Araştırma Makalesi
BibTex RIS Kaynak Göster

İNKLÜZYON KOMPLEKSLERİNİN SOYA LİFLERİNİN BOYANMASI ÜZERİNDEKİ ETKİSİNİN ARAŞTIRILMASI

Yıl 2025, Cilt: 32 Sayı: 139, 279 - 289, 30.09.2025
https://doi.org/10.7216/teksmuh.1707478

Öz

Bu çalışmada, soya liflerinin siklodekstrin varlığında boyanabilirliği değerlendirilmiştir. Boyama işlemi, asit ve reaktif boyalar olmak üzere iki tip boyarmadde kullanılarak üç farklı sıcaklıkta (20°C, 50°C ve 90°C) gerçekleştirilmiştir. Tüm boyama proseslerindesiklodekstrinlerin boya alımını etkileyip etkilemediğini araştırmak için siklodekstrinler yardımcı madde olarak kullanılmıştır. Boyanmış liflerin renk ölçümleri, CIE-Lab renk sistemine göre gerçekleştirilmiştir. Ayrıca, boyanmış liflerin yıkamaya karşı renk haslığı değerlendirilmiştir. Liflerin morfolojik yapısındaki potansiyel farklılıkları incelemek için optik mikroskop altında lif görüntüleri incelenmiştir. Ayrıca, siklodekstrinler ve lif yapısı arasındaki potansiyel bağlanma etkileşimlerini araştırmak için FT-IR analizi gerçekleştirilmiştir. Analizler sonucunda, liflerde yapısal bozulmalara yol açtığı için soya liflerinin yüksek sıcaklıklarda boyamaya uygun olmadığı görülmüştür. Çalışma, siklodekstrin kullanımının boya emilimini artırdığını ve özellikle 50°C'de daha yüksek renk kuvveti ve renk homojenliği sağladığını ortaya koymuştur. Siklodekstrinlerin varlığı, özellikle multifiberde yer alan pamuk ve yün liflerinde yıkama haslığında hafif bir iyileşmeye de katkıda bulunmuştur. Yapılan renk verimi ve haslık testlerine dayanarak, optimum boyama sıcaklığı 50°C olarak belirlenmiş ve siklodekstrin kullanımının lif hasarına neden olmadan boyama performansını iyileştirmede etkili olduğu görülmüştür.

