Araştırma Makalesi
BibTex RIS Kaynak Göster

EMPOWERING SELF-DETECTION: A GRAPHICAL USER INTERFACE POWERED BY MACHINE LEARNING FOR EARLY DIAGNOSIS OF ALZHEIMER'S DISEASE

Yıl 2024, , 245 - 270, 27.12.2024
https://doi.org/10.55071/ticaretfbd.1416508

Öz

Alzheimer’s Disease (AD) is one of the most, if not the most, devastating neurodegenerative diseases that are incurable and progressive. Early diagnosis of AD comes with many promises in terms of medicine, sociology, and economics. Despite the existence of numerous studies that aim for early diagnosis of AD, to the best of our knowledge, there is not a publicly available tool that lets end-users assess AD. To address this gap, we propose a Graphical User Interface (GUI) powered by Machine Learning (ML) that makes self-assessment of AD possible – without any input from medical experts. The developed GUI lets end-users enter various information considering both commonly used features for the diagnosis of AD and the questions available in the gold standard screening tool for the diagnosis of AD, namely the Mini-Mental State Exam. In addition to employing 11 traditional ML algorithms, we propose a novel 1-dimensional (1D) Convolutional Neural Network (CNN). All ML models were trained on a gold standard dataset that comprised 373 records from three subject classes as follows: (i) non-demented, (ii) demented, and (iii) converted. Once the end-user enters the required input through the developed GUI, the previously trained ML model assesses the diagnosis of AD through this input in a couple of seconds. According to the experimental results, the proposed novel 1D CNN outperformed the state-of-the-art by obtaining an accuracy as high as 95,3% on the used gold standard dataset.

Kaynakça

  • Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2016). TensorFlow: A System for Large-Scale Machine Learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), 265–283.
  • Abdelminaam, D. S., Madbouly, M. M., Farag, M. S., Gomaa, I. A., Abd-Elghany Zeid, M., & Abualigah, L. (2023). ML_Alzheimer: Alzheimer Disease Prediction Using Machine Learning. Proceedings of the 3rd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC 2023), 409–414. https://doi.org/10.1109/MIUCC58832.2023.10278361
  • Almubark, I., Alsegehy, S., Jiang, X., & Chang, L. C. (2020). Early Detection of Mild Cognitive Impairment using Neuropsychological Data and Machine Learning Techniques. Proceedings of the 2020 IEEE Conference on Big Data and Analytics (ICBDA 2020), 32–37. https://doi.org/10.1109/ICBDA50157.2020.9289741
  • Amrutesh, A., Gowtham Bhat, C. G., Amruthamsh, A., Asha Rani, K. P., & Gowrishankar, S. (2022). Alzheimer’s Disease Prediction using Machine Learning and Transfer Learning Models. Proceedings of the 6th IEEE International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS 2022), 1–6. https://doi.org/10.1109/CSITSS57437.2022.10026365
  • Arjaria, S. K., Rathore, A. S., Bisen, D., & Bhattacharyya, S. (2022). Performances of Machine Learning Models for Diagnosis of Alzheimer’s Disease. Annals of Data Science, 1–29. https://doi.org/10.1007/s40745-022-00452-2
  • Becker, A. (2019). Artificial intelligence in medicine: What is it doing for us today? Health Policy and Technology, 8(2), 198–205. https://doi.org/10.1016/J.HLPT.2019.03.004
  • Bellard, F. (2023). FFmpeg. Retrieved January 1, 2024 from https://ffmpeg.org
  • Berthel, E., Pujo-Menjouet, L., Le Reun, E., Sonzogni, L., Al-Choboq, J., Chekroun, A., Granzotto, A., Devic, C., Ferlazzo, M. L., Pereira, S., Bourguignon, M., & Foray, N. (2023). Toward an Early Diagnosis for Alzheimer’s Disease Based on the Perinuclear Localization of the ATM Protein. Cells, 12(1747), 1–21. https://doi.org/10.3390/cells12131747
  • Brown, J., Wiggins, J., Lansdall, C. J., Dawson, K., Rittman, T., & Rowe, J. B. (2019). Test Your Memory (TYM test): diagnostic evaluation of patients with non-Alzheimer dementias. Journal of Neurology, 266(10), 2546–2553. https://doi.org/10.1007/s00415-019-09447-1
  • Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16), 13-17-August-2016, 785–794. https://doi.org/10.1145/2939672.2939785
  • Chollet, F. (2017). Deep Learning with Python. Manning Publications.
