Araştırma Makalesi
BibTex RIS Kaynak Göster

Mechanical Performance of Basalt and Glass Woven Composites

Yıl 2024, Cilt: 31 Sayı: 134, 88 - 98, 30.06.2024
https://doi.org/10.7216/teksmuh.1436529

Öz

This study systematically evaluates the mechanical properties of glass and basalt high-performance fibers in woven fabric-reinforced composites with thermoplastic and thermoset matrices. Investigating responses to diverse quasi-static and dynamic impact loads, the research emphasizes the growing interest in composites as alternatives to conventional metals. Examining basalt and glass fibers within different matrices, the study optimizes composite materials by scrutinizing tensile strength, flexural strength, and edge-wise impact resistance. Combining literature review and experiments, the research highlights basalt fibers for their high tensile strength and environmental sustainability. Key findings show that, under quasi-static conditions, thermoset composites excel in in-plane load bearing, while thermoplastic composites exhibit exceptional edge-wise impact resistance. Additionally, the study notes the superior flexural properties of thermoplastic-based basalt composites over glass, with dynamics shifting under thermoset matrices. This underscores the profound influence of both reinforcement and matrix materials on composite mechanical properties. Basalt thermoplastic composite (TPB2DFRC) outperforms Glass-based counterpart (TPG2DFRC) in tensile properties, demonstrating superior elasticity and plasticity for enhanced deformation resistance. In flexural characteristics, TPB2DFRC excels, displaying higher modulus, strength, and flexibility compared to Glass-based thermoplastic composite (TPG2DFRC), highlighting the superior mechanical attributes of Basalt composites. The Izod impact properties showcase Basalt composites’ exceptional resistance, with higher impact strength and energy values, surpassing Glass counterparts. This underscores the potential of Basalt-based materials for applications requiring superior resilience to dynamic impact loading.

Etik Beyan

There was no involvement of experimentation with human tissue or as such.

Destekleyen Kurum

Indian Institute of Technology Delhi

Teşekkür

Our Sincere thanks and heartfelt gratitude to Mr. Soumya Chowdhury and Prof. B. K. Behera for giving us the chance to do experiment at Focus Incubation Centre for 3D Weaving of and Structural Composites.