Kaynakça

  • 1. Tahir, M., Li, A., Moore, M., Ford, E., Theyson, T., Seyam, A. F. M. (2024). Development of eco-friendly soy protein fiber: A comprehensive critical review and prospects. Fibers, 12(4), 31.
  • 2. Vynias, D. (2006). Investigation into the wet processing and surface analysis of soybean fabrics, PhD Thesis, University of Manchester, UK.
  • 3. Vynias, D. (2011). Soybean Fibre: A Novel Fibre in the Textile Industry, Soybean -Biochemistry, Chemistry and Physiology, 26, 461-494
  • 4. Wang, C., Jiang, L., Wei, D., Li, Y., Sui, X., Wang, Z., & Li, D. (2011). Effect of secondary structure determined by FTIR spectra on surface hydrophobicity of soybean protein isolate. Procedia Engineering, 15, 4819-4827.
  • 5. Zagonel, G. F., Peralta-Zamora, P., & Ramos, L. P. (2004). Multivariate monitoring of soybean oil ethanolysis by FTIR. Talanta, 63(4), 1021-1025.
  • 6. Swicofil, http://www.swicofil.com/soybeanproteinfiber.html, Date of Access: 29.05.2023.
  • 7. Kalayci, E., Yavas, A., &Avinc, O. (2024). Natural Dyeing of PA 6, PTT, PBT, PLA, Silk, and Soybean Textile Fibers with Black Mulberry Fruit Extract by Conventional and Microwave Dyeing Techniques. In Natural Dyes and Sustainability (pp. 329-352). Cham: Springer Nature Switzerland.
  • 8. Liu, J., Jiang, W., &Lv, C. (2022). Dyeing of soybean protein /flax blended yarns with reactive dyes and subsequent dye-fixation. ScientificReports, 12(1), 1506.
  • 9. Cao, J.,Meng, C., &Zhao, H. (2020). Dyeingkinetics of acid dyes onto soybean/casein/polyvinylalcohol and soybean/polyvinylalcohol blend fibers. TheJournal of TheTextileInstitute, 111(5), 718–722.
  • 10. Lv, J. C., Lin, H. Q., Zhou, Q. Q., &Li, J. (2012). Improvement on dyeing performance of different bifunctional reactive dyes for soybean protein fibers. Advanced Materials Research, 502, 306–311.
  • 11. Zhu, L.,Chen, J. L., Zhou, Q. B., Zheng, J. H., &Chen, W. G. (2011). Uniondyeing of soybean protein fiber/woolblends. Advanced Materials Research, 332, 1421–1424.
  • 12. Choi, J. H.,Kang, M. J., &Yoon, C. (2005). Dyeing properties of soya fibre with reactive and acid dyes. Coloration Technology, 121(2), 81–85.
  • 13. Lv, J.,Zhou, Q., Gao, D., Liu, G., &Wang, C. (2015). Novel Green Dyeing Process of Soybean Protein/Poly (vinylalcohol) Blend Fibre. Fibres&Textiles in Eastern Europe, 23(5), 113.
  • 14. Li, W., Lu, B., Sheng, A., Yang, F., Wang, Z. (2010). Spectroscopic and theoretical study on inclusion complexation of beta-cyclodextrin with permethrin. Journal of Molecular Structure, 981, 194–203.
  • 15. Nikolescu, C., Arama, C. Monciu, C. M. (2010). Preparation and characterızation of inclusion complexes between repaglinide and β–cyclodextrin, 2- hydroxypropyl-β – cyclodextrin and randomly methylated β–cyclodextrin, Farmacia, 58, 1.
  • 16. Rafati, A. A., Amnabard, N., Ghasemian, E., Nojini, Z. B. (2009). Study of inclusion complex formation between chlorpromazine hydrochloride, as an antiemetic drug, and β-cyclodextrin, using conductometric technique. Materials Science and Engineering: C, 29, 791-795.
  • 17. Singh, N., Sahu, O. (2019). Sustainable cyclodextrin in textile applications. In The impact and prospects of green chemistry for textile technology (pp. 83-105). Woodhead Publishing.
  • 18. Voncina,B., Vivod,V., Jausovec, D. (2007). β-Cyclodextrin as retarding agent in polyacrylonitrile dyeing. Dyes and Pigments 74, 642 – 646.
  • 19. Szejtli, J. (1988). Cyclodextrin technology. J.E.D. Davies, (Ed.), Topics in inclusion science içinde 186–334. Dordrecht, Netherland; Kluwer Academic Science.
  • 20. Thuaut, P., Martel, B., Crini, G., Maschke, U., Coqueret, X., Morcellet, M. (1999). Grafting of cyclodextrins onto polypropylene nonwoven fabrics for the manufacture of reactivefilters. I. synthesis parameters. Journal of Applied Polymer Science, 77(9), 2118–2125.
  • 21. Cireli, A., Yurdakul, B. (2006). Application of cyclodextrin to the textile dyeing and washing processes. Journal of Applied Polymer Science, 100(1), 208-218.
  • 22. Grechin, A.G., Buschmann, H.J., Schollmeyer, E. (2007). Quantification of Cyclodextrins Fixed onto Cellulose Fibers. Textile Research Journal. 77, 3.
  • 23. Bezerra, F.M., Lis, M.J., Firmino, H.B., Dias da Silva, J.G., Curto Valle, R.d.C.S., Borges Valle, J.A., Scacchetti, F.A.P., Tessaro, A.L. (2020). The Role of β-Cyclodextrin in the Textile Industry—Review. Molecules. 25, 3624.
  • 24. El-Sayed, E., A Othman, H., Hassabo, A. G. (2021). Cyclodextrin usage in textile Industry. Journal of Textiles, Coloration and Polymer Science, 18(2), 111-119.
  • 25. Lo Nostro, P., Fratoni, L., Baglioni, P. (2002). Modification of a Cellulosic Fabric with β-Cyclodextrin for Textile Finishing Applications. Journal of Inclusion Phenomena. 44, 423–427.
  • 26. Yurdakul, A., Özen İ. (2000). Tekstil Terbiyesinde Çiklodekstrin Kullanımı, Tekstil ve Konfeksiyon Dergisi, 1, 30-34.
  • 27. Wyszecki, G., & Stiles, W. S. (2000). Color science: concepts and methods, quantitative data and formulae. John wiley& sons.
  • 28. Netpradit, S., Thiravetyan, P., Towprayoon, S. (2004). Adsorption of three azo reactive dyes by metal hydroxide sludge: effect of temperature, pH, and electrolytes. Journal of colloid and interface science, 270(2), 255-261.
  • 29. Paul, D., Das, S. C., Islam, T., Siddiquee, A. B., Mamun, A. (2017). Effect of Temperature on Dyeing Cotton Knitted Fabrics with Reactive Dyes, Journal of Scientific and Engineering Research, 4(12), 388-393.
  • 30. Rachmawati, H., Edityaningrum C.A., Mauludin, R. (2013). Molecular inclusion complex of curcumin–β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AapsPharmscitech. 14(4), 1303-1312.
  • 31. Stolper, E. M., Ahrens, T. J. (1987). On the nature of pressure-induced coordination changes in silicate melts and glasses. Geophys Res Lett 14, 1231–1233.

