Derleme
BibTex RIS Kaynak Göster

Recent Approaches to Antibacterial Textile Production Using Inorganic, Organic, and Sustainable Bioactive Substances: A Review

Yıl 2025, Cilt: 6 Sayı: 3, 210 - 234, 30.09.2025

Öz

Antibiotics have ushered in a new era in the treatment of bacterial infections. However, over time, microorganisms have developed resistance mechanisms that increasingly limit available treatment options. Consequently, identifying novel antibacterial bioactive substances and advancing research in this field have become urgent priorities. In addition, antibacterial textiles can contribute to reducing contamination in high human-traffic settings, such as hotels and hospitals.
Textile materials, due to their moisture content and nutrients, provide a suitable growing medium for bacteria. Bacteria that grow in contaminated textiles pose a threat to public health and reduce textile performance. Textile materials produced from various raw materials, such as cotton, polyester, and wool, can be gained antibacterial properties via appropriate bioactive substances and under appropriate conditions. Bioactive substances used in antibacterial textile applications are primarily divided into two categories: organic and inorganic. These substances can be produced synthetically or derived from natural sources, such as chitosan and casein, or from sustainable sources, such as coffee and tea waste.
This study analyzes antibacterial textile research published between 2015 and 2025, retrieved from the Web of Science and ScienceDirect databases. The studies were categorized as either organic or inorganic according to the type of bioactive substances used in antibacterial textile production, and these categories were further subdivided based on production methods. The article presents an overview of the production processes of these bioactive substances, their application methods on textile materials, and the outcomes of antibacterial performance evaluations.

