Araştırma Makalesi
BibTex RIS Kaynak Göster

ARAÇ SÜSPANSİYON SİSTEMLERİ İÇİN KONTROLCÜ ALTINDA POTANSİYEL ENERJİ KAZANIMI ANALİZİ

Yıl 2024, , 184 - 198, 26.06.2024
https://doi.org/10.55071/ticaretfbd.1481959

Öz

Günümüzde elektrikli ve hibrit elektrikli araçlara olan ilgi yükselen bir ivme ile artmaktadır. Bu araçlara olan ilginin temelinde gerek iklim değişikliğiyle mücadele ve gerekse de karbon emisyonlarının azaltılması önemli bir rol oynamaktadır. Ulaşımın hava kirliliğine ve küresel ısınmaya ciddi oranda doğrudan etkilediği düşünüldüğünde, elektrikli araçlara geçiş bu zararlı emisyonları önemli ölçüde azaltabilecektir. Daha temiz ve daha sürdürülebilir bir gelecek için elektrikli ve hibrit elektrikli araçlar geniş çapta desteklenmektedir. Bu araçlardaki enerji optimizasyonu konusu direk olarak menzil değerini etkilediğinden oldukça önemli hale gelmiştir. Araçlarda enerji geri kazanımı, enerji verimliliğini artırmak ve fosil yakıtlara olan bağımlılığı azaltmak dolayısıyla da çevresel etkiyi azaltmak için hayati önem taşır. Enerji geri kazanımlı süspansiyon sistemi, araçtaki enerji toplama yeteneğini artırarak araçları daha sürdürülebilir ve çevre dostu hale getirmektedir. Bu çalışmada araç süspansiyon sistemlerinde aktif bir kontrolcü altında, kazanılabilecek enerji analizi detaylı olarak farklı yol ve araç koşullarında ele alınmıştır. Araştırmada ilk olarak farklı yol profillerinin yolcu konforuna etkisini azaltan süspansiyon sistemi için optimal bir kontrolcü tasarlanmıştır. Ayrıca, bu kontrolcü altında enerji geri kazanımı simüle edilip, analizi yapılarak farklı koşulların potansiyel enerji kazanımı üzerindeki etkisi incelenmiştir.