  • Chowdary, B. V., Muppidi, S., Sruthi, B., Madhuri, K. S., & Sumanth, L. (2021). An Effective and Efficient Alzheimer Disease Prediction System Using Machine Learning Model. Proceedings of the 5th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC 2021), 342–347. https://doi.org/10.1109/I-SMAC52330.2021.9641022
  • Durette, P. N. (2023). gTTS. Retrieved January 1, 2024 https://gtts.readthedocs.io/en/latest/
  • Early-Onset Dementia and Alzheimer’s Rates Grow for Younger Americans. (2022). https://doi.org/10.9
  • Erdogmus, P., & Kabakus, A. T. (2023). The promise of convolutional neural networks for the early diagnosis of the Alzheimer’s disease. Engineering Applications of Artificial Intelligence, 123, 1–13. https://doi.org/10.1016/j.engappai.2023.106254
  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6
  • Gustavsson, A., Norton, N., Fast, T., Frölich, L., Georges, J., Holzapfel, D., Kirabali, T., Krolak-Salmon, P., Rossini, P. M., Ferretti, M. T., Lanman, L., Chadha, A. S., & van der Flier, W. M. (2023). Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimer’s and Dementia, 19(2). https://doi.org/10.1002/alz.12694
  • Hnilicova, P., Kantorova, E., Sutovsky, S., Grofik, M., Zelenak, K., Kurca, E., Zilka, N., Parvanovova, P., & Kolisek, M. (2023). Imaging Methods Applicable in the Diagnostics of Alzheimer’s Disease, Considering the Involvement of Insulin Resistance. In International Journal of Molecular Sciences (Vol. 24, Issue 3325, pp. 1–31). https://doi.org/10.3390/ijms24043325
  • Hollingshead, A. (1975). Four factor index of social status. In Yale Journal of Sociology (Vol. 8).
  • IPinfo. (2023). Retrieved January 1, 2024 https://ipinfo.io
  • Jadhao, P., Palsodkar, P., Raut, R., Chaube, K., Rathod, D., & Palsodkar, P. (2023). Prediction of Early Stage Alzheimer’s using Machine Learning Algorithm. 2023 4th International Conference for Emerging Technology, INCET 2023, 1–5. https://doi.org/10.1109/INCET57972.2023.10170583
  • Jiang, T., Yu, J.-T., Tian, Y., & Tan, L. (2013). Epidemiology and Etiology of Alzheimer’s disease: From Genetic to Non-Genetic Factors. Current Alzheimer Research, 10(8), 852–867. https://doi.org/10.2174/15672050113109990155
  • Joshi, S., Shenoy, P. D., Venugopal, K. R., & Patnaik, L. M. (2009). Evaluation of Different Stages of Dementia Employing Neuropsychological and Machine Learning Techniques. Proceedings of the 2009 1st International Conference on Advanced Computing (ICAC 2009), 154–160. https://doi.org/10.1109/ICADVC.2009.5378199
  • Karande, S., & Kulkarni, V. (2023). Automated Prognosis of Alzheimer’s Disease using Machine Learning Classifiers on Spontaneous Speech Features. International Journal of Intelligent Systems and Applications in Engineering, 11(2), 245–251.
  • Kato, Y., Narumoto, J., Matsuoka, T., Okamura, A., Koumi, H., Kishikawa, Y., Terashima, S., & Fukui, K. (2013). Diagnostic performance of a combination of Mini-Mental State Examination and Clock Drawing Test in detecting Alzheimer’s disease. Neuropsychiatric Disease and Treatment, 9, 581–586. https://doi.org/10.2147/NDT.S42209
  • Kavitha, C., Mani, V., Srividhya, S. R., Khalaf, O. I., & Tavera Romero, C. A. (2022). Early-Stage Alzheimer’s Disease Prediction Using Machine Learning Models. Frontiers in Public Health, 10, 1–13. https://doi.org/10.3389/fpubh.2022.853294
  • Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30(NIPS 2017), 3149–3157.
  • Kingma, D. P., & Ba, J. L. (2015). Adam: A Method for Stochastic Optimization. Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), 1–15.
  • Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151, 1–21. https://doi.org/10.1016/j.ymssp.2020.107398
  • Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2018). Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. Journal of Machine Learning Research, 18(1), 6765–6816.