Kaynakça

  • Aad, R., Dragojlov, I., Vesentini, S. (2024). Sericin Protein: Structure, Properties, and Applications. Journal of Functional Biomaterials, Vol. 15. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/jfb15110322
  • Akkaya, A., Ozseker, E. E. (2019). Modification of polyacrylonitrile fabric for antibacterial application by tetracycline immobilization. Polymer Testing, 78. https://doi.org/10.1016/j.polymertesting.2019.105959
  • Attia, N. F., Zakria, A. M., Nour, M. A. et al. (2023). Rational strategy for construction of multifunctional coatings for achieving high fire safety, antibacterial, UV protection and electrical conductivity functions of textile fabrics. Materials Today Sustainability, 23. https://doi.org/10.1016/j.mtsust.2023.100450
  • Attia, Nour F., Mohamed, A., Hussein, A. et al. (2022). Bioinspired one-dimensional based textile fabric coating for integrating high flame retardancy, antibacterial, toxic gases suppression, antiviral and reinforcement properties. Polymer Degradation and Stability, 205. https://doi.org/10.1016/j.polymdegradstab.2022.110152
  • Balakumaran, M. D., Ramachandran, R., Jagadeeswari, S. et al. (2016). In vitro biological properties and characterization of nanosilver coated cotton fabrics - An application for antimicrobial textile finishing. International Biodeterioration and Biodegradation, 107, 48–55. https://doi.org/10.1016/j.ibiod.2015.11.011
  • Bukhari, A., Yar, M., Zahra, F., Nazir, A. et al. (2023). A novel formulation of triethyl orthoformate mediated durable, smart and antibacterial chitosan cross-linked cellulose fabrics. International Journal of Biological Macromolecules, 253. https://doi.org/10.1016/j.ijbiomac.2023.126813
  • Cerempei, A., Mureşan, E. I., Cimpoeşu, N. et al. (2016). Dyeing and antibacterial properties of aqueous extracts from quince (Cydonia oblonga) leaves. Industrial Crops and Products, 94, 216–225. https://doi.org/10.1016/j.indcrop.2016.08.018
  • Chen, J., Zhou, Y., Yan, Z. et al. (2024). Moxa combustion waste and its bio activities on cotton -- a facile and green finishing process towards a sustainable and value adding application for medical textile. Journal of Cleaner Production, 483. https://doi.org/10.1016/j.jclepro.2024.144259
  • Chen, M., ShangGuan, J., Jiang, J. et al. (2023). Durably antibacterial cotton fabrics coated by protamine via Schiff base linkages. International Journal of Biological Macromolecules, 227, 1078–1088. https://doi.org/10.1016/j.ijbiomac.2022.11.287
  • Demirdogen, R. E., Kilic, D., Emen, F. M. et al. (2020). Novel antibacterial cellulose acetate fibers modified with 2- fluoropyridine complexes. Journal of Molecular Structure, 1204. https://doi.org/10.1016/j.molstruc.2019.127537
  • Deng, C., Yu, Z., Liang, F. et al. (2023). Surface nanoengineering of cellulosic textiles for superior biocidal performance and effective bacterial detection.
  • Chemical Engineering Journal, 473. https://doi.org/10.1016/j.cej.2023.145492 Diksha, Singh, R., Khanna, L. (2021). Glebionis coronaria (L.) Cass. ex Spach (Asteraceae)- a new fabric dye with potential antibacterial properties. Journal of the Indian Chemical Society, 98(11). https://doi.org/10.1016/j.jics.2021.100193
  • Dong, Y., Thomas, N. L., Lu, X. (2017). Electrospun duallayer mats with covalently bonded ZnO nanoparticles for moisture wicking and antibacterial textiles. Materials and Design, 134, 54–63. https://doi.org/10.1016/j.matdes.2017.08.033
  • Fang, J., Meng, C., Zhang, G. (2022). Agricultural waste of Ipomoea batatas leaves as a source of natural dye for green coloration and bio-functional finishing for textile fabrics. Industrial Crops and Products, 177. https://doi.org/10.1016/j.indcrop.2021.114440
  • Fang, Y., Chen, L., Zhang, Y. (2023). Construction of Cu2O single crystal nanospheres coating with brilliant structural color and excellent antibacterial properties. Optical Materials, 138. https://doi.org/10.1016/j.optmat.2023.113724
  • Fouda, A., EL-Din Hassan, S., Salem, S. S. (2018). In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis, 125, 252–261. https://doi.org/10.1016/j.micpath.2018.09.030
  • Gokce, Y., Aktas, Z., Capar, G. et al. (2020). Improved antibacterial property of cotton fabrics coated with waste sericin/silver nanocomposite. Materials Chemistry and Physics, 254. https://doi.org/10.1016/j.matchemphys.2020.123508
  • Grand View Research. (2024). Antimicrobial Textiles Market Size And Share Report, 2030. Retrieved September 24, 2025, from https://www.grandviewresearch.com/industryanalysis/ antimicrobial-textiles-market-report
  • Guzińska, K., Kaźmierczak, D., Dymel, M. et al. (2018). Anti-bacterial materials based on hyaluronic acid: Selection of research methodology and analysis of their anti-bacterial properties. Materials Science and Engineering C, 93, 800–808. https://doi.org/10.1016/j.msec.2018.08.043
  • Hassan, M. M. (2021). Enhanced insect-resistance, UV protection, and antibacterial and antistatic properties exhibited by wool fabric treated with polyphenols extracted from mango seed kernel and feijoa peel. RSC Advances, 11(3), 1482–1492. https://doi.org/10.1039/d0ra09699g
  • He, L., Gao, C., Li, S. et al. (2017). Non-leaching and durable antibacterial textiles finished with reactive zwitterionic sulfobetaine. Journal of Industrial and Engineering Chemistry, 46, 373–378. https://doi.org/10.1016/j.jiec.2016.11.006
  • Hongrattanavichit, I., Aht-Ong, D. (2021). Antibacterial and water-repellent cotton fabric coated with organosilane-modified cellulose nanofibers. Industrial Crops and Products, 171. https://doi.org/10.1016/j.indcrop.2021.113858
  • Ibrahim, N. A., Eid, B. M., Abdel-Aziz, M. S. (2016). Green synthesis of AuNPs for eco-friendly functionalization of cellulosic substrates. Applied Surface Science, 389, 118–125. https://doi.org/10.1016/j.apsusc.2016.07.077