Kaynakça

  • Abdelkareem, M. A., Xu, L., Ali, M. K. A., Elagouz, A., Mi, J., Guo, S., . . . Zuo, L. (2018a). Vibration energy harvesting in automotive suspension system: A detailed review. Applied energy, 229, 672–699.
  • Abdelkareem, M. A., Xu, L., Guo, X., Ali, M. K. A., Elagouz, A., Hassan, M. A., . . . Zou, J. (2018b). Energy harvesting sensitivity analysis and assessment of the potential power and full car dynamics for different road modes. Mechanical Systems and Signal Processing, 110, 307–332.
  • Abougarair, A. A., & Mahmoud, M. M. (2017). Design and Simulation Optimal Controller for Quarter Car Active Suspension System. In 1st Conference of Industrial Technology (CIT2017).
  • Aly, A. A., & Salem, F. A. (2013). Vehicle suspension systems control: A review. International journal of control, automation and systems, 2(2), 46–54.
  • Azmi, R., Mirzaei, M., & Habibzadeh-Sharif, A. (2023). A novel optimal control strategy for regenerative active suspension system to enhance energy harvesting. Energy Conversion and Management, 291, 117277.
  • Bai, S., & Liu, C. (2021). Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles. Renewable and Sustainable Energy Reviews, 147, 111188.
  • Caban, J., Vrabel, J., Górnicka, D., Nowak, R., Jankiewicz, M., Matijošius, J., & Palka, M. (2023). Overview of energy harvesting technologies used in road vehicles. Energies, 16(9), 3787.
  • Doyle, J., Glover, K., Khargonekar, P., & Francis, B. (1988, June). State-space solutions to standard H 2 and H∞ control problems. In 1988 American Control Conference (pp. 1691-1696). IEEE.
  • Els, P. S., Theron, N. J., Uys, P. E., & Thoresson, M. J. (2007). The ride comfort vs. handling compromise for off-road vehicles. Journal of Terramechanics, 44(4), 303–317.
  • Gahinet, P., & Apkarian, P. (1994). A linear matrix inequality approach to H∞ control. International journal of robust and nonlinear control, 4(4), 421-448.
  • Galluzzi, R., Circosta, S., Amati, N., & Tonoli, A. (2021). Rotary regenerative shock absorbers for automotive suspensions. Mechatronics, 77, 102580.
  • Hajdu, F., Szalai, P., Mika, P., & Kuti, R. (2019). Parameter identification of a fire truck suspension for vibration analysis. Pollack Periodica, 14(3), 51-62.
  • Hamada, A. T., & Orhan, M. F. (2022). An overview of regenerative braking systems. Journal of Energy Storage, 52, 105033.
  • Hong, K.-S., Sohn, H.-C., & Hedrick, J. K., 2002, “Modified Skyhook Control of Semi-Active Suspensions: A New Model, Gain Scheduling, and Hardware-In-The-Loop Tuning,” ASME J. Dyn. Syst., Meas., Control, 124, pp. 158–167.
  • Hosseini, S. M., Soleymani, M., Kelouwani, S., & Amamou, A. (2023). Energy Recovery and Energy Harvesting in Electric and Fuel Cell Vehicles, a Review of Recent Advances. IEEE Access.
  • Jerrelind, J., Allen, P., Gruber, P., Berg, M., & Drugge, L. (2021). Contributions of vehicle dynamics to the energy efficient operation of road and rail vehicles. Vehicle System Dynamics, 59(7), 1114-1147.
  • Long, L. X., Quynh, L. V., & Cuong, B. V. (2018). Study on the influence of bus suspension parameters on ride comfort. Vibroengineering Procedia, 21, 77-82.
  • Lv, X., Ji, Y., Zhao, H., Zhang, J., Zhang, G., & Zhang, L. (2020). Research review of a vehicle energy-regenerative suspension system. Energies, 13(2), 441.
  • Maurya, D., Kumar, P., Khaleghian, S., Sriramdas, R., Kang, M. G., Kishore, R. A., ... & Priya, S. (2018). Energy harvesting and strain sensing in smart tire for next generation autonomous vehicles. Applied energy, 232, 312-322.
  • Mirzaei, M., & Hassannejad, R. (2007). Application of genetic algorithms to optimum design of elasto-damping elements of a half-car model under random road excitations. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 221(4), 515–526.
  • Moradi, S. M., Akbari, A., & Mirzaei, M. (2019). An offline lmi-based robust model predictive control of vehicle active suspension system with parameter uncertainty. Transactions of the Institute of Measurement and Control, 41(6), 1699–1711.
  • Mudduluru, S. R., & Chizari, M. (2021). Quarter and full car models optimisation of passive and active suspension system using genetic algorithm. arXiv preprint arXiv:2101.12629.
  • Pei, J., Guo, F., Zhang, J., Zhou, B., Bi, Y., & Li, R. (2021). Review and analysis of energy harvesting technologies in roadway transportation. Journal of Cleaner Production, 288, 125338.
  • Qin, B., Chen, Y., Chen, Z., & Zuo, L. (2022). Modeling, bench test and ride analysis of a novel energy-harvesting hydraulically interconnected suspension system. Mechanical Systems and Signal Processing, 166, 108456.
  • Savaresi, S. M., Poussot-Vassal, C., Spelta, C., Sename, O., & Dugard, L. (2010). Semi-active suspension control design for vehicles. Elsevier.
  • Scherer, C. W. (1990). The Riccati inequality and state-space H∞-optimal control [Doctoral dissertation]. Julius Maximilians University Würzburg, Germany.
  • Sun, W., Gao, H., & Kaynak, O. (2010). Finite frequency hinf control for vehicle active suspension systems. IEEE Transactions on control systems technology, 19(2), 416–422.
  • Taghavifar, H., & Mardani, A. (2017). Off-road vehicle dynamics. Studies in Systems, Decision and Control, 70, 37.
  • Wang, R., Ding, R., & Chen, L. (2018). Application of hybrid electromagnetic suspension in vibration energy regeneration and active control. Journal of Vibration and Control, 24(1), 223–233.
  • Xie, L., Cai, S., Huang, G., Huang, L., Li, J., & Li, X. (2019). On energy harvesting from a vehicle damper. IEEE/ASME Transactions on Mechatronics, 25(1), 108–117.
  • Zames, G. (1981). Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on automatic control, 26(2), 301-320.
  • Zhang, Y., Guo, K., Wang, D., Chen, C., & Li, X. (2017). Energy conversion mechanism and regenerative potential of vehicle suspensions. Energy, 119, 961–970.
  • Zhao, Z. H., Guan, Y. L., & Chen, S. A. (2020). Experimental research on PMSM ball screw actuator and structural design suggestion of featured active suspension. IEEE access, 8, 66163-66177.
  • Zuo, L., & Zhang, P. S. (2013). Energy harvesting, ride comfort, and road handling of regenerative vehicle suspensions. Journal of Vibration and Acoustics, 135(1), 011002.