INVESTIGATION OF THE EFFECT OF INCLUSION COMPLEXES ON THE DYEING OF SOYBEAN FIBERS

Yıl 2025, Cilt: 32 Sayı: 139, 279 - 289, 30.09.2025
https://doi.org/10.7216/teksmuh.1707478

Öz

This study was conducted to assess the dyeability of soybean fibers. The dyeing process was performed at three different temperatures (20°C, 50°C, and 90°C) using two types of dyestuffs: acid and reactive dyes. The entire dyeing procedure was repeated in the presence of cyclodextrin to investigate whether cyclodextrins influence dye uptake. Color measurements of the dyed fibers were conducted based on the CIE-Lab color system. Additionally, washing fastness test was carried out to assess the colorfastness of the dyed fibers. To examine potential differences in the morphological structure of the fibers, fiber images were observed under an optical microscope. Furthermore, FT-IR analysis was performed to investigate potential bonding interactions between cyclodextrins and the fiber structure. The findings indicated that soybean fibers are not suitable for dyeing at high temperatures, as this leads to structural deterioration in the fibers. In contrast, the use of cyclodextrins enhanced dye uptake and resulted in higher color strength and color uniformity, particularly at 50 °C. The presence of cyclodextrins also contributed to a slight improvement in washing fastness, especially in cotton and wool multifiber samples. Based on the color yield and fastness tests conducted, the optimal dyeing temperature was determined to be 50°C, and the use of cyclodextrins was found to be effective in improving dyeing performance without causing fiber damage.