  • Jiang, T., Zhou, J., Wang, R. (2025). Long-term and rapid antibacterial efficacy of Cu2O-GO nanocomposites for medical protective textiles. Composites Part A: Applied Science and Manufacturing, 190. https://doi.org/10.1016/j.compositesa.2024.108673
  • Korkmaz, G. (2019). Investigation of Antibacterial Activities of Chalcone Derivatives on Knitted Fabric Structures with Different Raw Materials. Institute of Science, Bursa.
  • Kumar, A., Singh, A., Sheikh, J. (2023). Boric acid crosslinked chitosan microcapsules loaded with frankincense oil for the development of mosquitorepellent, antibacterial, antioxidant, and flameretardant cotton. International Journal of Biological Macromolecules, 248. https://doi.org/10.1016/j.ijbiomac.2023.125874
  • Li, Y., Zhao, H., Li, T. et al. (2023). Quaternary ammonium salts functionalized cotton fibers with highly effective and durable antibacterial performances for daily healthcare textile applications. Industrial Crops and Products, 202. https://doi.org/10.1016/j.indcrop.2023.117100
  • Ma, L. L., Wei, Y. Y., Li, J. et al. (2024). Clinical study of antibacterial medical textiles containing polyhydroxyalkanoate oligomers for reduction of hospital-acquired infections. Journal of Hospital Infection, 149, 144–154. https://doi.org/10.1016/j.jhin.2024.04.009
  • Maślana, K., Kędzierski, T., Żywicka, A. et al. (2022). Design of self-cleaning and self-disinfecting paper-shaped photocatalysts based on wood and eucalyptus derived cellulose fibers modified with gCN/Ag nanoparticles. Environmental Nanotechnology, Monitoring and Management, 17. https://doi.org/10.1016/j.enmm.2022.100656
  • Najmi, Z., Mlinarić, N. M., Scalia, A. C. et al. (2024). Antibacterial evaluation of different prosthetic liner textiles coated by CuO nanoparticles. Heliyon, 10(1). https://doi.org/10.1016/j.heliyon.2023.e23849 Naz, S., Ali, M., Ashraf, M. et al. (2025). Development of durable multifunctional textiles by application of carbon quantum dots synthesized from postconsumer cellulosic waste. Journal of Molecular Structure, 1335. https://doi.org/10.1016/j.molstruc.2025.141951
  • Petkova, P., Francesko, A., Perelshtein, I. et al. (2016). Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles. Ultrasonics Sonochemistry, 29, 244–250. https://doi.org/10.1016/j.ultsonch.2015.09.021
  • Research and Markets. (2025). Antimicrobial Textile Market Report 2025 - Research and Markets. Retrieved September 24, 2025, from https://www.researchandmarkets.com/reports/5751 640/antimicrobial-textile-marketreport? utm_source=GNEandutm_medium=PressRele aseandutm_code=bgsqwtandutm_campaign=203110 8+- +Antimicrobial+Textile+Market+Report+2025%3a+Ma jor+Trends+include+Sustainable+Antimicrobial+Textil es%2c+Smart+and+Wearable+Antimicrobial+Textiles %2c+Antiviral+Textiles+and+Odor+Control+Textilesan dutm_exec=carimspi
  • Rilda, Y., Khairu Ummah, K., Septiani, U. et al. (2023). Biosynthesis of Zinc oxide nanorods using Agaricus bisporus and its antibacterial capability enhancement with dodeciltriethoxyl on cotton textiles. Materials Science and Engineering: B, 298. https://doi.org/10.1016/j.mseb.2023.116910
  • Scheibe, A. S., de Araujo, I. P., Janssen, L. et al. (2022). Products from pyrolysis textile sludge as a potential antibacterial and alternative source of fuel oil. Cleaner Engineering and Technology, 6. https://doi.org/10.1016/j.clet.2022.100408
  • Shaheen, T. I., El-Naggar, M. E., Abdelgawad, A. M. et al. (2016). Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. International Journal of Biological
  • Macromolecules, 83, 426–432. https://doi.org/10.1016/j.ijbiomac.2015.11.003
  • Sharifikolouei, E., Najmi, Z., Cochis, A. et al. (2021). Generation of cytocompatible superhydrophobic Zr– Cu–Ag metallic glass coatings with antifouling properties for medical textiles. Materials Today Bio, 12. https://doi.org/10.1016/j.mtbio.2021.100148
  • Spielman-Sun, E., Zaikova, T., Dankovich, T. (2018). Effect of silver concentration and chemical transformations on release and antibacterial efficacy in silvercontaining textiles. NanoImpact, 11, 51–57. https://doi.org/10.1016/j.impact.2018.02.002
  • Staneva, D., Vasileva-Tonkova, E., Grabchev, I. (2019). Chemical modification of cotton fabric with 1,8- naphthalimide for use as heterogeneous sensor and antibacterial textile. Journal of Photochemistry and Photobiology A: Chemistry, 382. https://doi.org/10.1016/j.jphotochem.2019.111924
  • Sülar, V., Aksoy, S., İtani̇, B. et al. (2025). Production and performance of textile-based surfaces containing tea and coffee wastes. Journal of Cleaner Production, 506. https://doi.org/10.1016/j.jclepro.2025.145496
  • Suneeta, Harlapur, S., Harlapur, S. F. (2021). Enhancement of antibacterial properties of cotton fabric by using neem leaves extract as dye. Materials Today: Proceedings, 44, 523–526. Elsevier Ltd. https://doi.org/10.1016/j.matpr.2020.10.209
  • Sunthar, T. P. M., Boschetto, F., Doan, H. N. et al. (2021). Antibacterial property of cellulose acetate composite materials reinforced with aluminum nitride. Antibiotics, 10(11). https://doi.org/10.3390/antibiotics10111292
  • Taherirad, F., Maleki, H., Barani, H. et al. (2024). Optimizing dyeing parameters for sustainable wool dyeing using quinoa plant components with antibacterial properties. Cleaner Engineering and Technology, 21. https://doi.org/10.1016/j.clet.2024.100780
  • Thanka Rajan, S., Subramanian, B., Arockiarajan, A. (2024). Synergistic performance of biomedical textiles incorporated with cerium oxide carbon nanocomposites for the antibacterial and sunlightdriven photocatalytic activity of self-cleaning. Chemical Engineering Science, 298. https://doi.org/10.1016/j.ces.2024.120390