Controller-Based Potential Energy Gain Analysis for Vehicle Suspension Systems

Yıl 2024, , 184 - 198, 26.06.2024
https://doi.org/10.55071/ticaretfbd.1481959

Öz

Interest in electric and hybrid electric vehicles is increasing rapidly. This interest is driven by the need to combat climate change and reduce carbon emissions. Given the significant direct impact of transportation on air pollution and global warming, the transition to electric vehicles has the potential to significantly reduce these harmful emissions. Electric and hybrid electric vehicles are widely supported for a cleaner and more sustainable future. Energy optimization in these vehicles is crucial as it directly affects their range. Energy recovery in vehicles is vital for increasing energy efficiency, reducing reliance on fossil fuels, and consequently, minimizing environmental impact. The regenerative suspension system enhances energy harvesting capabilities, making vehicles more sustainable and environmentally friendly. In this study, energy analysis under active control of the vehicle suspension system is discussed in detail under different road and vehicle conditions. In the research firstly an optimal controller is developed for the suspension system to enhance passenger comfort by reducing the effects of road roughness. Furthermore, energy recovery was simulated and analyzed under this controller to investigate the effect of different conditions on potential energy gain.

Kaynakça

  • Abdelkareem, M. A., Xu, L., Ali, M. K. A., Elagouz, A., Mi, J., Guo, S., . . . Zuo, L. (2018a). Vibration energy harvesting in automotive suspension system: A detailed review. Applied energy, 229, 672–699.
  • Abdelkareem, M. A., Xu, L., Guo, X., Ali, M. K. A., Elagouz, A., Hassan, M. A., . . . Zou, J. (2018b). Energy harvesting sensitivity analysis and assessment of the potential power and full car dynamics for different road modes. Mechanical Systems and Signal Processing, 110, 307–332.
  • Abougarair, A. A., & Mahmoud, M. M. (2017). Design and Simulation Optimal Controller for Quarter Car Active Suspension System. In 1st Conference of Industrial Technology (CIT2017).
  • Aly, A. A., & Salem, F. A. (2013). Vehicle suspension systems control: A review. International journal of control, automation and systems, 2(2), 46–54.
  • Azmi, R., Mirzaei, M., & Habibzadeh-Sharif, A. (2023). A novel optimal control strategy for regenerative active suspension system to enhance energy harvesting. Energy Conversion and Management, 291, 117277.
  • Bai, S., & Liu, C. (2021). Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles. Renewable and Sustainable Energy Reviews, 147, 111188.
  • Caban, J., Vrabel, J., Górnicka, D., Nowak, R., Jankiewicz, M., Matijošius, J., & Palka, M. (2023). Overview of energy harvesting technologies used in road vehicles. Energies, 16(9), 3787.
  • Doyle, J., Glover, K., Khargonekar, P., & Francis, B. (1988, June). State-space solutions to standard H 2 and H∞ control problems. In 1988 American Control Conference (pp. 1691-1696). IEEE.
  • Els, P. S., Theron, N. J., Uys, P. E., & Thoresson, M. J. (2007). The ride comfort vs. handling compromise for off-road vehicles. Journal of Terramechanics, 44(4), 303–317.
  • Gahinet, P., & Apkarian, P. (1994). A linear matrix inequality approach to H∞ control. International journal of robust and nonlinear control, 4(4), 421-448.
  • Galluzzi, R., Circosta, S., Amati, N., & Tonoli, A. (2021). Rotary regenerative shock absorbers for automotive suspensions. Mechatronics, 77, 102580.
  • Hajdu, F., Szalai, P., Mika, P., & Kuti, R. (2019). Parameter identification of a fire truck suspension for vibration analysis. Pollack Periodica, 14(3), 51-62.
  • Hamada, A. T., & Orhan, M. F. (2022). An overview of regenerative braking systems. Journal of Energy Storage, 52, 105033.
  • Hong, K.-S., Sohn, H.-C., & Hedrick, J. K., 2002, “Modified Skyhook Control of Semi-Active Suspensions: A New Model, Gain Scheduling, and Hardware-In-The-Loop Tuning,” ASME J. Dyn. Syst., Meas., Control, 124, pp. 158–167.