  • Light Gradient Boosting Machine. (2024). Microsoft. Retrieved January 1, 2024 https://lightgbm.readthedocs.io
  • Lins, A. J. C. C., Muniz, M. T. C., & Bastos-Filho, C. J. A. (2019). Comparing Machine Learning Techniques for Dementia Diagnosis. Proceedings of the 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI 2018), 1–6. https://doi.org/10.1109/LA-CCI.2018.8625209
  • Marcus, D. S., Fotenos, A. F., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2010). Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults. Journal of Cognitive Neuroscience, 22(12), 2677–2684. https://doi.org/10.1162/jocn.2009.21407
  • Morar, U., Martin, H., Izquierdo, W., Forouzannezhad, P., Zarafshan, E., Curiel, R. E., Roselli, M., Loewenstein, D., Duara, R., Unger, E., & Adjouadi, M. (2020). A Deep-Learning Approach for the Prediction of Mini-Mental State Examination Scores in a Multimodal Longitudinal Study. Proceedings of the 2020 International Conference on Computational Science and Computational Intelligence (CSCI 2020), 761–766. https://doi.org/10.1109/CSCI51800.2020.00144
  • Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K., Chalek, J., Abd-Allah, F., Abdoli, A., Abualhasan, A., Abu-Gharbieh, E., Akram, T. T., Al Hamad, H., Alahdab, F., Alanezi, F. M., Alipour, V., Almustanyir, S., Amu, H., Ansari, I., Arabloo, J., Ashraf, T., … Vos, T. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 7, 105–125. https://doi.org/10.1016/S2468-2667(21)00249-8
  • O’Malley, T., Bursztein, E., Long, J., & Chollet, F. (2019). KerasTuner. Keras. Retrieved January 1, 2024 https://github.com/keras-team/keras-tuner
  • Ozhan, O., Kucukakcali, Z., & Balikci Cicek, I. (2022). Risk Prediction Model for Dementia by Deep Learning Using Clinical Data. The Journal of Cognitive Systems, 7(2), 1–4. https://doi.org/10.52876/jcs
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
  • Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I. (2023). Robust Speech Recognition via Large-Scale Weak Supervision. ArXiv, 2212.04356, 1–28. https://doi.org/10.48550/arXiv.2212.04356
  • Rasmussen, J., & Langerman, H. (2019). Alzheimer’s Disease – Why We Need Early Diagnosis. Degenerative Neurological and Neuromuscular Disease, 9, 123–130. https://doi.org/10.2147/dnnd.s228939
  • Reisberg, B., Ferris, S. H., De Leon, M. J., & Crook, T. (1982). The global deterioration scale for assessment of primary degenerative dementia. American Journal of Psychiatry, 139, 1136–1139. https://doi.org/10.1176/ajp.139.9.1136
  • Ringman, J. M., Liang, L. J., Zhou, Y., Vangala, S., Teng, E., Kremen, S., Wharton, D., Goate, A., Marcus, D. S., Farlow, M., Ghetti, B., McDade, E., Masters, C. L., Mayeux, R. P., Rossor, M., Salloway, S., Schofield, P. R., Cummings, J. L., Buckles, V., … Morris, J. C. (2015). Early behavioural changes in familial Alzheimer’s disease in the Dominantly Inherited Alzheimer Network. Brain, 138(4), 1036–1045. https://doi.org/10.1093/brain/awv004
  • Sahu, H. K., Kumar, S., Alsamhi, S. H., Chaube, M. K., & Curry, E. (2022). Novel Framework for Alzheimer Early Diagnosis using Inductive Transfer Learning Techniques. Proceedings of the 2022 2nd International Conference on Emerging Smart Technologies and Applications (ESmarTA 2022), 1–7. https://doi.org/10.1109/eSmarTA56775.2022.9935379
  • Saxton, J., Lopez, O. L., Ratcliff, G., Dulberg, C., Fried, L. P., Carlson, M. C., Newman, A. B., & Kuller, L. (2004). Preclinical Alzheimer disease: Neuropsychological test performance 1.5 to 8 years prior to onset. Neurology, 63(12), 2341–2347. https://doi.org/10.1212/01.WNL.0000147470.58328.50
  • Schimansky, T. (2024). CustomTkinter. Retrieved January 1, 2024 https://customtkinter.tomschimansky.com
  • Sharma, R., Goel, T., Tanveer, M., Lin, C. T., & Murugan, R. (2023). Deep-Learning-Based Diagnosis and Prognosis of Alzheimer’s Disease: A Comprehensive Review. IEEE Transactions on Cognitive and Developmental Systems, 15(3), 1123–1138. https://doi.org/10.1109/TCDS.2023.3254209
  • Shetty, M., Deekshitha, Bhat, M., & Devadiga, M. (2022). Detection of Alzheimer’s Disease Using Machine Learning. International Conference on Artificial Intelligence and Data Engineering, AIDE 2022, 117–120. https://doi.org/10.1109/AIDE57180.2022.10060433
  • The pandas development team. (2020). pandas: Python Data Analysis Library. Retrieved January 1, 2024 https://pandas.pydata.org
  • Therriault, J., Servaes, S., Tissot, C., Rahmouni, N., Ashton, N. J., Benedet, A. L., Karikari, T. K., Macedo, A. C., Lussier, F. Z., Stevenson, J., Wang, Y. T., Fernandez-Arias, J., Stevenson, A., Socualaya, K. Q., Haeger, A., Nazneen, T., Aumont, É., Hosseini, A., Rej, S., … Rosa-Neto, P. (2023). Equivalence of plasma p-tau217 with cerebrospinal fluid in the diagnosis of Alzheimer’s disease. Alzheimer’s and Dementia, 19(11), 4967–4977. https://doi.org/10.1002/alz.13026
  • Theune, C. (2023). pycountry: A Python library to access ISO country, subdivision, language, currency and script definitions and their translations. Retrieved January 1, 2024 https://github.com/flyingcircusio/pycountry
  • van Veen, R., Biehl, M., & de Vries, G. J. (2021). sklvq: Scikit Learning Vector Quantization. Journal of Machine Learning Research, 22(231), 1–6.