Kaynakça

  • 1. Mertz DR. Application of Fiber Reinforced Polymer (FRP) Composites to the Highway Infrastructure: Strategic Plan. 2003.
  • 2. Tehrani Dehkordi M, Nosraty H, Shokrieh MM, Minak G, Ghelli D. The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites. Mater Des 2013;43:283–90. https://doi.org/10.1016/j.matdes.2012.07.005
  • 3. Lasica W, Malek M, Szcześniak Z, Owczarek M. Characterization of recycled glass-cement composite: Mechanical strength. Mater Tehnol 2020;54:473–7. https://doi.org/10.17222/MIT.2019.152.
  • 4. Wei B, Cao H, Song S. Environmental resistance and mechanical performance of basalt and glass fibers. Mater Sci Eng A 2010;527:4708–15. https://doi.org/10.1016/j.msea.2010.04.021.
  • 5. Deák T, Czigány T. Chemical Composition and Mechanical Properties of Basalt and Glass Fibers: A Comparison. Text Res J 2009;79:645–51. https://doi.org/10.1177/0040517508095597.
  • 6. Buggy M, Farragher L, Madden W. Recycling of composite materials. J Mater Process Tech 1995;55:448–56. https://doi.org/10.1016/0924-0136(95)02037-3.
  • 7. Yang SB, Kim YJ, Kwon IJ, Park SM, Kwon DJ, Yeum JH. Simple manufacturing method for a thermoplastic composite using PP-Straw. Compos Part B Eng 2019;176. https://doi.org/10.1016/j.compositesb.2019.107183.
  • 8. Andrzejewski J, Mohanty A, Engineering MM-CPB, 2020 undefined. Development of hybrid composites reinforced with biocarbon/carbon fiber system. The comparative study for PC, ABS and PC/ABS based materials. Elsevier n.d.
  • 9. technology JJ-C science and, 2006 U. Hydrolytic stability of PC/GF composites with engineered interphase of varying elastic modulus. Elsevier n.d.
  • 10. Jancar J. Hydrolytic stability of PC/GF composites with engineered interphase of varying elastic modulus. Compos Sci Technol 2006;66:3144–52. https://doi.org/10.1016/j.compscitech.2005.03.019.
  • 11. Sun XC, Kawashita LF, Kaddour AS, Hiley MJ, Hallett SR. Comparison of low velocity impact modelling techniques for thermoplastic and thermoset polymer composites. Compos Struct 2018;203:659–71. https://doi.org/10.1016/j.compstruct.2018.07.054.
  • 12. Si H, Zhou L, Wu Y, Song L, Kang M, Zhao X, et al. Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks. Compos Part B Eng 2020;199. https://doi.org/10.1016/j.compositesb.2020.108278.
  • 13. Wang W, Zhou G, Yu B, Peng M. New reactive rigid-rod aminated aromatic polyamide for the simultaneous strengthening and toughening of epoxy resin and carbon fiber/epoxy composites. Compos Part B Eng 2020;197. https://doi.org/10.1016/j.compositesb.2020.108044.
  • 14. Guo W, Zhao Y, Wang X, Cai W, Wang J, Song L, et al. Multifunctional epoxy composites with highly flame retardant and effective electromagnetic interference shielding performances. Compos Part B Eng 2020;192. https://doi.org/10.1016/j.compositesb.2020.107990.
  • 15. Nasser J, Zhang L, Sodano H. Laser induced graphene interlaminar reinforcement for tough carbon fiber/epoxy composites. Compos Sci Technol 2021;201. https://doi.org/10.1016/j.compscitech.2020.108493.
  • 16. Tripathi L, Chowdhury S, Behera BK. Modelling and simulation of compression behaviour of 3D woven hollow composite structures using FEM analysis. Text Leather Rev 2020;3:6–18. https://doi.org/10.31881/TLR.2020.03.
  • 17. Tripathi L, Chowdhury S, Behera BK. Low-velocity impact behavior of 3D woven structural honeycomb composite. Mech Adv Mater Struct 2023;0:1–16. https://doi.org/10.1080/15376494.2023.2199415.
  • 18. Behera, B.K., Jain, M., Tripathi, L. and Chowdhury, S. Low-velocity impact behavior of textile-reinforced composite sandwich panels. Sandw. Compos., 2022, p. pp.213-260. https://doi.org/https://doi.org/10.1201/9781003143031.
  • 19. Chowdhury S, Behera BK. Low-velocity impact response of 3D woven solid structures for multi-scale applications: role of yarn maneuverability and weave architecture. vol. 46. Springer Berlin Heidelberg; 2024. https://doi.org/10.1007/s40430-024-04734-z.
  • 20. Tripathi L, Chowdhury S, Behera BK. Modeling and simulation of impact behavior of 3D woven solid structure for ballistic application. J Ind Text 2022;51:6065S-6086S. https://doi.org/10.1177/1528083720980467.
  • 21. Belingardi G, Beyene AT, Jichuan D. Energy absorbing capability of GMT, GMTex and GMT-UD composite panels for static and dynamic loading - Experimental and numerical study. Compos Struct 2016;143:371–87. https://doi.org/10.1016/j.compstruct.2016.01.099.
  • 22. Behrens BA, Bohne F, Lorenz R, Arndt H, Hübner S, Micke-Camuz M. Numerical and experimental investigation of GMT compression molding and fiber displacement of UD-tape inserts. Procedia Manuf., vol. 47, 2020, p. 11–6. https://doi.org/10.1016/j.promfg.2020.04.109.
  • 23. Dasappa P, Lee-Sullivan P, Xiao X. Temperature effects on creep behavior of continuous fiber GMT composites. Compos Part A Appl Sci Manuf 2009;40:1071–81. https://doi.org/10.1016/j.compositesa.2009.04.026.
  • 24. Behrens BA, Hübner S, Bonk C, Bohne F, Micke-Camuz M. Development of a Combined Process of Organic Sheet forming and GMT Compression Molding. Procedia Eng., vol. 207, 2017, p. 101–6. https://doi.org/10.1016/j.proeng.2017.10.745.
  • 25. Wiese M, Thiede S, Herrmann C. Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges. Addit Manuf 2020;36. https://doi.org/10.1016/j.addma.2020.101582.
  • 26. Joo SJ, Yu MH, Seock Kim W, Lee JW, Kim HS. Design and manufacture of automotive composite front bumper assemble component considering interfacial bond characteristics between over-molded chopped glass fiber polypropylene and continuous glass fiber polypropylene composite. Compos Struct 2020;236. https://doi.org/10.1016/j.compstruct.2019.111849.
  • 27. Hwang D, Cho D. Fiber aspect ratio effect on mechanical and thermal properties of carbon fiber/ABS composites via extrusion and long fiber thermoplastic processes. J Ind Eng Chem 2019;80:335–44. https://doi.org/10.1016/j.jiec.2019.08.012.
  • 28. Lystrup A. Hybrid yarn for thermoplastic fibre composites. Final report for MUP2 framework program no. 1994-503/0926-50. Summary of technical results. 1998.
  • 29. Zhang L, Miao M. Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites. Compos Sci Technol 2010;70:130–5. https://doi.org/10.1016/j.compscitech.2009.09.016.
  • 30. Zhang MQ, Rong MZ. Self-Healing Polymers and Polymer Composites. 2011. https://doi.org/10.1002/9781118082720.
  • 31. Vashishtha A, Sharma D. Mechanical Properties of Natural Fibre-based Woven Fabric- reinforced Thermoplastic and Thermoset Composites 2024;84:320–4.
  • 32. Pavlovski D, Mislavsky B, Antonov A. CNG cylinder manufacturers test basalt fibre. Reinf Plast 2007;51. https://doi.org/10.1016/S0034-3617(07)70152-2.
  • 33. Li W, Xu J. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Mater Sci Eng A 2009;513–514:145–53. https://doi.org/10.1016/j.msea.2009.02.033.
  • 34. Li W, Xu J, Zhai Y, Li Q. Mechanical properties of carbon fiber reinforced concrete under impact loading. Tumu Gongcheng Xuebao/China Civ Eng J 2009;42.
  • 35. Liu Q, Shaw MT, Parnas RS, McDonnell AM. Investigation of Basalt Fiber composite mechanical properties for applications in Transportation. Polym Compos 2006;27:41–8. https://doi.org/10.1002/pc.20162.
  • 36. Hao LC, Yu WD. Evaluation of thermal protective performance of basalt fiber nonwoven fabrics. J Therm Anal Calorim 2010;100:551–5. https://doi.org/10.1007/s10973-009-0179-0.
  • 37. Czigány T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study. Compos Sci Technol 2006;66:3210–20. https://doi.org/10.1016/j.compscitech.2005.07.007.
  • 38. Dehkordi M, Nosraty H, Shokrieh M, Design GM-M&, 2013 undefined. The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites. Elsevier n.d.
  • 39. Garon R, Balaguru PN, Toutanji H. Performance of inorganic polymer-fiber composites for strengthening and rehabilitation of concrete beams. FRPRCS-5 Fibre-reinforced Plast. Reinf. Concr. Struct. Vol. 1 Proc. fifth Int. Conf. fibre-reinforced Plast. Reinf. Concr. Struct. Cambridge, UK, 16–18 July 2001, 2001, p. 53–62.
  • 40. Hirai T. Use of continuous fibers for reinforcing concrete. Concr Int 1992;12:58–60.
  • 41. Wang X, Hu B, Feng Y, Liang F, Mo J, Xiong J, et al. Low velocity impact properties of 3D woven basalt/aramid hybrid composites. Compos Sci Technol 2008;68:444–50. https://doi.org/10.1016/j.compscitech.2007.06.016.