  • Hosseini, S. M., Soleymani, M., Kelouwani, S., & Amamou, A. (2023). Energy Recovery and Energy Harvesting in Electric and Fuel Cell Vehicles, a Review of Recent Advances. IEEE Access.
  • Jerrelind, J., Allen, P., Gruber, P., Berg, M., & Drugge, L. (2021). Contributions of vehicle dynamics to the energy efficient operation of road and rail vehicles. Vehicle System Dynamics, 59(7), 1114-1147.
  • Long, L. X., Quynh, L. V., & Cuong, B. V. (2018). Study on the influence of bus suspension parameters on ride comfort. Vibroengineering Procedia, 21, 77-82.
  • Lv, X., Ji, Y., Zhao, H., Zhang, J., Zhang, G., & Zhang, L. (2020). Research review of a vehicle energy-regenerative suspension system. Energies, 13(2), 441.
  • Maurya, D., Kumar, P., Khaleghian, S., Sriramdas, R., Kang, M. G., Kishore, R. A., ... & Priya, S. (2018). Energy harvesting and strain sensing in smart tire for next generation autonomous vehicles. Applied energy, 232, 312-322.
  • Mirzaei, M., & Hassannejad, R. (2007). Application of genetic algorithms to optimum design of elasto-damping elements of a half-car model under random road excitations. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 221(4), 515–526.
  • Moradi, S. M., Akbari, A., & Mirzaei, M. (2019). An offline lmi-based robust model predictive control of vehicle active suspension system with parameter uncertainty. Transactions of the Institute of Measurement and Control, 41(6), 1699–1711.
  • Mudduluru, S. R., & Chizari, M. (2021). Quarter and full car models optimisation of passive and active suspension system using genetic algorithm. arXiv preprint arXiv:2101.12629.
  • Pei, J., Guo, F., Zhang, J., Zhou, B., Bi, Y., & Li, R. (2021). Review and analysis of energy harvesting technologies in roadway transportation. Journal of Cleaner Production, 288, 125338.
  • Qin, B., Chen, Y., Chen, Z., & Zuo, L. (2022). Modeling, bench test and ride analysis of a novel energy-harvesting hydraulically interconnected suspension system. Mechanical Systems and Signal Processing, 166, 108456.
  • Savaresi, S. M., Poussot-Vassal, C., Spelta, C., Sename, O., & Dugard, L. (2010). Semi-active suspension control design for vehicles. Elsevier.
  • Scherer, C. W. (1990). The Riccati inequality and state-space H∞-optimal control [Doctoral dissertation]. Julius Maximilians University Würzburg, Germany.
  • Sun, W., Gao, H., & Kaynak, O. (2010). Finite frequency hinf control for vehicle active suspension systems. IEEE Transactions on control systems technology, 19(2), 416–422.
  • Taghavifar, H., & Mardani, A. (2017). Off-road vehicle dynamics. Studies in Systems, Decision and Control, 70, 37.
  • Wang, R., Ding, R., & Chen, L. (2018). Application of hybrid electromagnetic suspension in vibration energy regeneration and active control. Journal of Vibration and Control, 24(1), 223–233.
  • Xie, L., Cai, S., Huang, G., Huang, L., Li, J., & Li, X. (2019). On energy harvesting from a vehicle damper. IEEE/ASME Transactions on Mechatronics, 25(1), 108–117.
  • Zames, G. (1981). Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on automatic control, 26(2), 301-320.
  • Zhang, Y., Guo, K., Wang, D., Chen, C., & Li, X. (2017). Energy conversion mechanism and regenerative potential of vehicle suspensions. Energy, 119, 961–970.
  • Zhao, Z. H., Guan, Y. L., & Chen, S. A. (2020). Experimental research on PMSM ball screw actuator and structural design suggestion of featured active suspension. IEEE access, 8, 66163-66177.
  • Zuo, L., & Zhang, P. S. (2013). Energy harvesting, ride comfort, and road handling of regenerative vehicle suspensions. Journal of Vibration and Acoustics, 135(1), 011002.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mekatronik Mühendisliği, Kontrol Mühendisliği, Mekatronik ve Robotik (Diğer), Dinamikler, Titreşim ve Titreşim Kontrolü
Bölüm Araştırma Makalesi
Yazarlar