  • Vidushi, M., Akash, R., & Shrivastava, A. K. (2020). Diagnosis of Alzheimer Disease using Machine Learning Approaches. International Journal of Advanced Science and Technology, 29(04), 7062–7073.
  • Wimo, A., Seeher, K., Cataldi, R., Cyhlarova, E., Dielemann, J. L., Frisell, O., Guerchet, M., Jönsson, L., Malaha, A. K., Nichols, E., Pedroza, P., Prince, M., Knapp, M., & Dua, T. (2023). The worldwide costs of dementia in 2019. Alzheimer’s and Dementia, 19(7). https://doi.org/10.1002/alz.12901
  • XGBoost Documentation. (2024). Retrieved January 1, 2024 https://xgboost.readthedocs.io
  • Xu, X., Lin, L., Sun, S., & Wu, S. (2023). A review of the application of three-dimensional convolutional neural networks for the diagnosis of Alzheimer’s disease using neuroimaging. Reviews in the Neurosciences, 34(6), 649–670. https://doi.org/10.1515/revneuro-2022-0122
  • Zhang, X., Chen, X., Yao, L., Ge, C., & Dong, M. (2019). Deep Neural Network Hyperparameter Optimization with Orthogonal Array Tuning. International Conference on Neural Information Processing (ICONIP 2019), 287–295. https://doi.org/10.1007/978-3-030-36808-1_31

KENDİNE TANIMANIN GÜÇLENDİRİLMESİ: ALZHEİMER HASTALIĞININ ERKEN TANISINA YÖNELİK MAKİNE ÖĞRENMESİ TEMELLİ BİR GRAFİKSEL KULLANICI ARABİRİMİ

Yıl 2024, , 245 - 270, 27.12.2024
https://doi.org/10.55071/ticaretfbd.1416508

Öz

Alzheimer Hastalığı (AH), tedavi edilemeyen ve ilerleyici olan en yıkıcı nörodejeneratif hastalıklardan biridir, belki de en yıkıcı olanıdır. AH'nin erken teşhisi, tıp, sosyoloji ve ekonomi açısından birçok avantaj içermektedir. AH'nin erken teşhisine yönelik birçok çalışma olmasına rağmen, bilgimiz dahilinde olan son kullanıcıların AH değerlendirmesini yapmalarına olanak tanıyan açık erişimli bir araç bulunmamaktadır. Bu boşluğu doldurmak için, tıbbi uzmanlardan herhangi bir giriş olmadan AH'nin kendi değerlendirmesini mümkün kılan Makine Öğrenmesi temelli bir grafiksel kullanıcı arayüzü öneriyoruz. Geliştirilen grafiksel kullanıcı arayüzü, son kullanıcılara AH teşhisi için yaygın olarak kullanılan özniteliklerle birlikte AH teşhisi için altın standart tarama aracı olan Mini-Mental Durum Testi’ndeki soruları da dikkate alarak çeşitli bilgiler girmelerine izin verir. 11 geleneksel makine öğrenmesi algoritmasının kullanımının yanı sıra, benzersiz bir 1-boyutlu Konvolüsyonel Sinir Ağı (KSA) öneriyoruz. Tüm makine öğrenmesi modelleri, (i) bilişsel bozukluğu olmayan, (ii) bilişsel bozukluğu olan ve (iii) dönüştürülen olmak üzere üç konu sınıfından oluşan 373 örneklemli bir altın standart veri setinde eğitilmiştir. Son kullanıcı, geliştirilen grafiksel kullanıcı arayüzü aracılığıyla gerekli girişi yaptığında, daha önce eğitilmiş makine öğrenmesi modeli bu girdi üzerinden AH teşhisini birkaç saniye içinde değerlendirmektedir. Deneysel sonuçlara göre, önerilen benzersiz 1-boyutlu KSA, kullanılan altın standart veri setinde %95,3'e kadar yüksek bir doğruluk elde ederek en gelişkin modelleri geride bırakmıştır.