Mechanical Performance of Basalt and Glass Woven Composites

Yıl 2024, Cilt: 31 Sayı: 134, 88 - 98, 30.06.2024
https://doi.org/10.7216/teksmuh.1436529

Öz

This study systematically evaluates the mechanical properties of glass and basalt high-performance fibers in woven fabric-reinforced composites with thermoplastic and thermoset matrices. Investigating responses to diverse quasi-static and dynamic impact loads, the research emphasizes the growing interest in composites as alternatives to conventional metals. Examining basalt and glass fibers within different matrices, the study optimizes composite materials by scrutinizing tensile strength, flexural strength, and edge-wise impact resistance. Combining literature review and experiments, the research highlights basalt fibers for their high tensile strength and environmental sustainability. Key findings show that, under quasi-static conditions, thermoset composites excel in in-plane load bearing, while thermoplastic composites exhibit exceptional edge-wise impact resistance. Additionally, the study notes the superior flexural properties of thermoplastic-based basalt composites over glass, with dynamics shifting under thermoset matrices. This underscores the profound influence of both reinforcement and matrix materials on composite mechanical properties. Basalt thermoplastic composite (TPB2DFRC) outperforms Glass-based counterpart (TPG2DFRC) in tensile properties, demonstrating superior elasticity and plasticity for enhanced deformation resistance. In flexural characteristics, TPB2DFRC excels, displaying higher modulus, strength, and flexibility compared to Glass-based thermoplastic composite (TPG2DFRC), highlighting the superior mechanical attributes of Basalt composites. The Izod impact properties showcase Basalt composites’ exceptional resistance, with higher impact strength and energy values, surpassing Glass counterparts. This underscores the potential of Basalt-based materials for applications requiring superior resilience to dynamic impact loading.