  • Umesh, M., Suresh, S., Santosh, A. S. et al. (2023). Valorization of pineapple peel waste for fungal pigment production using Talaromyces albobiverticillius: Insights into antibacterial, antioxidant and textile dyeing properties. Environmental Research, 229. https://doi.org/10.1016/j.envres.2023.115973
  • Vieira, B., Padrão, J., Alves, C. et al. (2023). Enhancing Functionalization of Health Care Textiles with Gold Nanoparticle-Loaded Hydroxyapatite Composites. Nanomaterials, 13(11). https://doi.org/10.3390/nano13111752
  • Wang, L., Zhou, B., Du, Y. et al. (2024). Guanidine Derivatives Leverage the Antibacterial Performance of Bio-Based Polyamide PA56 Fibres. Polymers, 16(19). https://doi.org/10.3390/polym16192707
  • Wang, M., Zheng, S., Fang, K. et al. (2023). Green fabrication of inkjet printed antibacterial wool fabric with natural gardenia yellow dye. Industrial Crops and Products, 206. https://doi.org/10.1016/j.indcrop.2023.117700
  • WHO. (2023). Guideline Infection prevention and control in the context of coronavirus disease (COVID-19): A guideline. Retrieved from http://apps.who.int/bookorders.
  • Wu, L., Fan, B., Yan, B. et al. (2024). Construction of durable antibacterial cellulose textiles through grafting dynamic disulfide-containing aminocompound and nanosilver deposition. International Journal of Biological Macromolecules, 259. https://doi.org/10.1016/j.ijbiomac.2023.129085
  • Wu, Y., Lan, J., Xu, L. et al. (2025). Degradation and selective-oxidization of chitosan realize preparation of cotton textiles with prominent antibacterial and antiviral activity via one-step esterification. Applied Surface Science, 695. https://doi.org/10.1016/j.apsusc.2025.162903
  • Xia, W., Li, Z., Tang, Y. et al. (2023). Sustainable recycling of café waste as natural bio resource and its value adding applications in green and effective dyeing/bio finishing of textile. Separation and Purification Technology, 309. https://doi.org/10.1016/j.seppur.2022.123091
  • Xu, F. X., Ooi, C. W., Liu, B. L. et al. (2021). Antibacterial efficacy of poly(hexamethylene biguanide) immobilized on chitosan/dye-modified nanofiber membranes. International Journal of Biological Macromolecules, 181, 508–520. https://doi.org/10.1016/j.ijbiomac.2021.03.151
  • Yılmaz, F., Bahtiyari, M. İ. (2020). Antibacterial finishing of cotton fabrics by dyeing with olive tree leaves fallen during olive harvesting. Journal of Cleaner Production, 270. https://doi.org/10.1016/j.jclepro.2020.122068
  • Yılmaz, F., Bahtiyari, M. İ. (2021). Antibacterial Finishing of Linen Fabrics by Combination with Nano-Aluminum Oxide and Crosslinking Agent. Fibers and Polymers, 22(7), 1830–1836. https://doi.org/10.1007/s12221- 021-0865-5
  • Yu, Z., Deng, C., Ding, C. et al. (2024). Organic-inorganic hybrid ZIF-8/MXene/cellulose-based textiles with improved antibacterial and electromagnetic interference shielding performance. International Journal of Biological Macromolecules, 266. https://doi.org/10.1016/j.ijbiomac.2024.131080
  • Zargarian, S. S., Kupikowska-Stobba, B., Kosik-Kozioł, A. et al. (2024). Light-responsive biowaste-derived and bioinspired textiles: Dancing between bio-friendliness and antibacterial functionality. Materials Today Chemistry, 41. https://doi.org/10.1016/j.mtchem.2024.102281
  • Zhang, N., Shi, R., Zhou, M. et al. (2023). Amyloid-like protein bridged nano-materials and fabrics for preparing rapid and long lasting antibacterial, UVresistant and personal thermal management textiles. International Journal of Biological Macromolecules, 247. https://doi.org/10.1016/j.ijbiomac.2023.125699
  • Zhang, N., Wang, W., Zhou, M. et al. (2023). A controllable, universal, and natural supramolecular assembly coating strategy for multifunctionality textiles of antibacterial properties, UV resistance, antioxidant, and secondary reactivity. Industrial Crops and Products, 198. https://doi.org/10.1016/j.indcrop.2023.116637
  • Zhang, W., Yang, Z. Y., Tang, R. C. et al. (2020). Application of tannic acid and ferrous ion complex as eco-friendly flame retardant and antibacterial agents for silk. Journal of Cleaner Production, 250. https://doi.org/10.1016/j.jclepro.2019.119545
  • Zhang, X., Zhu, Y., Li, M. et al. (2025). Sustainable preparation of multifunctional textile from oil-flax straw waste for thermal management, electromagnetic interference shielding, and antimicrobial. Surfaces and Interfaces, 61. https://doi.org/10.1016/j.surfin.2025.106069
  • Zhang, Y., Zhou, Q., Rather, L. J. et al. (2021). Agricultural waste of Eriobotrya japonica L. (Loquat) seeds and flora leaves as source of natural dye and bio-mordant for coloration and bio-functional finishing of wool textile. Industrial Crops and Products, 169. https://doi.org/10.1016/j.indcrop.2021.113633
  • Zhang, Z., Xie, Q., Chao, T. et al. (2023). Construction of rough surface based on zein and rosin to hydrophobically functionalize cotton fabric with antibacterial activity. Progress in Organic Coatings, 184. https://doi.org/10.1016/j.porgcoat.2023.107839
  • Zheng, H., Li, X., Liu, L. et al. (2022). Preparation of nanofiber core-spun yarn based on cellulose nanowhiskers/quaternary ammonium salts nanocomposites for efficient and durable antibacterial textiles. Composites Communications, 36. https://doi.org/10.1016/j.coco.2022.101388
  • Zhou, C. E., Kan, C. W. (2015). Plasma-enhanced regenerable 5,5-dimethylhydantoin (DMH) antibacterial finishing for cotton fabric. Applied Surface Science, 328, 410–417. https://doi.org/10.1016/j.apsusc.2014.12.052
  • Zhou, Y., Tang, R. C. (2018). Facile and eco-friendly fabrication of AgNPs coated silk for antibacterial and antioxidant textiles using honeysuckle extract. Journal of Photochemistry and Photobiology B: Biology, 178, 463–471. https://doi.org/10.1016/j.jphotobiol.2017.12.003