Kaynakça

  • Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2016). TensorFlow: A System for Large-Scale Machine Learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), 265–283.
  • Abdelminaam, D. S., Madbouly, M. M., Farag, M. S., Gomaa, I. A., Abd-Elghany Zeid, M., & Abualigah, L. (2023). ML_Alzheimer: Alzheimer Disease Prediction Using Machine Learning. Proceedings of the 3rd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC 2023), 409–414. https://doi.org/10.1109/MIUCC58832.2023.10278361
  • Almubark, I., Alsegehy, S., Jiang, X., & Chang, L. C. (2020). Early Detection of Mild Cognitive Impairment using Neuropsychological Data and Machine Learning Techniques. Proceedings of the 2020 IEEE Conference on Big Data and Analytics (ICBDA 2020), 32–37. https://doi.org/10.1109/ICBDA50157.2020.9289741
  • Amrutesh, A., Gowtham Bhat, C. G., Amruthamsh, A., Asha Rani, K. P., & Gowrishankar, S. (2022). Alzheimer’s Disease Prediction using Machine Learning and Transfer Learning Models. Proceedings of the 6th IEEE International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS 2022), 1–6. https://doi.org/10.1109/CSITSS57437.2022.10026365
  • Arjaria, S. K., Rathore, A. S., Bisen, D., & Bhattacharyya, S. (2022). Performances of Machine Learning Models for Diagnosis of Alzheimer’s Disease. Annals of Data Science, 1–29. https://doi.org/10.1007/s40745-022-00452-2
  • Becker, A. (2019). Artificial intelligence in medicine: What is it doing for us today? Health Policy and Technology, 8(2), 198–205. https://doi.org/10.1016/J.HLPT.2019.03.004
  • Bellard, F. (2023). FFmpeg. Retrieved January 1, 2024 from https://ffmpeg.org
  • Berthel, E., Pujo-Menjouet, L., Le Reun, E., Sonzogni, L., Al-Choboq, J., Chekroun, A., Granzotto, A., Devic, C., Ferlazzo, M. L., Pereira, S., Bourguignon, M., & Foray, N. (2023). Toward an Early Diagnosis for Alzheimer’s Disease Based on the Perinuclear Localization of the ATM Protein. Cells, 12(1747), 1–21. https://doi.org/10.3390/cells12131747
  • Brown, J., Wiggins, J., Lansdall, C. J., Dawson, K., Rittman, T., & Rowe, J. B. (2019). Test Your Memory (TYM test): diagnostic evaluation of patients with non-Alzheimer dementias. Journal of Neurology, 266(10), 2546–2553. https://doi.org/10.1007/s00415-019-09447-1
  • Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16), 13-17-August-2016, 785–794. https://doi.org/10.1145/2939672.2939785
  • Chollet, F. (2017). Deep Learning with Python. Manning Publications.
  • Chowdary, B. V., Muppidi, S., Sruthi, B., Madhuri, K. S., & Sumanth, L. (2021). An Effective and Efficient Alzheimer Disease Prediction System Using Machine Learning Model. Proceedings of the 5th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC 2021), 342–347. https://doi.org/10.1109/I-SMAC52330.2021.9641022
  • Durette, P. N. (2023). gTTS. Retrieved January 1, 2024 https://gtts.readthedocs.io/en/latest/
  • Early-Onset Dementia and Alzheimer’s Rates Grow for Younger Americans. (2022). https://doi.org/10.9
  • Erdogmus, P., & Kabakus, A. T. (2023). The promise of convolutional neural networks for the early diagnosis of the Alzheimer’s disease. Engineering Applications of Artificial Intelligence, 123, 1–13. https://doi.org/10.1016/j.engappai.2023.106254
  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6
  • Gustavsson, A., Norton, N., Fast, T., Frölich, L., Georges, J., Holzapfel, D., Kirabali, T., Krolak-Salmon, P., Rossini, P. M., Ferretti, M. T., Lanman, L., Chadha, A. S., & van der Flier, W. M. (2023). Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimer’s and Dementia, 19(2). https://doi.org/10.1002/alz.12694
  • Hnilicova, P., Kantorova, E., Sutovsky, S., Grofik, M., Zelenak, K., Kurca, E., Zilka, N., Parvanovova, P., & Kolisek, M. (2023). Imaging Methods Applicable in the Diagnostics of Alzheimer’s Disease, Considering the Involvement of Insulin Resistance. In International Journal of Molecular Sciences (Vol. 24, Issue 3325, pp. 1–31). https://doi.org/10.3390/ijms24043325
  • Hollingshead, A. (1975). Four factor index of social status. In Yale Journal of Sociology (Vol. 8).