Kaynakça

  • 1. Mertz DR. Application of Fiber Reinforced Polymer (FRP) Composites to the Highway Infrastructure: Strategic Plan. 2003.
  • 2. Tehrani Dehkordi M, Nosraty H, Shokrieh MM, Minak G, Ghelli D. The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites. Mater Des 2013;43:283–90. https://doi.org/10.1016/j.matdes.2012.07.005
  • 3. Lasica W, Malek M, Szcześniak Z, Owczarek M. Characterization of recycled glass-cement composite: Mechanical strength. Mater Tehnol 2020;54:473–7. https://doi.org/10.17222/MIT.2019.152.
  • 4. Wei B, Cao H, Song S. Environmental resistance and mechanical performance of basalt and glass fibers. Mater Sci Eng A 2010;527:4708–15. https://doi.org/10.1016/j.msea.2010.04.021.
  • 5. Deák T, Czigány T. Chemical Composition and Mechanical Properties of Basalt and Glass Fibers: A Comparison. Text Res J 2009;79:645–51. https://doi.org/10.1177/0040517508095597.
  • 6. Buggy M, Farragher L, Madden W. Recycling of composite materials. J Mater Process Tech 1995;55:448–56. https://doi.org/10.1016/0924-0136(95)02037-3.
  • 7. Yang SB, Kim YJ, Kwon IJ, Park SM, Kwon DJ, Yeum JH. Simple manufacturing method for a thermoplastic composite using PP-Straw. Compos Part B Eng 2019;176. https://doi.org/10.1016/j.compositesb.2019.107183.
  • 8. Andrzejewski J, Mohanty A, Engineering MM-CPB, 2020 undefined. Development of hybrid composites reinforced with biocarbon/carbon fiber system. The comparative study for PC, ABS and PC/ABS based materials. Elsevier n.d.
  • 9. technology JJ-C science and, 2006 U. Hydrolytic stability of PC/GF composites with engineered interphase of varying elastic modulus. Elsevier n.d.
  • 10. Jancar J. Hydrolytic stability of PC/GF composites with engineered interphase of varying elastic modulus. Compos Sci Technol 2006;66:3144–52. https://doi.org/10.1016/j.compscitech.2005.03.019.
  • 11. Sun XC, Kawashita LF, Kaddour AS, Hiley MJ, Hallett SR. Comparison of low velocity impact modelling techniques for thermoplastic and thermoset polymer composites. Compos Struct 2018;203:659–71. https://doi.org/10.1016/j.compstruct.2018.07.054.
  • 12. Si H, Zhou L, Wu Y, Song L, Kang M, Zhao X, et al. Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks. Compos Part B Eng 2020;199. https://doi.org/10.1016/j.compositesb.2020.108278.
  • 13. Wang W, Zhou G, Yu B, Peng M. New reactive rigid-rod aminated aromatic polyamide for the simultaneous strengthening and toughening of epoxy resin and carbon fiber/epoxy composites. Compos Part B Eng 2020;197. https://doi.org/10.1016/j.compositesb.2020.108044.
  • 14. Guo W, Zhao Y, Wang X, Cai W, Wang J, Song L, et al. Multifunctional epoxy composites with highly flame retardant and effective electromagnetic interference shielding performances. Compos Part B Eng 2020;192. https://doi.org/10.1016/j.compositesb.2020.107990.
  • 15. Nasser J, Zhang L, Sodano H. Laser induced graphene interlaminar reinforcement for tough carbon fiber/epoxy composites. Compos Sci Technol 2021;201. https://doi.org/10.1016/j.compscitech.2020.108493.
  • 16. Tripathi L, Chowdhury S, Behera BK. Modelling and simulation of compression behaviour of 3D woven hollow composite structures using FEM analysis. Text Leather Rev 2020;3:6–18. https://doi.org/10.31881/TLR.2020.03.
  • 17. Tripathi L, Chowdhury S, Behera BK. Low-velocity impact behavior of 3D woven structural honeycomb composite. Mech Adv Mater Struct 2023;0:1–16. https://doi.org/10.1080/15376494.2023.2199415.
  • 18. Behera, B.K., Jain, M., Tripathi, L. and Chowdhury, S. Low-velocity impact behavior of textile-reinforced composite sandwich panels. Sandw. Compos., 2022, p. pp.213-260. https://doi.org/https://doi.org/10.1201/9781003143031.
  • 19. Chowdhury S, Behera BK. Low-velocity impact response of 3D woven solid structures for multi-scale applications: role of yarn maneuverability and weave architecture. vol. 46. Springer Berlin Heidelberg; 2024. https://doi.org/10.1007/s40430-024-04734-z.
  • 20. Tripathi L, Chowdhury S, Behera BK. Modeling and simulation of impact behavior of 3D woven solid structure for ballistic application. J Ind Text 2022;51:6065S-6086S. https://doi.org/10.1177/1528083720980467.
