Araştırma Makalesi
BibTex RIS Kaynak Göster

Finite element analysis of enset fiber composite material

Yıl 2025, Cilt: 32 Sayı: 138, 105 - 115, 30.06.2025
https://doi.org/10.7216/teksmuh.1629252

Öz

Enset fiber, a naturally abundant and low-cost material, offers promising potential as a sustainable reinforcement in composite applications. This study presents a comparative evaluation of Enset fiber reinforced composite (EFRC) and glass fiber reinforced composite (GFRC) under identical fiber orientation, volume fraction, and loading conditions using ANSYS Composite Prepost (ACP) and ANSYS Workbench. The composites were analysed for their flexural, tensile, impact, and modal responses. Simulation results reveal that EFRC develops lower stress magnitudes to resist the applied loads, indicating better load-bearing efficiency. Specifically, EFRC develops a tensile stress of 4.7098 MPa, while GFRC develops 5.0518 MPa under the same loading conditions. In the flexural analysis, the stress in EFRC is 32.289 MPa, whereas GFRC shows a higher value of 43.893 MPa. Similarly, in the impact test, EFRC records a stress of 11,736 MPa, compared to 26,462 MPa for GFRC. Moreover, modal analysis shows that EFRC has lower natural frequencies in all vibration modes, reflecting favourable damping characteristics and reduced stiffness. These findings indicate that EFRC performs more efficiently by developing less internal stress under equivalent loading, which can be advantageous in structural applications requiring energy absorption and vibration control. Considering its mechanical performance, environmental benefits, and cost-effectiveness, Enset fiber presents a viable alternative to synthetic fibers like glass in the production of lightweight and sustainable composite materials. Further experimental studies focusing on durability, moisture resistance, and fiber-matrix interface optimization are recommended to support the broader implementation of Enset fiber composites in real-world engineering applications.

Etik Beyan

There are no ethical issues with the publication of this manuscript.