İnorganik, Organik ve Sürdürülebilir Biyoaktif Maddeler Kullanılarak Antibakteriyel Tekstil Üretimine Yönelik Son Yaklaşımlar: Bir İnceleme

Yıl 2025, Cilt: 6 Sayı: 3, 210 - 234, 30.09.2025

Öz

Antibiyotikler, bakteriyel enfeksiyonların tedavisinde yeni bir çağ başlatmıştır. Ancak zamanla mikroorganizmalar, mevcut tedavi seçeneklerini giderek sınırlayan direnç mekanizmaları geliştirmiştir. Sonuç olarak, yeni antibakteriyel biyoaktif maddelerin belirlenmesi ve bu alandaki araştırmaların ilerletilmesi acil öncelikler haline gelmiştir. Ayrıca, antibakteriyel tekstiller, otel ve hastane gibi yoğun insan trafiğine sahip ortamlarda kontaminasyonun azaltılmasına katkıda bulunabilir.
Tekstil malzemeleri, nem içeriği ve besin maddeleri nedeniyle bakteriler için uygun bir üreme ortamı sağlar. Kirlenmiş tekstillerde üreyen bakteriler halk sağlığı için tehdit oluşturur ve tekstil performansını düşürür. Pamuk, polyester ve yün gibi çeşitli hammaddelerden üretilen tekstil malzemelerine, uygun biyoaktif maddeler ve uygun koşullar altında antibakteriyel özellikler kazandırılabilir. Antibakteriyel tekstil uygulamalarında kullanılan biyoaktif maddeler temel olarak organik ve inorganik olmak üzere iki kategoriye ayrılır. Bu maddeler sentetik olarak üretilebilir veya kitosan ve kazein gibi doğal kaynaklardan ya da kahve ve çay atıkları gibi sürdürülebilir kaynaklardan elde edilebilir. Bu çalışma, Web of Science ve ScienceDirect veri tabanlarından alınan, 2015-2025 yılları arasında yayınlanan antibakteriyel tekstil araştırmalarını analiz etmektedir. Çalışmalar, antibakteriyel tekstil üretiminde kullanılan biyoaktif maddelerin türüne göre organik veya inorganik olarak sınıflandırılmış ve bu kategoriler üretim yöntemlerine göre alt gruplara ayrılmıştır. Makale, bu biyoaktif maddelerin üretim süreçlerine, tekstil malzemelerine uygulama yöntemlerine ve antibakteriyel performans değerlendirmelerinin sonuçlarına genel bir bakış sunmaktadır.