  • IPinfo. (2023). Retrieved January 1, 2024 https://ipinfo.io
  • Jadhao, P., Palsodkar, P., Raut, R., Chaube, K., Rathod, D., & Palsodkar, P. (2023). Prediction of Early Stage Alzheimer’s using Machine Learning Algorithm. 2023 4th International Conference for Emerging Technology, INCET 2023, 1–5. https://doi.org/10.1109/INCET57972.2023.10170583
  • Jiang, T., Yu, J.-T., Tian, Y., & Tan, L. (2013). Epidemiology and Etiology of Alzheimer’s disease: From Genetic to Non-Genetic Factors. Current Alzheimer Research, 10(8), 852–867. https://doi.org/10.2174/15672050113109990155
  • Joshi, S., Shenoy, P. D., Venugopal, K. R., & Patnaik, L. M. (2009). Evaluation of Different Stages of Dementia Employing Neuropsychological and Machine Learning Techniques. Proceedings of the 2009 1st International Conference on Advanced Computing (ICAC 2009), 154–160. https://doi.org/10.1109/ICADVC.2009.5378199
  • Karande, S., & Kulkarni, V. (2023). Automated Prognosis of Alzheimer’s Disease using Machine Learning Classifiers on Spontaneous Speech Features. International Journal of Intelligent Systems and Applications in Engineering, 11(2), 245–251.
  • Kato, Y., Narumoto, J., Matsuoka, T., Okamura, A., Koumi, H., Kishikawa, Y., Terashima, S., & Fukui, K. (2013). Diagnostic performance of a combination of Mini-Mental State Examination and Clock Drawing Test in detecting Alzheimer’s disease. Neuropsychiatric Disease and Treatment, 9, 581–586. https://doi.org/10.2147/NDT.S42209
  • Kavitha, C., Mani, V., Srividhya, S. R., Khalaf, O. I., & Tavera Romero, C. A. (2022). Early-Stage Alzheimer’s Disease Prediction Using Machine Learning Models. Frontiers in Public Health, 10, 1–13. https://doi.org/10.3389/fpubh.2022.853294
  • Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30(NIPS 2017), 3149–3157.
  • Kingma, D. P., & Ba, J. L. (2015). Adam: A Method for Stochastic Optimization. Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), 1–15.
  • Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151, 1–21. https://doi.org/10.1016/j.ymssp.2020.107398
  • Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2018). Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. Journal of Machine Learning Research, 18(1), 6765–6816.
  • Light Gradient Boosting Machine. (2024). Microsoft. Retrieved January 1, 2024 https://lightgbm.readthedocs.io
  • Lins, A. J. C. C., Muniz, M. T. C., & Bastos-Filho, C. J. A. (2019). Comparing Machine Learning Techniques for Dementia Diagnosis. Proceedings of the 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI 2018), 1–6. https://doi.org/10.1109/LA-CCI.2018.8625209
  • Marcus, D. S., Fotenos, A. F., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2010). Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults. Journal of Cognitive Neuroscience, 22(12), 2677–2684. https://doi.org/10.1162/jocn.2009.21407
  • Morar, U., Martin, H., Izquierdo, W., Forouzannezhad, P., Zarafshan, E., Curiel, R. E., Roselli, M., Loewenstein, D., Duara, R., Unger, E., & Adjouadi, M. (2020). A Deep-Learning Approach for the Prediction of Mini-Mental State Examination Scores in a Multimodal Longitudinal Study. Proceedings of the 2020 International Conference on Computational Science and Computational Intelligence (CSCI 2020), 761–766. https://doi.org/10.1109/CSCI51800.2020.00144
  • Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K., Chalek, J., Abd-Allah, F., Abdoli, A., Abualhasan, A., Abu-Gharbieh, E., Akram, T. T., Al Hamad, H., Alahdab, F., Alanezi, F. M., Alipour, V., Almustanyir, S., Amu, H., Ansari, I., Arabloo, J., Ashraf, T., … Vos, T. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 7, 105–125. https://doi.org/10.1016/S2468-2667(21)00249-8