Kaynakça

  • 1. M. S. R. et al. . M S. Rabbi et al., “Jute Fiber-Reinforced Polymer Composites, A Comprehensive Review,” Int. J. Mech. Prod. Eng. Res. Dev., vol. 10, no. 3, pp. 3053–3072, 2020, doi: 10.24247/ijmperdjun2020290.
  • 2. A. Atmakuri, A. Palevicius, L. Kolli, A. Vilkauskas, and G. Janusas, “Development and analysis of mechanical properties of caryota and sisal natural fibers reinforced epoxy hybrid composites,” Polymers (Basel)., vol. 13, no. 6, pp. 1–19, 2021, doi: 10.3390/polym13060864.
  • 3. T. Khan, M. T. Bin Hameed Sultan, and A. H. Ariffin, “The challenges of natural fiber in manufacturing, material selection, and technology application: A review,” J. Reinf. Plast. Compos., vol. 37, no. 11, pp. 770–779, 2018, doi: 10.1177/0731684418756762.
  • 4. B. K. Dejene and T. M. Geletaw, “A Review on False Banana (Enset Ventricosum) Fiber Reinforced Green Composite and Its Applications,” J. Nat. Fibers, vol. 20, no. 2, 2023, doi: 10.1080/15440478.2023.2244163.
  • 5. D. T. Balcha, B. Kulig, O. Hensel, and E. Woldesenbet, “Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant,” World Acad. Sci. Eng. Technol. Int. J. Aerosp. Mech. Eng., vol. 15, no. 1, pp. 7–14, 2021.
  • 6. M. D. Monzón et al., “Experimental analysis and simulation of novel technical textile reinforced composite of banana fibre,” Materials (Basel)., vol. 12, no. 7, 2019, doi: 10.3390/ma12071134.
  • 7. R. Dungani, M. Karina, Subyakto, A. Sulaeman, D. Hermawan, and A. Hadiyane, “Agricultural waste fibers towards sustainability and advanced utilization: A review,” Asian J. Plant Sci., vol. 15, no. 1–2, pp. 42–55, 2016, doi: 10.3923/ajps.2016.42.55.
  • 8. G. Navaneethakrishnan et al., “Structural analysis of natural fiber reinforced polymer matrix composite,” Mater. Today Proc., vol. 21, no. xxxx, pp. 7–9, 2020, doi: 10.1016/j.matpr.2019.05.295.
  • 9. B. Yalçın et al., “Effect of Drilling Parameters and Tool Diameter on Delamination and Thrust Force in the Drilling of High-Performance Glass/Epoxy Composites for Aerospace Structures with a New Design Drill,” Polymers (Basel)., vol. 16, no. 21, 2024, doi: 10.3390/polym16213011.
  • 10. M. D. Teli and J. M. Terega, “Solvent-free acetylation of Ensete ventricosum plant fibre to enhance oleophilicity,” J. Text. Inst., vol. 113, no. 9, pp. 1958–1966, 2022, doi: 10.1080/00405000.2021.1957292.
  • 11. H. Berhanu et al., “Characterization of crop residues from false banana /ensete ventricosum/ in Ethiopia in view of a full-resource valorization,” PLoS One, vol. 13, no. 7, pp. 1–21, 2018, doi: 10.1371/journal.pone.0199422.
  • 12. J. Harrison et al., “A draft genome sequence for Ensete ventricosum, the drought-tolerant ‘Tree against hunger,’” Agronomy, vol. 4, no. 1, pp. 13–33, 2014, doi: 10.3390/ agronomy4010013.
  • 13. M. D. Teli and J. M. Terega, “Chemical , Physical and Thermal Characterization of Ensete ventricosum Plant Fibre,” Int. Res. J. Eng. Technol., vol. 04, no. 12, pp. 67–75, 2017.
  • 14. E. Dessie, T. Tesfaye, L. Fanxizi, R. K. Gideon, and Y. Qiu, “The Effect of fibre position and gauge lengths along the length of enset bundle fibres on physical and mechanical properties: Application of statistics analysis,” J. Nat. Fibers, vol. 20, no. 1, pp. 1–15, 2023, doi: 10.1080/15440478.2022.2150742.
  • 15. T. Batu and H. G. Lemu, “Fatigue Life Study of False Banana/Glass Fiber Reinforced Composite for Wind Turbine Blade Application,” Lect. Notes Electr. Eng., vol. 737, pp. 29–40, 2021, doi: 10.1007/978-981-33-6318-2_4.
  • 16. A. Abdela, M. Versteyhe, and F. Taddese, “Characterization of Single Enset Fiber Tensile Properties Using Optimal Experimental Design and Digital Image Correlation Technique,” Int. J. Mech. Eng. Appl., vol. 8, no. 1, p. 8, 2020, doi: 10.11648/j.ijmea.20200801.12.
  • 17. B. Ergene, “Techno-Science,” vol. 25, pp. 20–25, 2020.
  • 18. M. K. Gupta and R. K. Srivastava, “Mechanical Properties of Hybrid Fibers-Reinforced Polymer Composite: A Review,” Polym. - Plast. Technol. Eng., vol. 55, no. 6, pp. 626–642, 2016, doi: 10.1080/03602559.2015.1098694.
  • 19. S. Olhan, V. Khatkar, and B. K. Behera, “Review: Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting,” J. Mater. Sci., vol. 56, no. 34, pp. 18867–18910, 2021, doi: 10.1007/s10853-021-06509-6.
  • 20. W. Zhang and J. Xu, “Advanced lightweight materials for Automobiles: A review,” Mater. Des., vol. 221, p. 110994, 2022, doi: 10.1016/j.matdes.2022.110994.
  • 21. A. Abuye and H. Molla, “Fabrication and Characterization of False Banana Fiber Reinforced Gypsum Composite,” Int. J. Sci. Eng. Res., vol. 11, no. 8, pp. 1568–1574, 2020.
  • 22. S. Tadasse, K. Abdellah, A. Prasanth, D. Goytom, and A. Kumar Deepati, “Mechanical Characterization of Natural Fiber Reinforced Composites: An Alternative for Rural House Roofing’s,” Mater. Today Proc., vol. 5, no. 11, pp. 25016–25026, 2018, doi: 10.1016/j.matpr.2018.10.302.
  • 23. A. G. Temesgen, R. Eren, and Y. Aykut, “Investigation of mechanical properties of a novel green composite developed by using enset woven fabric and bioresin materials,” Polym. Bull., vol. 81, no. 5, pp. 4199–4219, 2024, doi: 10.1007/s00289-023-04905-3.
  • 24. E. M. Feyissa and A. D. Gudayu, “Synthesis of starch-derived biopolymer reinforced Enset fiber green composite packaging films: Processes and properties optimization,” Compos. Adv. Mater., vol. 32, pp. 1–21, 2023, doi: 10.1177/26349833231200907.
  • 25. K. G. Abraha, D. K. Debeli, M. U. Ghani, B. Zhuo, A. A. Tesfahunegn, and J. Guo, “Enhancing enset fiber-reinforced polylactic acid composites through different surface treatments for emerging applications,” Polym. Compos., no. November 2024, pp. 5140–5155, 2024, doi: 10.1002/pc.29280.
  • 26. B. A. Abebe. O.Secgin, A.Kolip, “Enset fiber reinforced composite vehicle body crash analysis,” Sci. Iran., vol. 31, no. 1, pp. 123–135, 2024.
  • 27. M. Nagarajaiah, A. Yadav, S. Prasannakumar, R. R. Mahadevaiah, and P. Hiremath, “Finite Element Study on Coconut Inflorescence Stem Fiber Composite Panels Subjected to Static Loading,” Eng. Proc., vol. 59, no. 1, pp. 1–11, 2024, doi: 10.3390/engproc2023059215.
  • 28. A. Sayam et al., A review on carbon fiber-reinforced hierarchical composites: mechanical performance, manufacturing process, structural applications and allied challenges, vol. 32, no. 5. Springer Nature Singapore, 2022. doi: 10.1007/s42823-022-00358-2.
  • 29. B. Ergene, C. Bolat, U. Karakilinc, and A. B. Irez, “A comprehensive investigation of drilling performance of anisotropic stacked glass-carbon fiber reinforced hybrid laminate composites,” Polym. Compos., vol. 44, no. 5, pp. 2656–2670, 2023, doi: 10.1002/pc.27268.
  • 30. M. S. EL-Wazery, M. I. EL-Elamy, and S. H. Zoalfakar, “Mechanical properties of glass fiber reinforced polyester composites,” Int. J. Appl. Sci. Eng., vol. 14, no. 3, pp. 121–131, 2017, doi: 10.6703/IJASE.2017.14(3).121.