  • 21. Belingardi G, Beyene AT, Jichuan D. Energy absorbing capability of GMT, GMTex and GMT-UD composite panels for static and dynamic loading - Experimental and numerical study. Compos Struct 2016;143:371–87. https://doi.org/10.1016/j.compstruct.2016.01.099.
  • 22. Behrens BA, Bohne F, Lorenz R, Arndt H, Hübner S, Micke-Camuz M. Numerical and experimental investigation of GMT compression molding and fiber displacement of UD-tape inserts. Procedia Manuf., vol. 47, 2020, p. 11–6. https://doi.org/10.1016/j.promfg.2020.04.109.
  • 23. Dasappa P, Lee-Sullivan P, Xiao X. Temperature effects on creep behavior of continuous fiber GMT composites. Compos Part A Appl Sci Manuf 2009;40:1071–81. https://doi.org/10.1016/j.compositesa.2009.04.026.
  • 24. Behrens BA, Hübner S, Bonk C, Bohne F, Micke-Camuz M. Development of a Combined Process of Organic Sheet forming and GMT Compression Molding. Procedia Eng., vol. 207, 2017, p. 101–6. https://doi.org/10.1016/j.proeng.2017.10.745.
  • 25. Wiese M, Thiede S, Herrmann C. Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges. Addit Manuf 2020;36. https://doi.org/10.1016/j.addma.2020.101582.
  • 26. Joo SJ, Yu MH, Seock Kim W, Lee JW, Kim HS. Design and manufacture of automotive composite front bumper assemble component considering interfacial bond characteristics between over-molded chopped glass fiber polypropylene and continuous glass fiber polypropylene composite. Compos Struct 2020;236. https://doi.org/10.1016/j.compstruct.2019.111849.
  • 27. Hwang D, Cho D. Fiber aspect ratio effect on mechanical and thermal properties of carbon fiber/ABS composites via extrusion and long fiber thermoplastic processes. J Ind Eng Chem 2019;80:335–44. https://doi.org/10.1016/j.jiec.2019.08.012.
  • 28. Lystrup A. Hybrid yarn for thermoplastic fibre composites. Final report for MUP2 framework program no. 1994-503/0926-50. Summary of technical results. 1998.
  • 29. Zhang L, Miao M. Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites. Compos Sci Technol 2010;70:130–5. https://doi.org/10.1016/j.compscitech.2009.09.016.
  • 30. Zhang MQ, Rong MZ. Self-Healing Polymers and Polymer Composites. 2011. https://doi.org/10.1002/9781118082720.
  • 31. Vashishtha A, Sharma D. Mechanical Properties of Natural Fibre-based Woven Fabric- reinforced Thermoplastic and Thermoset Composites 2024;84:320–4.
  • 32. Pavlovski D, Mislavsky B, Antonov A. CNG cylinder manufacturers test basalt fibre. Reinf Plast 2007;51. https://doi.org/10.1016/S0034-3617(07)70152-2.
  • 33. Li W, Xu J. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Mater Sci Eng A 2009;513–514:145–53. https://doi.org/10.1016/j.msea.2009.02.033.
  • 34. Li W, Xu J, Zhai Y, Li Q. Mechanical properties of carbon fiber reinforced concrete under impact loading. Tumu Gongcheng Xuebao/China Civ Eng J 2009;42.
  • 35. Liu Q, Shaw MT, Parnas RS, McDonnell AM. Investigation of Basalt Fiber composite mechanical properties for applications in Transportation. Polym Compos 2006;27:41–8. https://doi.org/10.1002/pc.20162.
  • 36. Hao LC, Yu WD. Evaluation of thermal protective performance of basalt fiber nonwoven fabrics. J Therm Anal Calorim 2010;100:551–5. https://doi.org/10.1007/s10973-009-0179-0.
  • 37. Czigány T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study. Compos Sci Technol 2006;66:3210–20. https://doi.org/10.1016/j.compscitech.2005.07.007.
  • 38. Dehkordi M, Nosraty H, Shokrieh M, Design GM-M&, 2013 undefined. The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites. Elsevier n.d.
  • 39. Garon R, Balaguru PN, Toutanji H. Performance of inorganic polymer-fiber composites for strengthening and rehabilitation of concrete beams. FRPRCS-5 Fibre-reinforced Plast. Reinf. Concr. Struct. Vol. 1 Proc. fifth Int. Conf. fibre-reinforced Plast. Reinf. Concr. Struct. Cambridge, UK, 16–18 July 2001, 2001, p. 53–62.
  • 40. Hirai T. Use of continuous fibers for reinforcing concrete. Concr Int 1992;12:58–60.
  • 41. Wang X, Hu B, Feng Y, Liang F, Mo J, Xiong J, et al. Low velocity impact properties of 3D woven basalt/aramid hybrid composites. Compos Sci Technol 2008;68:444–50. https://doi.org/10.1016/j.compscitech.2007.06.016.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tekstil Teknolojisi
Bölüm Makaleler
Yazarlar