Kaynakça

  • Aad, R., Dragojlov, I., Vesentini, S. (2024). Sericin Protein: Structure, Properties, and Applications. Journal of Functional Biomaterials, Vol. 15. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/jfb15110322
  • Akkaya, A., Ozseker, E. E. (2019). Modification of polyacrylonitrile fabric for antibacterial application by tetracycline immobilization. Polymer Testing, 78. https://doi.org/10.1016/j.polymertesting.2019.105959
  • Attia, N. F., Zakria, A. M., Nour, M. A. et al. (2023). Rational strategy for construction of multifunctional coatings for achieving high fire safety, antibacterial, UV protection and electrical conductivity functions of textile fabrics. Materials Today Sustainability, 23. https://doi.org/10.1016/j.mtsust.2023.100450
  • Attia, Nour F., Mohamed, A., Hussein, A. et al. (2022). Bioinspired one-dimensional based textile fabric coating for integrating high flame retardancy, antibacterial, toxic gases suppression, antiviral and reinforcement properties. Polymer Degradation and Stability, 205. https://doi.org/10.1016/j.polymdegradstab.2022.110152
  • Balakumaran, M. D., Ramachandran, R., Jagadeeswari, S. et al. (2016). In vitro biological properties and characterization of nanosilver coated cotton fabrics - An application for antimicrobial textile finishing. International Biodeterioration and Biodegradation, 107, 48–55. https://doi.org/10.1016/j.ibiod.2015.11.011
  • Bukhari, A., Yar, M., Zahra, F., Nazir, A. et al. (2023). A novel formulation of triethyl orthoformate mediated durable, smart and antibacterial chitosan cross-linked cellulose fabrics. International Journal of Biological Macromolecules, 253. https://doi.org/10.1016/j.ijbiomac.2023.126813
  • Cerempei, A., Mureşan, E. I., Cimpoeşu, N. et al. (2016). Dyeing and antibacterial properties of aqueous extracts from quince (Cydonia oblonga) leaves. Industrial Crops and Products, 94, 216–225. https://doi.org/10.1016/j.indcrop.2016.08.018
  • Chen, J., Zhou, Y., Yan, Z. et al. (2024). Moxa combustion waste and its bio activities on cotton -- a facile and green finishing process towards a sustainable and value adding application for medical textile. Journal of Cleaner Production, 483. https://doi.org/10.1016/j.jclepro.2024.144259
  • Chen, M., ShangGuan, J., Jiang, J. et al. (2023). Durably antibacterial cotton fabrics coated by protamine via Schiff base linkages. International Journal of Biological Macromolecules, 227, 1078–1088. https://doi.org/10.1016/j.ijbiomac.2022.11.287
  • Demirdogen, R. E., Kilic, D., Emen, F. M. et al. (2020). Novel antibacterial cellulose acetate fibers modified with 2- fluoropyridine complexes. Journal of Molecular Structure, 1204. https://doi.org/10.1016/j.molstruc.2019.127537
  • Deng, C., Yu, Z., Liang, F. et al. (2023). Surface nanoengineering of cellulosic textiles for superior biocidal performance and effective bacterial detection.
  • Chemical Engineering Journal, 473. https://doi.org/10.1016/j.cej.2023.145492 Diksha, Singh, R., Khanna, L. (2021). Glebionis coronaria (L.) Cass. ex Spach (Asteraceae)- a new fabric dye with potential antibacterial properties. Journal of the Indian Chemical Society, 98(11). https://doi.org/10.1016/j.jics.2021.100193
  • Dong, Y., Thomas, N. L., Lu, X. (2017). Electrospun duallayer mats with covalently bonded ZnO nanoparticles for moisture wicking and antibacterial textiles. Materials and Design, 134, 54–63. https://doi.org/10.1016/j.matdes.2017.08.033
  • Fang, J., Meng, C., Zhang, G. (2022). Agricultural waste of Ipomoea batatas leaves as a source of natural dye for green coloration and bio-functional finishing for textile fabrics. Industrial Crops and Products, 177. https://doi.org/10.1016/j.indcrop.2021.114440
  • Fang, Y., Chen, L., Zhang, Y. (2023). Construction of Cu2O single crystal nanospheres coating with brilliant structural color and excellent antibacterial properties. Optical Materials, 138. https://doi.org/10.1016/j.optmat.2023.113724
  • Fouda, A., EL-Din Hassan, S., Salem, S. S. (2018). In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis, 125, 252–261. https://doi.org/10.1016/j.micpath.2018.09.030
  • Gokce, Y., Aktas, Z., Capar, G. et al. (2020). Improved antibacterial property of cotton fabrics coated with waste sericin/silver nanocomposite. Materials Chemistry and Physics, 254. https://doi.org/10.1016/j.matchemphys.2020.123508
  • Grand View Research. (2024). Antimicrobial Textiles Market Size And Share Report, 2030. Retrieved September 24, 2025, from https://www.grandviewresearch.com/industryanalysis/ antimicrobial-textiles-market-report
  • Guzińska, K., Kaźmierczak, D., Dymel, M. et al. (2018). Anti-bacterial materials based on hyaluronic acid: Selection of research methodology and analysis of their anti-bacterial properties. Materials Science and Engineering C, 93, 800–808. https://doi.org/10.1016/j.msec.2018.08.043
  • Hassan, M. M. (2021). Enhanced insect-resistance, UV protection, and antibacterial and antistatic properties exhibited by wool fabric treated with polyphenols extracted from mango seed kernel and feijoa peel. RSC Advances, 11(3), 1482–1492. https://doi.org/10.1039/d0ra09699g
  • He, L., Gao, C., Li, S. et al. (2017). Non-leaching and durable antibacterial textiles finished with reactive zwitterionic sulfobetaine. Journal of Industrial and Engineering Chemistry, 46, 373–378. https://doi.org/10.1016/j.jiec.2016.11.006
  • Hongrattanavichit, I., Aht-Ong, D. (2021). Antibacterial and water-repellent cotton fabric coated with organosilane-modified cellulose nanofibers. Industrial Crops and Products, 171. https://doi.org/10.1016/j.indcrop.2021.113858
  • Ibrahim, N. A., Eid, B. M., Abdel-Aziz, M. S. (2016). Green synthesis of AuNPs for eco-friendly functionalization of cellulosic substrates. Applied Surface Science, 389, 118–125. https://doi.org/10.1016/j.apsusc.2016.07.077