Kaynakça

  • 1. Tahir, M., Li, A., Moore, M., Ford, E., Theyson, T., Seyam, A. F. M. (2024). Development of eco-friendly soy protein fiber: A comprehensive critical review and prospects. Fibers, 12(4), 31.
  • 2. Vynias, D. (2006). Investigation into the wet processing and surface analysis of soybean fabrics, PhD Thesis, University of Manchester, UK.
  • 3. Vynias, D. (2011). Soybean Fibre: A Novel Fibre in the Textile Industry, Soybean -Biochemistry, Chemistry and Physiology, 26, 461-494
  • 4. Wang, C., Jiang, L., Wei, D., Li, Y., Sui, X., Wang, Z., & Li, D. (2011). Effect of secondary structure determined by FTIR spectra on surface hydrophobicity of soybean protein isolate. Procedia Engineering, 15, 4819-4827.
  • 5. Zagonel, G. F., Peralta-Zamora, P., & Ramos, L. P. (2004). Multivariate monitoring of soybean oil ethanolysis by FTIR. Talanta, 63(4), 1021-1025.
  • 6. Swicofil, http://www.swicofil.com/soybeanproteinfiber.html, Date of Access: 29.05.2023.
  • 7. Kalayci, E., Yavas, A., &Avinc, O. (2024). Natural Dyeing of PA 6, PTT, PBT, PLA, Silk, and Soybean Textile Fibers with Black Mulberry Fruit Extract by Conventional and Microwave Dyeing Techniques. In Natural Dyes and Sustainability (pp. 329-352). Cham: Springer Nature Switzerland.
  • 8. Liu, J., Jiang, W., &Lv, C. (2022). Dyeing of soybean protein /flax blended yarns with reactive dyes and subsequent dye-fixation. ScientificReports, 12(1), 1506.
  • 9. Cao, J.,Meng, C., &Zhao, H. (2020). Dyeingkinetics of acid dyes onto soybean/casein/polyvinylalcohol and soybean/polyvinylalcohol blend fibers. TheJournal of TheTextileInstitute, 111(5), 718–722.
  • 10. Lv, J. C., Lin, H. Q., Zhou, Q. Q., &Li, J. (2012). Improvement on dyeing performance of different bifunctional reactive dyes for soybean protein fibers. Advanced Materials Research, 502, 306–311.
  • 11. Zhu, L.,Chen, J. L., Zhou, Q. B., Zheng, J. H., &Chen, W. G. (2011). Uniondyeing of soybean protein fiber/woolblends. Advanced Materials Research, 332, 1421–1424.
  • 12. Choi, J. H.,Kang, M. J., &Yoon, C. (2005). Dyeing properties of soya fibre with reactive and acid dyes. Coloration Technology, 121(2), 81–85.
  • 13. Lv, J.,Zhou, Q., Gao, D., Liu, G., &Wang, C. (2015). Novel Green Dyeing Process of Soybean Protein/Poly (vinylalcohol) Blend Fibre. Fibres&Textiles in Eastern Europe, 23(5), 113.
  • 14. Li, W., Lu, B., Sheng, A., Yang, F., Wang, Z. (2010). Spectroscopic and theoretical study on inclusion complexation of beta-cyclodextrin with permethrin. Journal of Molecular Structure, 981, 194–203.
  • 15. Nikolescu, C., Arama, C. Monciu, C. M. (2010). Preparation and characterızation of inclusion complexes between repaglinide and β–cyclodextrin, 2- hydroxypropyl-β – cyclodextrin and randomly methylated β–cyclodextrin, Farmacia, 58, 1.
  • 16. Rafati, A. A., Amnabard, N., Ghasemian, E., Nojini, Z. B. (2009). Study of inclusion complex formation between chlorpromazine hydrochloride, as an antiemetic drug, and β-cyclodextrin, using conductometric technique. Materials Science and Engineering: C, 29, 791-795.
  • 17. Singh, N., Sahu, O. (2019). Sustainable cyclodextrin in textile applications. In The impact and prospects of green chemistry for textile technology (pp. 83-105). Woodhead Publishing.
  • 18. Voncina,B., Vivod,V., Jausovec, D. (2007). β-Cyclodextrin as retarding agent in polyacrylonitrile dyeing. Dyes and Pigments 74, 642 – 646.
  • 19. Szejtli, J. (1988). Cyclodextrin technology. J.E.D. Davies, (Ed.), Topics in inclusion science içinde 186–334. Dordrecht, Netherland; Kluwer Academic Science.
  • 20. Thuaut, P., Martel, B., Crini, G., Maschke, U., Coqueret, X., Morcellet, M. (1999). Grafting of cyclodextrins onto polypropylene nonwoven fabrics for the manufacture of reactivefilters. I. synthesis parameters. Journal of Applied Polymer Science, 77(9), 2118–2125.
  • 21. Cireli, A., Yurdakul, B. (2006). Application of cyclodextrin to the textile dyeing and washing processes. Journal of Applied Polymer Science, 100(1), 208-218.
  • 22. Grechin, A.G., Buschmann, H.J., Schollmeyer, E. (2007). Quantification of Cyclodextrins Fixed onto Cellulose Fibers. Textile Research Journal. 77, 3.
  • 23. Bezerra, F.M., Lis, M.J., Firmino, H.B., Dias da Silva, J.G., Curto Valle, R.d.C.S., Borges Valle, J.A., Scacchetti, F.A.P., Tessaro, A.L. (2020). The Role of β-Cyclodextrin in the Textile Industry—Review. Molecules. 25, 3624.
  • 24. El-Sayed, E., A Othman, H., Hassabo, A. G. (2021). Cyclodextrin usage in textile Industry. Journal of Textiles, Coloration and Polymer Science, 18(2), 111-119.
  • 25. Lo Nostro, P., Fratoni, L., Baglioni, P. (2002). Modification of a Cellulosic Fabric with β-Cyclodextrin for Textile Finishing Applications. Journal of Inclusion Phenomena. 44, 423–427.
  • 26. Yurdakul, A., Özen İ. (2000). Tekstil Terbiyesinde Çiklodekstrin Kullanımı, Tekstil ve Konfeksiyon Dergisi, 1, 30-34.
  • 27. Wyszecki, G., & Stiles, W. S. (2000). Color science: concepts and methods, quantitative data and formulae. John wiley& sons.
  • 28. Netpradit, S., Thiravetyan, P., Towprayoon, S. (2004). Adsorption of three azo reactive dyes by metal hydroxide sludge: effect of temperature, pH, and electrolytes. Journal of colloid and interface science, 270(2), 255-261.
  • 29. Paul, D., Das, S. C., Islam, T., Siddiquee, A. B., Mamun, A. (2017). Effect of Temperature on Dyeing Cotton Knitted Fabrics with Reactive Dyes, Journal of Scientific and Engineering Research, 4(12), 388-393.
  • 30. Rachmawati, H., Edityaningrum C.A., Mauludin, R. (2013). Molecular inclusion complex of curcumin–β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AapsPharmscitech. 14(4), 1303-1312.
  • 31. Stolper, E. M., Ahrens, T. J. (1987). On the nature of pressure-induced coordination changes in silicate melts and glasses. Geophys Res Lett 14, 1231–1233.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tekstil Bilimi
Bölüm Makaleler
Yazarlar