Enset fiber kompozit malzemenin sonlu elemanlar analizi

Yıl 2025, Cilt: 32 Sayı: 138, 105 - 115, 30.06.2025
https://doi.org/10.7216/teksmuh.1629252

Öz

Doğal olarak bol bulunan ve düşük maliyetli bir malzeme olan Enset lifi, kompozit uygulamalarda sürdürülebilir bir takviye malzemesi olarak önemli bir potansiyel sunmaktadır. Bu çalışma, Enset lifi takviyeli kompozit (EFRC) ile cam lifi takviyeli kompozitin (GFRC) aynı lif yönelimi, hacim oranı ve yükleme koşulları altında ANSYS Kompozite Prepost (ACP) ve ANSYS Workbench yazılımları kullanılarak karşılaştırmalı değerlendirmesini sunmaktadır. Kompozitler eğilme, çekme, darbe ve modal tepkileri açısından analiz edilmiştir. Simülasyon sonuçları, EFRC'nin uygulanan yükleri karşılamak için daha düşük gerilmeler geliştirdiğini ve bunun da daha iyi yük taşıma verimliliğine işaret ettiğini göstermektedir. Özellikle, aynı yükleme koşulları altında EFRC 4.7098 MPa çekme gerilmesi geliştirirken, GFRC 5.0518 MPa değerine ulaşmaktadır. Eğilme analizinde EFRC'de oluşan maksimum gerilme 32.289 MPa iken, GFRC bu değeri 43.893 MPa olarak göstermektedir. Benzer şekilde, darbe testinde EFRC 11.736 MPa’lık bir gerilme üretirken, GFRC 26.462 MPa seviyesine ulaşmaktadır. Ayrıca, modal analiz sonuçları EFRC'nin tüm titreşim modlarında daha düşük doğal frekanslara sahip olduğunu, bunun da daha iyi sönümleme özellikleri ve daha düşük rijitlik anlamına geldiğini ortaya koymaktadır. Bu bulgular, EFRC'nin eşdeğer yükler altında daha düşük iç gerilmeler geliştirerek daha verimli bir mekanik performans sergilediğini ve bu durumun enerji sönümleme ve titreşim kontrolü gerektiren yapısal uygulamalarda avantaj sağlayabileceğini göstermektedir. Mekanik performansı, çevresel faydaları ve ekonomik oluşu göz önüne alındığında, Enset lifi, cam gibi sentetik liflere sürdürülebilir bir alternatif olarak hafif kompozit malzeme üretiminde önemli bir adaydır. Dayanıklılık, nem direnci ve lif-matris ara yüzey etkileşimi gibi konularda yapılacak ilave deneysel çalışmalar, Enset lifi kompozitlerinin gerçek mühendislik uygulamalarında daha yaygın kullanılmasına katkı sağlayacaktır.