  • Jiang, T., Zhou, J., Wang, R. (2025). Long-term and rapid antibacterial efficacy of Cu2O-GO nanocomposites for medical protective textiles. Composites Part A: Applied Science and Manufacturing, 190. https://doi.org/10.1016/j.compositesa.2024.108673
  • Korkmaz, G. (2019). Investigation of Antibacterial Activities of Chalcone Derivatives on Knitted Fabric Structures with Different Raw Materials. Institute of Science, Bursa.
  • Kumar, A., Singh, A., Sheikh, J. (2023). Boric acid crosslinked chitosan microcapsules loaded with frankincense oil for the development of mosquitorepellent, antibacterial, antioxidant, and flameretardant cotton. International Journal of Biological Macromolecules, 248. https://doi.org/10.1016/j.ijbiomac.2023.125874
  • Li, Y., Zhao, H., Li, T. et al. (2023). Quaternary ammonium salts functionalized cotton fibers with highly effective and durable antibacterial performances for daily healthcare textile applications. Industrial Crops and Products, 202. https://doi.org/10.1016/j.indcrop.2023.117100
  • Ma, L. L., Wei, Y. Y., Li, J. et al. (2024). Clinical study of antibacterial medical textiles containing polyhydroxyalkanoate oligomers for reduction of hospital-acquired infections. Journal of Hospital Infection, 149, 144–154. https://doi.org/10.1016/j.jhin.2024.04.009
  • Maślana, K., Kędzierski, T., Żywicka, A. et al. (2022). Design of self-cleaning and self-disinfecting paper-shaped photocatalysts based on wood and eucalyptus derived cellulose fibers modified with gCN/Ag nanoparticles. Environmental Nanotechnology, Monitoring and Management, 17. https://doi.org/10.1016/j.enmm.2022.100656
  • Najmi, Z., Mlinarić, N. M., Scalia, A. C. et al. (2024). Antibacterial evaluation of different prosthetic liner textiles coated by CuO nanoparticles. Heliyon, 10(1). https://doi.org/10.1016/j.heliyon.2023.e23849 Naz, S., Ali, M., Ashraf, M. et al. (2025). Development of durable multifunctional textiles by application of carbon quantum dots synthesized from postconsumer cellulosic waste. Journal of Molecular Structure, 1335. https://doi.org/10.1016/j.molstruc.2025.141951
  • Petkova, P., Francesko, A., Perelshtein, I. et al. (2016). Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles. Ultrasonics Sonochemistry, 29, 244–250. https://doi.org/10.1016/j.ultsonch.2015.09.021
  • Research and Markets. (2025). Antimicrobial Textile Market Report 2025 - Research and Markets. Retrieved September 24, 2025, from https://www.researchandmarkets.com/reports/5751 640/antimicrobial-textile-marketreport? utm_source=GNEandutm_medium=PressRele aseandutm_code=bgsqwtandutm_campaign=203110 8+- +Antimicrobial+Textile+Market+Report+2025%3a+Ma jor+Trends+include+Sustainable+Antimicrobial+Textil es%2c+Smart+and+Wearable+Antimicrobial+Textiles %2c+Antiviral+Textiles+and+Odor+Control+Textilesan dutm_exec=carimspi
  • Rilda, Y., Khairu Ummah, K., Septiani, U. et al. (2023). Biosynthesis of Zinc oxide nanorods using Agaricus bisporus and its antibacterial capability enhancement with dodeciltriethoxyl on cotton textiles. Materials Science and Engineering: B, 298. https://doi.org/10.1016/j.mseb.2023.116910
  • Scheibe, A. S., de Araujo, I. P., Janssen, L. et al. (2022). Products from pyrolysis textile sludge as a potential antibacterial and alternative source of fuel oil. Cleaner Engineering and Technology, 6. https://doi.org/10.1016/j.clet.2022.100408
  • Shaheen, T. I., El-Naggar, M. E., Abdelgawad, A. M. et al. (2016). Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. International Journal of Biological
  • Macromolecules, 83, 426–432. https://doi.org/10.1016/j.ijbiomac.2015.11.003
  • Sharifikolouei, E., Najmi, Z., Cochis, A. et al. (2021). Generation of cytocompatible superhydrophobic Zr– Cu–Ag metallic glass coatings with antifouling properties for medical textiles. Materials Today Bio, 12. https://doi.org/10.1016/j.mtbio.2021.100148
  • Spielman-Sun, E., Zaikova, T., Dankovich, T. (2018). Effect of silver concentration and chemical transformations on release and antibacterial efficacy in silvercontaining textiles. NanoImpact, 11, 51–57. https://doi.org/10.1016/j.impact.2018.02.002
  • Staneva, D., Vasileva-Tonkova, E., Grabchev, I. (2019). Chemical modification of cotton fabric with 1,8- naphthalimide for use as heterogeneous sensor and antibacterial textile. Journal of Photochemistry and Photobiology A: Chemistry, 382. https://doi.org/10.1016/j.jphotochem.2019.111924
  • Sülar, V., Aksoy, S., İtani̇, B. et al. (2025). Production and performance of textile-based surfaces containing tea and coffee wastes. Journal of Cleaner Production, 506. https://doi.org/10.1016/j.jclepro.2025.145496
  • Suneeta, Harlapur, S., Harlapur, S. F. (2021). Enhancement of antibacterial properties of cotton fabric by using neem leaves extract as dye. Materials Today: Proceedings, 44, 523–526. Elsevier Ltd. https://doi.org/10.1016/j.matpr.2020.10.209
  • Sunthar, T. P. M., Boschetto, F., Doan, H. N. et al. (2021). Antibacterial property of cellulose acetate composite materials reinforced with aluminum nitride. Antibiotics, 10(11). https://doi.org/10.3390/antibiotics10111292
  • Taherirad, F., Maleki, H., Barani, H. et al. (2024). Optimizing dyeing parameters for sustainable wool dyeing using quinoa plant components with antibacterial properties. Cleaner Engineering and Technology, 21. https://doi.org/10.1016/j.clet.2024.100780
  • Thanka Rajan, S., Subramanian, B., Arockiarajan, A. (2024). Synergistic performance of biomedical textiles incorporated with cerium oxide carbon nanocomposites for the antibacterial and sunlightdriven photocatalytic activity of self-cleaning. Chemical Engineering Science, 298. https://doi.org/10.1016/j.ces.2024.120390
  • Umesh, M., Suresh, S., Santosh, A. S. et al. (2023). Valorization of pineapple peel waste for fungal pigment production using Talaromyces albobiverticillius: Insights into antibacterial, antioxidant and textile dyeing properties. Environmental Research, 229. https://doi.org/10.1016/j.envres.2023.115973