Arvınd Vashıshtha

Dhirendra Sharma Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 13 Şubat 2024
Kabul Tarihi 12 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 31 Sayı: 134

Kaynak Göster

APA Vashıshtha, A., & Sharma, D. (2024). Mechanical Performance of Basalt and Glass Woven Composites. Tekstil Ve Mühendis, 31(134), 88-98. https://doi.org/10.7216/teksmuh.1436529
AMA Vashıshtha A, Sharma D. Mechanical Performance of Basalt and Glass Woven Composites. Tekstil ve Mühendis. Haziran 2024;31(134):88-98. doi:10.7216/teksmuh.1436529
Chicago Vashıshtha, Arvınd, ve Dhirendra Sharma. “Mechanical Performance of Basalt and Glass Woven Composites”. Tekstil Ve Mühendis 31, sy. 134 (Haziran 2024): 88-98. https://doi.org/10.7216/teksmuh.1436529.
EndNote Vashıshtha A, Sharma D (01 Haziran 2024) Mechanical Performance of Basalt and Glass Woven Composites. Tekstil ve Mühendis 31 134 88–98.
IEEE A. Vashıshtha ve D. Sharma, “Mechanical Performance of Basalt and Glass Woven Composites”, Tekstil ve Mühendis, c. 31, sy. 134, ss. 88–98, 2024, doi: 10.7216/teksmuh.1436529.
ISNAD Vashıshtha, Arvınd - Sharma, Dhirendra. “Mechanical Performance of Basalt and Glass Woven Composites”. Tekstil ve Mühendis 31/134 (Haziran 2024), 88-98. https://doi.org/10.7216/teksmuh.1436529.
JAMA Vashıshtha A, Sharma D. Mechanical Performance of Basalt and Glass Woven Composites. Tekstil ve Mühendis. 2024;31:88–98.
MLA Vashıshtha, Arvınd ve Dhirendra Sharma. “Mechanical Performance of Basalt and Glass Woven Composites”. Tekstil Ve Mühendis, c. 31, sy. 134, 2024, ss. 88-98, doi:10.7216/teksmuh.1436529.
Vancouver Vashıshtha A, Sharma D. Mechanical Performance of Basalt and Glass Woven Composites. Tekstil ve Mühendis. 2024;31(134):88-9.