Kaynakça

  • 1. M. S. R. et al. . M S. Rabbi et al., “Jute Fiber-Reinforced Polymer Composites, A Comprehensive Review,” Int. J. Mech. Prod. Eng. Res. Dev., vol. 10, no. 3, pp. 3053–3072, 2020, doi: 10.24247/ijmperdjun2020290.
  • 2. A. Atmakuri, A. Palevicius, L. Kolli, A. Vilkauskas, and G. Janusas, “Development and analysis of mechanical properties of caryota and sisal natural fibers reinforced epoxy hybrid composites,” Polymers (Basel)., vol. 13, no. 6, pp. 1–19, 2021, doi: 10.3390/polym13060864.
  • 3. T. Khan, M. T. Bin Hameed Sultan, and A. H. Ariffin, “The challenges of natural fiber in manufacturing, material selection, and technology application: A review,” J. Reinf. Plast. Compos., vol. 37, no. 11, pp. 770–779, 2018, doi: 10.1177/0731684418756762.
  • 4. B. K. Dejene and T. M. Geletaw, “A Review on False Banana (Enset Ventricosum) Fiber Reinforced Green Composite and Its Applications,” J. Nat. Fibers, vol. 20, no. 2, 2023, doi: 10.1080/15440478.2023.2244163.
  • 5. D. T. Balcha, B. Kulig, O. Hensel, and E. Woldesenbet, “Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant,” World Acad. Sci. Eng. Technol. Int. J. Aerosp. Mech. Eng., vol. 15, no. 1, pp. 7–14, 2021.
  • 6. M. D. Monzón et al., “Experimental analysis and simulation of novel technical textile reinforced composite of banana fibre,” Materials (Basel)., vol. 12, no. 7, 2019, doi: 10.3390/ma12071134.
  • 7. R. Dungani, M. Karina, Subyakto, A. Sulaeman, D. Hermawan, and A. Hadiyane, “Agricultural waste fibers towards sustainability and advanced utilization: A review,” Asian J. Plant Sci., vol. 15, no. 1–2, pp. 42–55, 2016, doi: 10.3923/ajps.2016.42.55.
  • 8. G. Navaneethakrishnan et al., “Structural analysis of natural fiber reinforced polymer matrix composite,” Mater. Today Proc., vol. 21, no. xxxx, pp. 7–9, 2020, doi: 10.1016/j.matpr.2019.05.295.
  • 9. B. Yalçın et al., “Effect of Drilling Parameters and Tool Diameter on Delamination and Thrust Force in the Drilling of High-Performance Glass/Epoxy Composites for Aerospace Structures with a New Design Drill,” Polymers (Basel)., vol. 16, no. 21, 2024, doi: 10.3390/polym16213011.
  • 10. M. D. Teli and J. M. Terega, “Solvent-free acetylation of Ensete ventricosum plant fibre to enhance oleophilicity,” J. Text. Inst., vol. 113, no. 9, pp. 1958–1966, 2022, doi: 10.1080/00405000.2021.1957292.
  • 11. H. Berhanu et al., “Characterization of crop residues from false banana /ensete ventricosum/ in Ethiopia in view of a full-resource valorization,” PLoS One, vol. 13, no. 7, pp. 1–21, 2018, doi: 10.1371/journal.pone.0199422.
  • 12. J. Harrison et al., “A draft genome sequence for Ensete ventricosum, the drought-tolerant ‘Tree against hunger,’” Agronomy, vol. 4, no. 1, pp. 13–33, 2014, doi: 10.3390/ agronomy4010013.
  • 13. M. D. Teli and J. M. Terega, “Chemical , Physical and Thermal Characterization of Ensete ventricosum Plant Fibre,” Int. Res. J. Eng. Technol., vol. 04, no. 12, pp. 67–75, 2017.
  • 14. E. Dessie, T. Tesfaye, L. Fanxizi, R. K. Gideon, and Y. Qiu, “The Effect of fibre position and gauge lengths along the length of enset bundle fibres on physical and mechanical properties: Application of statistics analysis,” J. Nat. Fibers, vol. 20, no. 1, pp. 1–15, 2023, doi: 10.1080/15440478.2022.2150742.
  • 15. T. Batu and H. G. Lemu, “Fatigue Life Study of False Banana/Glass Fiber Reinforced Composite for Wind Turbine Blade Application,” Lect. Notes Electr. Eng., vol. 737, pp. 29–40, 2021, doi: 10.1007/978-981-33-6318-2_4.
