
  • Zheludev, N. I., Kivshar, Y. S. (2012). From Metamaterials to Metadevices, Nature Materials, 11(11), 917-924.
  • Zhang, X. A., Yu, S., Xu, B., Li, M., Peng, Z., Wang, Y., Wang, Y. (2019). Dynamic Gating of Infrared Radiation in a Textile, Science, 363(6427), 619-623.
  • Fu, K., Yang, Z., Pei, Y., Wang, Y., Xu, B., Wang, Y., Hu, L. (2019). Designing Textile Architectures for High Energy-Efficiency Human Body Sweat-and Cooling-Management, Advanced Fiber Materials, 1, 61-70.
  • Leung, E. M., Colorado Escobar, M., Stiubianu, G. T., Jim, S. R., Vyatskikh, A. L., Feng, Z., Gorodetsky, A. A. (2019). A Dynamic Thermoregulatory Material Inspired by Squid Skin, Nature Communications, 10(1), 1947, 1-10.
  • https://www.polyu.edu.hk/publications/excelximpact/issue/202112/research-innovation/new-far-infrared-fibre-with-great-potential-for-functional-and-healthcare-textiles-developed, Erişim tariihi: 23 Mart 2023.
Toplam 133 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sibel Kaplan

Nazife Korkmaz Memiş

Yayımlanma Tarihi 30 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 30 Sayı: 131

Kaynak Göster

APA Kaplan, S., & Korkmaz Memiş, N. (2023). DOĞAL RADYASYONUN YÖNETİMİYLE TASARLANAN KİŞİSEL TERMAL YÖNETİM SAĞLAYAN PASİF AKILLI YAPILAR. Tekstil Ve Mühendis, 30(131), 210-225. https://doi.org/10.7216/teksmuh.1271662
AMA Kaplan S, Korkmaz Memiş N. DOĞAL RADYASYONUN YÖNETİMİYLE TASARLANAN KİŞİSEL TERMAL YÖNETİM SAĞLAYAN PASİF AKILLI YAPILAR. Tekstil ve Mühendis. Eylül 2023;30(131):210-225. doi:10.7216/teksmuh.1271662
Chicago Kaplan, Sibel, ve Nazife Korkmaz Memiş. “DOĞAL RADYASYONUN YÖNETİMİYLE TASARLANAN KİŞİSEL TERMAL YÖNETİM SAĞLAYAN PASİF AKILLI YAPILAR”. Tekstil Ve Mühendis 30, sy. 131 (Eylül 2023): 210-25. https://doi.org/10.7216/teksmuh.1271662.
EndNote Kaplan S, Korkmaz Memiş N (01 Eylül 2023) DOĞAL RADYASYONUN YÖNETİMİYLE TASARLANAN KİŞİSEL TERMAL YÖNETİM SAĞLAYAN PASİF AKILLI YAPILAR. Tekstil ve Mühendis 30 131 210–225.
IEEE S. Kaplan ve N. Korkmaz Memiş, “DOĞAL RADYASYONUN YÖNETİMİYLE TASARLANAN KİŞİSEL TERMAL YÖNETİM SAĞLAYAN PASİF AKILLI YAPILAR”, Tekstil ve Mühendis, c. 30, sy. 131, ss. 210–225, 2023, doi: 10.7216/teksmuh.1271662.
ISNAD Kaplan, Sibel - Korkmaz Memiş, Nazife. “DOĞAL RADYASYONUN YÖNETİMİYLE TASARLANAN KİŞİSEL TERMAL YÖNETİM SAĞLAYAN PASİF AKILLI YAPILAR”. Tekstil ve Mühendis 30/131 (Eylül 2023), 210-225. https://doi.org/10.7216/teksmuh.1271662.
JAMA Kaplan S, Korkmaz Memiş N. DOĞAL RADYASYONUN YÖNETİMİYLE TASARLANAN KİŞİSEL TERMAL YÖNETİM SAĞLAYAN PASİF AKILLI YAPILAR. Tekstil ve Mühendis. 2023;30:210–225.
MLA Kaplan, Sibel ve Nazife Korkmaz Memiş. “DOĞAL RADYASYONUN YÖNETİMİYLE TASARLANAN KİŞİSEL TERMAL YÖNETİM SAĞLAYAN PASİF AKILLI YAPILAR”. Tekstil Ve Mühendis, c. 30, sy. 131, 2023, ss. 210-25, doi:10.7216/teksmuh.1271662.
Vancouver Kaplan S, Korkmaz Memiş N. DOĞAL RADYASYONUN YÖNETİMİYLE TASARLANAN KİŞİSEL TERMAL YÖNETİM SAĞLAYAN PASİF AKILLI YAPILAR. Tekstil ve Mühendis. 2023;30(131):210-25.