  • O’Malley, T., Bursztein, E., Long, J., & Chollet, F. (2019). KerasTuner. Keras. Retrieved January 1, 2024 https://github.com/keras-team/keras-tuner
  • Ozhan, O., Kucukakcali, Z., & Balikci Cicek, I. (2022). Risk Prediction Model for Dementia by Deep Learning Using Clinical Data. The Journal of Cognitive Systems, 7(2), 1–4. https://doi.org/10.52876/jcs
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
  • Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I. (2023). Robust Speech Recognition via Large-Scale Weak Supervision. ArXiv, 2212.04356, 1–28. https://doi.org/10.48550/arXiv.2212.04356
  • Rasmussen, J., & Langerman, H. (2019). Alzheimer’s Disease – Why We Need Early Diagnosis. Degenerative Neurological and Neuromuscular Disease, 9, 123–130. https://doi.org/10.2147/dnnd.s228939
  • Reisberg, B., Ferris, S. H., De Leon, M. J., & Crook, T. (1982). The global deterioration scale for assessment of primary degenerative dementia. American Journal of Psychiatry, 139, 1136–1139. https://doi.org/10.1176/ajp.139.9.1136
  • Ringman, J. M., Liang, L. J., Zhou, Y., Vangala, S., Teng, E., Kremen, S., Wharton, D., Goate, A., Marcus, D. S., Farlow, M., Ghetti, B., McDade, E., Masters, C. L., Mayeux, R. P., Rossor, M., Salloway, S., Schofield, P. R., Cummings, J. L., Buckles, V., … Morris, J. C. (2015). Early behavioural changes in familial Alzheimer’s disease in the Dominantly Inherited Alzheimer Network. Brain, 138(4), 1036–1045. https://doi.org/10.1093/brain/awv004
  • Sahu, H. K., Kumar, S., Alsamhi, S. H., Chaube, M. K., & Curry, E. (2022). Novel Framework for Alzheimer Early Diagnosis using Inductive Transfer Learning Techniques. Proceedings of the 2022 2nd International Conference on Emerging Smart Technologies and Applications (ESmarTA 2022), 1–7. https://doi.org/10.1109/eSmarTA56775.2022.9935379
  • Saxton, J., Lopez, O. L., Ratcliff, G., Dulberg, C., Fried, L. P., Carlson, M. C., Newman, A. B., & Kuller, L. (2004). Preclinical Alzheimer disease: Neuropsychological test performance 1.5 to 8 years prior to onset. Neurology, 63(12), 2341–2347. https://doi.org/10.1212/01.WNL.0000147470.58328.50
  • Schimansky, T. (2024). CustomTkinter. Retrieved January 1, 2024 https://customtkinter.tomschimansky.com
  • Sharma, R., Goel, T., Tanveer, M., Lin, C. T., & Murugan, R. (2023). Deep-Learning-Based Diagnosis and Prognosis of Alzheimer’s Disease: A Comprehensive Review. IEEE Transactions on Cognitive and Developmental Systems, 15(3), 1123–1138. https://doi.org/10.1109/TCDS.2023.3254209
  • Shetty, M., Deekshitha, Bhat, M., & Devadiga, M. (2022). Detection of Alzheimer’s Disease Using Machine Learning. International Conference on Artificial Intelligence and Data Engineering, AIDE 2022, 117–120. https://doi.org/10.1109/AIDE57180.2022.10060433
  • The pandas development team. (2020). pandas: Python Data Analysis Library. Retrieved January 1, 2024 https://pandas.pydata.org
  • Therriault, J., Servaes, S., Tissot, C., Rahmouni, N., Ashton, N. J., Benedet, A. L., Karikari, T. K., Macedo, A. C., Lussier, F. Z., Stevenson, J., Wang, Y. T., Fernandez-Arias, J., Stevenson, A., Socualaya, K. Q., Haeger, A., Nazneen, T., Aumont, É., Hosseini, A., Rej, S., … Rosa-Neto, P. (2023). Equivalence of plasma p-tau217 with cerebrospinal fluid in the diagnosis of Alzheimer’s disease. Alzheimer’s and Dementia, 19(11), 4967–4977. https://doi.org/10.1002/alz.13026
  • Theune, C. (2023). pycountry: A Python library to access ISO country, subdivision, language, currency and script definitions and their translations. Retrieved January 1, 2024 https://github.com/flyingcircusio/pycountry
  • van Veen, R., Biehl, M., & de Vries, G. J. (2021). sklvq: Scikit Learning Vector Quantization. Journal of Machine Learning Research, 22(231), 1–6.