  • 16. A. Abdela, M. Versteyhe, and F. Taddese, “Characterization of Single Enset Fiber Tensile Properties Using Optimal Experimental Design and Digital Image Correlation Technique,” Int. J. Mech. Eng. Appl., vol. 8, no. 1, p. 8, 2020, doi: 10.11648/j.ijmea.20200801.12.
  • 17. B. Ergene, “Techno-Science,” vol. 25, pp. 20–25, 2020.
  • 18. M. K. Gupta and R. K. Srivastava, “Mechanical Properties of Hybrid Fibers-Reinforced Polymer Composite: A Review,” Polym. - Plast. Technol. Eng., vol. 55, no. 6, pp. 626–642, 2016, doi: 10.1080/03602559.2015.1098694.
  • 19. S. Olhan, V. Khatkar, and B. K. Behera, “Review: Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting,” J. Mater. Sci., vol. 56, no. 34, pp. 18867–18910, 2021, doi: 10.1007/s10853-021-06509-6.
  • 20. W. Zhang and J. Xu, “Advanced lightweight materials for Automobiles: A review,” Mater. Des., vol. 221, p. 110994, 2022, doi: 10.1016/j.matdes.2022.110994.
  • 21. A. Abuye and H. Molla, “Fabrication and Characterization of False Banana Fiber Reinforced Gypsum Composite,” Int. J. Sci. Eng. Res., vol. 11, no. 8, pp. 1568–1574, 2020.
  • 22. S. Tadasse, K. Abdellah, A. Prasanth, D. Goytom, and A. Kumar Deepati, “Mechanical Characterization of Natural Fiber Reinforced Composites: An Alternative for Rural House Roofing’s,” Mater. Today Proc., vol. 5, no. 11, pp. 25016–25026, 2018, doi: 10.1016/j.matpr.2018.10.302.
  • 23. A. G. Temesgen, R. Eren, and Y. Aykut, “Investigation of mechanical properties of a novel green composite developed by using enset woven fabric and bioresin materials,” Polym. Bull., vol. 81, no. 5, pp. 4199–4219, 2024, doi: 10.1007/s00289-023-04905-3.
  • 24. E. M. Feyissa and A. D. Gudayu, “Synthesis of starch-derived biopolymer reinforced Enset fiber green composite packaging films: Processes and properties optimization,” Compos. Adv. Mater., vol. 32, pp. 1–21, 2023, doi: 10.1177/26349833231200907.
  • 25. K. G. Abraha, D. K. Debeli, M. U. Ghani, B. Zhuo, A. A. Tesfahunegn, and J. Guo, “Enhancing enset fiber-reinforced polylactic acid composites through different surface treatments for emerging applications,” Polym. Compos., no. November 2024, pp. 5140–5155, 2024, doi: 10.1002/pc.29280.
  • 26. B. A. Abebe. O.Secgin, A.Kolip, “Enset fiber reinforced composite vehicle body crash analysis,” Sci. Iran., vol. 31, no. 1, pp. 123–135, 2024.
  • 27. M. Nagarajaiah, A. Yadav, S. Prasannakumar, R. R. Mahadevaiah, and P. Hiremath, “Finite Element Study on Coconut Inflorescence Stem Fiber Composite Panels Subjected to Static Loading,” Eng. Proc., vol. 59, no. 1, pp. 1–11, 2024, doi: 10.3390/engproc2023059215.
  • 28. A. Sayam et al., A review on carbon fiber-reinforced hierarchical composites: mechanical performance, manufacturing process, structural applications and allied challenges, vol. 32, no. 5. Springer Nature Singapore, 2022. doi: 10.1007/s42823-022-00358-2.
  • 29. B. Ergene, C. Bolat, U. Karakilinc, and A. B. Irez, “A comprehensive investigation of drilling performance of anisotropic stacked glass-carbon fiber reinforced hybrid laminate composites,” Polym. Compos., vol. 44, no. 5, pp. 2656–2670, 2023, doi: 10.1002/pc.27268.
  • 30. M. S. EL-Wazery, M. I. EL-Elamy, and S. H. Zoalfakar, “Mechanical properties of glass fiber reinforced polyester composites,” Int. J. Appl. Sci. Eng., vol. 14, no. 3, pp. 121–131, 2017, doi: 10.6703/IJASE.2017.14(3).121.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Biniyam Ayele Abebe 0000-0002-2935-4254