  • Vieira, B., Padrão, J., Alves, C. et al. (2023). Enhancing Functionalization of Health Care Textiles with Gold Nanoparticle-Loaded Hydroxyapatite Composites. Nanomaterials, 13(11). https://doi.org/10.3390/nano13111752
  • Wang, L., Zhou, B., Du, Y. et al. (2024). Guanidine Derivatives Leverage the Antibacterial Performance of Bio-Based Polyamide PA56 Fibres. Polymers, 16(19). https://doi.org/10.3390/polym16192707
  • Wang, M., Zheng, S., Fang, K. et al. (2023). Green fabrication of inkjet printed antibacterial wool fabric with natural gardenia yellow dye. Industrial Crops and Products, 206. https://doi.org/10.1016/j.indcrop.2023.117700
  • WHO. (2023). Guideline Infection prevention and control in the context of coronavirus disease (COVID-19): A guideline. Retrieved from http://apps.who.int/bookorders.
  • Wu, L., Fan, B., Yan, B. et al. (2024). Construction of durable antibacterial cellulose textiles through grafting dynamic disulfide-containing aminocompound and nanosilver deposition. International Journal of Biological Macromolecules, 259. https://doi.org/10.1016/j.ijbiomac.2023.129085
  • Wu, Y., Lan, J., Xu, L. et al. (2025). Degradation and selective-oxidization of chitosan realize preparation of cotton textiles with prominent antibacterial and antiviral activity via one-step esterification. Applied Surface Science, 695. https://doi.org/10.1016/j.apsusc.2025.162903
  • Xia, W., Li, Z., Tang, Y. et al. (2023). Sustainable recycling of café waste as natural bio resource and its value adding applications in green and effective dyeing/bio finishing of textile. Separation and Purification Technology, 309. https://doi.org/10.1016/j.seppur.2022.123091
  • Xu, F. X., Ooi, C. W., Liu, B. L. et al. (2021). Antibacterial efficacy of poly(hexamethylene biguanide) immobilized on chitosan/dye-modified nanofiber membranes. International Journal of Biological Macromolecules, 181, 508–520. https://doi.org/10.1016/j.ijbiomac.2021.03.151
  • Yılmaz, F., Bahtiyari, M. İ. (2020). Antibacterial finishing of cotton fabrics by dyeing with olive tree leaves fallen during olive harvesting. Journal of Cleaner Production, 270. https://doi.org/10.1016/j.jclepro.2020.122068
  • Yılmaz, F., Bahtiyari, M. İ. (2021). Antibacterial Finishing of Linen Fabrics by Combination with Nano-Aluminum Oxide and Crosslinking Agent. Fibers and Polymers, 22(7), 1830–1836. https://doi.org/10.1007/s12221- 021-0865-5
  • Yu, Z., Deng, C., Ding, C. et al. (2024). Organic-inorganic hybrid ZIF-8/MXene/cellulose-based textiles with improved antibacterial and electromagnetic interference shielding performance. International Journal of Biological Macromolecules, 266. https://doi.org/10.1016/j.ijbiomac.2024.131080
  • Zargarian, S. S., Kupikowska-Stobba, B., Kosik-Kozioł, A. et al. (2024). Light-responsive biowaste-derived and bioinspired textiles: Dancing between bio-friendliness and antibacterial functionality. Materials Today Chemistry, 41. https://doi.org/10.1016/j.mtchem.2024.102281
  • Zhang, N., Shi, R., Zhou, M. et al. (2023). Amyloid-like protein bridged nano-materials and fabrics for preparing rapid and long lasting antibacterial, UVresistant and personal thermal management textiles. International Journal of Biological Macromolecules, 247. https://doi.org/10.1016/j.ijbiomac.2023.125699
  • Zhang, N., Wang, W., Zhou, M. et al. (2023). A controllable, universal, and natural supramolecular assembly coating strategy for multifunctionality textiles of antibacterial properties, UV resistance, antioxidant, and secondary reactivity. Industrial Crops and Products, 198. https://doi.org/10.1016/j.indcrop.2023.116637
  • Zhang, W., Yang, Z. Y., Tang, R. C. et al. (2020). Application of tannic acid and ferrous ion complex as eco-friendly flame retardant and antibacterial agents for silk. Journal of Cleaner Production, 250. https://doi.org/10.1016/j.jclepro.2019.119545
  • Zhang, X., Zhu, Y., Li, M. et al. (2025). Sustainable preparation of multifunctional textile from oil-flax straw waste for thermal management, electromagnetic interference shielding, and antimicrobial. Surfaces and Interfaces, 61. https://doi.org/10.1016/j.surfin.2025.106069
  • Zhang, Y., Zhou, Q., Rather, L. J. et al. (2021). Agricultural waste of Eriobotrya japonica L. (Loquat) seeds and flora leaves as source of natural dye and bio-mordant for coloration and bio-functional finishing of wool textile. Industrial Crops and Products, 169. https://doi.org/10.1016/j.indcrop.2021.113633
  • Zhang, Z., Xie, Q., Chao, T. et al. (2023). Construction of rough surface based on zein and rosin to hydrophobically functionalize cotton fabric with antibacterial activity. Progress in Organic Coatings, 184. https://doi.org/10.1016/j.porgcoat.2023.107839
  • Zheng, H., Li, X., Liu, L. et al. (2022). Preparation of nanofiber core-spun yarn based on cellulose nanowhiskers/quaternary ammonium salts nanocomposites for efficient and durable antibacterial textiles. Composites Communications, 36. https://doi.org/10.1016/j.coco.2022.101388
  • Zhou, C. E., Kan, C. W. (2015). Plasma-enhanced regenerable 5,5-dimethylhydantoin (DMH) antibacterial finishing for cotton fabric. Applied Surface Science, 328, 410–417. https://doi.org/10.1016/j.apsusc.2014.12.052
  • Zhou, Y., Tang, R. C. (2018). Facile and eco-friendly fabrication of AgNPs coated silk for antibacterial and antioxidant textiles using honeysuckle extract. Journal of Photochemistry and Photobiology B: Biology, 178, 463–471. https://doi.org/10.1016/j.jphotobiol.2017.12.003
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Halk Sağlığı (Diğer)
Bölüm Makaleler
Yazarlar

Gürsel Korkmaz

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 12 Ağustos 2025
Kabul Tarihi 25 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 3

Kaynak Göster

APA Korkmaz, G. (2025). Recent Approaches to Antibacterial Textile Production Using Inorganic, Organic, and Sustainable Bioactive Substances: A Review. Turkish Journal of Science and Health, 6(3), 210-234. https://doi.org/10.51972/tfsd.1763437