  • Vidushi, M., Akash, R., & Shrivastava, A. K. (2020). Diagnosis of Alzheimer Disease using Machine Learning Approaches. International Journal of Advanced Science and Technology, 29(04), 7062–7073.
  • Wimo, A., Seeher, K., Cataldi, R., Cyhlarova, E., Dielemann, J. L., Frisell, O., Guerchet, M., Jönsson, L., Malaha, A. K., Nichols, E., Pedroza, P., Prince, M., Knapp, M., & Dua, T. (2023). The worldwide costs of dementia in 2019. Alzheimer’s and Dementia, 19(7). https://doi.org/10.1002/alz.12901
  • XGBoost Documentation. (2024). Retrieved January 1, 2024 https://xgboost.readthedocs.io
  • Xu, X., Lin, L., Sun, S., & Wu, S. (2023). A review of the application of three-dimensional convolutional neural networks for the diagnosis of Alzheimer’s disease using neuroimaging. Reviews in the Neurosciences, 34(6), 649–670. https://doi.org/10.1515/revneuro-2022-0122
  • Zhang, X., Chen, X., Yao, L., Ge, C., & Dong, M. (2019). Deep Neural Network Hyperparameter Optimization with Orthogonal Array Tuning. International Conference on Neural Information Processing (ICONIP 2019), 287–295. https://doi.org/10.1007/978-3-030-36808-1_31
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Derin Öğrenme, Nöral Ağlar, Makine Öğrenme (Diğer), Yapay Zeka (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Abdullah Talha Kabakuş 0000-0003-2181-4292

Pakize Erdoğmuş 0000-0003-2172-5767

Yayımlanma Tarihi 27 Aralık 2024
Gönderilme Tarihi 18 Ocak 2024
Kabul Tarihi 2 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kabakuş, A. T., & Erdoğmuş, P. (2024). EMPOWERING SELF-DETECTION: A GRAPHICAL USER INTERFACE POWERED BY MACHINE LEARNING FOR EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 23(46), 245-270. https://doi.org/10.55071/ticaretfbd.1416508
AMA Kabakuş AT, Erdoğmuş P. EMPOWERING SELF-DETECTION: A GRAPHICAL USER INTERFACE POWERED BY MACHINE LEARNING FOR EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Aralık 2024;23(46):245-270. doi:10.55071/ticaretfbd.1416508
Chicago Kabakuş, Abdullah Talha, ve Pakize Erdoğmuş. “EMPOWERING SELF-DETECTION: A GRAPHICAL USER INTERFACE POWERED BY MACHINE LEARNING FOR EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23, sy. 46 (Aralık 2024): 245-70. https://doi.org/10.55071/ticaretfbd.1416508.
EndNote Kabakuş AT, Erdoğmuş P (01 Aralık 2024) EMPOWERING SELF-DETECTION: A GRAPHICAL USER INTERFACE POWERED BY MACHINE LEARNING FOR EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23 46 245–270.
IEEE A. T. Kabakuş ve P. Erdoğmuş, “EMPOWERING SELF-DETECTION: A GRAPHICAL USER INTERFACE POWERED BY MACHINE LEARNING FOR EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 23, sy. 46, ss. 245–270, 2024, doi: 10.55071/ticaretfbd.1416508.
ISNAD Kabakuş, Abdullah Talha - Erdoğmuş, Pakize. “EMPOWERING SELF-DETECTION: A GRAPHICAL USER INTERFACE POWERED BY MACHINE LEARNING FOR EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23/46 (Aralık 2024), 245-270. https://doi.org/10.55071/ticaretfbd.1416508.
JAMA Kabakuş AT, Erdoğmuş P. EMPOWERING SELF-DETECTION: A GRAPHICAL USER INTERFACE POWERED BY MACHINE LEARNING FOR EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23:245–270.
MLA Kabakuş, Abdullah Talha ve Pakize Erdoğmuş. “EMPOWERING SELF-DETECTION: A GRAPHICAL USER INTERFACE POWERED BY MACHINE LEARNING FOR EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 23, sy. 46, 2024, ss. 245-70, doi:10.55071/ticaretfbd.1416508.
Vancouver Kabakuş AT, Erdoğmuş P. EMPOWERING SELF-DETECTION: A GRAPHICAL USER INTERFACE POWERED BY MACHINE LEARNING FOR EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23(46):245-70.