Ömer Seçgin 0000-0001-6158-3164

Recep Kılıç 0000-0003-1580-1997

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 30 Ocak 2025
Kabul Tarihi 29 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 32 Sayı: 138

Kaynak Göster

APA Abebe, B. A., Seçgin, Ö., & Kılıç, R. (2025). Finite element analysis of enset fiber composite material. Tekstil ve Mühendis, 32(138), 105-115. https://doi.org/10.7216/teksmuh.1629252
AMA Abebe BA, Seçgin Ö, Kılıç R. Finite element analysis of enset fiber composite material. Tekstil ve Mühendis. Haziran 2025;32(138):105-115. doi:10.7216/teksmuh.1629252
Chicago Abebe, Biniyam Ayele, Ömer Seçgin, ve Recep Kılıç. “Finite element analysis of enset fiber composite material”. Tekstil ve Mühendis 32, sy. 138 (Haziran 2025): 105-15. https://doi.org/10.7216/teksmuh.1629252.
EndNote Abebe BA, Seçgin Ö, Kılıç R (01 Haziran 2025) Finite element analysis of enset fiber composite material. Tekstil ve Mühendis 32 138 105–115.
IEEE B. A. Abebe, Ö. Seçgin, ve R. Kılıç, “Finite element analysis of enset fiber composite material”, Tekstil ve Mühendis, c. 32, sy. 138, ss. 105–115, 2025, doi: 10.7216/teksmuh.1629252.
ISNAD Abebe, Biniyam Ayele vd. “Finite element analysis of enset fiber composite material”. Tekstil ve Mühendis 32/138 (Haziran2025), 105-115. https://doi.org/10.7216/teksmuh.1629252.
JAMA Abebe BA, Seçgin Ö, Kılıç R. Finite element analysis of enset fiber composite material. Tekstil ve Mühendis. 2025;32:105–115.
MLA Abebe, Biniyam Ayele vd. “Finite element analysis of enset fiber composite material”. Tekstil ve Mühendis, c. 32, sy. 138, 2025, ss. 105-1, doi:10.7216/teksmuh.1629252.
Vancouver Abebe BA, Seçgin Ö, Kılıç R. Finite element analysis of enset fiber composite material. Tekstil ve Mühendis. 2025;32(138):105-1.