Bilal Erol 0000-0003-1810-6500

Erken Görünüm Tarihi 6 Haziran 2024
Yayımlanma Tarihi 26 Haziran 2024
Gönderilme Tarihi 10 Mayıs 2024
Kabul Tarihi 23 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Erol, B. (2024). ARAÇ SÜSPANSİYON SİSTEMLERİ İÇİN KONTROLCÜ ALTINDA POTANSİYEL ENERJİ KAZANIMI ANALİZİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 23(45), 184-198. https://doi.org/10.55071/ticaretfbd.1481959
AMA Erol B. ARAÇ SÜSPANSİYON SİSTEMLERİ İÇİN KONTROLCÜ ALTINDA POTANSİYEL ENERJİ KAZANIMI ANALİZİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Haziran 2024;23(45):184-198. doi:10.55071/ticaretfbd.1481959
Chicago Erol, Bilal. “ARAÇ SÜSPANSİYON SİSTEMLERİ İÇİN KONTROLCÜ ALTINDA POTANSİYEL ENERJİ KAZANIMI ANALİZİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23, sy. 45 (Haziran 2024): 184-98. https://doi.org/10.55071/ticaretfbd.1481959.
EndNote Erol B (01 Haziran 2024) ARAÇ SÜSPANSİYON SİSTEMLERİ İÇİN KONTROLCÜ ALTINDA POTANSİYEL ENERJİ KAZANIMI ANALİZİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23 45 184–198.
IEEE B. Erol, “ARAÇ SÜSPANSİYON SİSTEMLERİ İÇİN KONTROLCÜ ALTINDA POTANSİYEL ENERJİ KAZANIMI ANALİZİ”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 23, sy. 45, ss. 184–198, 2024, doi: 10.55071/ticaretfbd.1481959.
ISNAD Erol, Bilal. “ARAÇ SÜSPANSİYON SİSTEMLERİ İÇİN KONTROLCÜ ALTINDA POTANSİYEL ENERJİ KAZANIMI ANALİZİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23/45 (Haziran 2024), 184-198. https://doi.org/10.55071/ticaretfbd.1481959.
JAMA Erol B. ARAÇ SÜSPANSİYON SİSTEMLERİ İÇİN KONTROLCÜ ALTINDA POTANSİYEL ENERJİ KAZANIMI ANALİZİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23:184–198.
MLA Erol, Bilal. “ARAÇ SÜSPANSİYON SİSTEMLERİ İÇİN KONTROLCÜ ALTINDA POTANSİYEL ENERJİ KAZANIMI ANALİZİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 23, sy. 45, 2024, ss. 184-98, doi:10.55071/ticaretfbd.1481959.
Vancouver Erol B. ARAÇ SÜSPANSİYON SİSTEMLERİ İÇİN KONTROLCÜ ALTINDA POTANSİYEL ENERJİ KAZANIMI ANALİZİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23(45):184-98.