Gülşah Ekin Kartal 0000-0001-7364-7049

Mehmet Kertmen 0000-0003-1661-7219

Murat Demir 0000-0001-8670-5412

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 27 Mayıs 2025
Kabul Tarihi 11 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 32 Sayı: 139

Kaynak Göster

APA Kartal, G. E., Kertmen, M., & Demir, M. (2025). INVESTIGATION OF THE EFFECT OF INCLUSION COMPLEXES ON THE DYEING OF SOYBEAN FIBERS. Tekstil ve Mühendis, 32(139), 279-289. https://doi.org/10.7216/teksmuh.1707478
AMA Kartal GE, Kertmen M, Demir M. INVESTIGATION OF THE EFFECT OF INCLUSION COMPLEXES ON THE DYEING OF SOYBEAN FIBERS. Tekstil ve Mühendis. Eylül 2025;32(139):279-289. doi:10.7216/teksmuh.1707478
Chicago Kartal, Gülşah Ekin, Mehmet Kertmen, ve Murat Demir. “INVESTIGATION OF THE EFFECT OF INCLUSION COMPLEXES ON THE DYEING OF SOYBEAN FIBERS”. Tekstil ve Mühendis 32, sy. 139 (Eylül 2025): 279-89. https://doi.org/10.7216/teksmuh.1707478.
EndNote Kartal GE, Kertmen M, Demir M (01 Eylül 2025) INVESTIGATION OF THE EFFECT OF INCLUSION COMPLEXES ON THE DYEING OF SOYBEAN FIBERS. Tekstil ve Mühendis 32 139 279–289.
IEEE G. E. Kartal, M. Kertmen, ve M. Demir, “INVESTIGATION OF THE EFFECT OF INCLUSION COMPLEXES ON THE DYEING OF SOYBEAN FIBERS”, Tekstil ve Mühendis, c. 32, sy. 139, ss. 279–289, 2025, doi: 10.7216/teksmuh.1707478.
ISNAD Kartal, Gülşah Ekin vd. “INVESTIGATION OF THE EFFECT OF INCLUSION COMPLEXES ON THE DYEING OF SOYBEAN FIBERS”. Tekstil ve Mühendis 32/139 (Eylül2025), 279-289. https://doi.org/10.7216/teksmuh.1707478.
JAMA Kartal GE, Kertmen M, Demir M. INVESTIGATION OF THE EFFECT OF INCLUSION COMPLEXES ON THE DYEING OF SOYBEAN FIBERS. Tekstil ve Mühendis. 2025;32:279–289.
MLA Kartal, Gülşah Ekin vd. “INVESTIGATION OF THE EFFECT OF INCLUSION COMPLEXES ON THE DYEING OF SOYBEAN FIBERS”. Tekstil ve Mühendis, c. 32, sy. 139, 2025, ss. 279-8, doi:10.7216/teksmuh.1707478.
Vancouver Kartal GE, Kertmen M, Demir M. INVESTIGATION OF THE EFFECT OF INCLUSION COMPLEXES ON THE DYEING OF SOYBEAN FIBERS. Tekstil ve Mühendis. 2025;32(139):279-8.