Araştırma Makalesi
BibTex RIS Kaynak Göster

MODIFIED Z-ITERATIVE METHOD FOR SIGNAL ENHANCEMENT AND IMAGE DEBLURRING

Yıl 2025, Cilt: 24 Sayı: 48, 534 - 551, 18.12.2025
https://doi.org/10.55071/ticaretfbd.1668029

Öz

This study introduces a novel iterative method for nonexpansive mappings in uniform convex Banach spaces. Weak and strong convergence theorems are derived under specific assumptions. To substantiate the theoretical findings, numerical examples are presented, and the fixed point of the nonexpansive mapping is approximated computationally using Matlab R2016a. In addition, the paper discusses the applications of the proposed method in the fields of image deblurring and signal enhancement. Image deblurring techniques aim to reduce the blurriness in an image and restore it to a sharper and more distinct form, whereas signal enhancement involves reducing noise to improve the clarity of a signal, thereby enhancing the signal-to-noise ratio. The main contribution of this work lies in the development of a novel algorithm for both image deblurring and signal enhancement, providing an effective approach to address these challenges.

Kaynakça

  • Abbas, M., & Nazir, T. (2014). A new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesnik, 66(2), 223-234.
  • Agarwal, R. P., O Regan, D., & Sahu, D. (2007). Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. Journal of Nonlinear and convex Analysis, 8(1), 61.
  • Agarwal, R. P., O'Regan, D., & Sahu, D. R. (2009). Fixed point theory for Lipschitzian-type mappings with applications (Vol. 6, pp. x+-368). New York: Springer.
  • Biemond, J., Lagendijk, R. L., & Mersereau, R. M. (2002). Iterative methods for image deblurring. Proceedings of the IEEE, 78(5), 856-883.
  • Browder, F. E. (1965). Fixed-point theorems for noncompact mappings in Hilbert space. Proceedings of the National Academy of Sciences, 53(6), 1272-1276.
  • Byrne, C. (2003). A unified treatment of some iterative algorithms in signal processing and imagereconstruction. Inverse problems, 20(1), 103.
  • Cadzow, J. A. (1988). Signal enhancement-a composite property mapping algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(1), 49-62.
  • Chidume, C. E., Ofoedu, E. U., & Zegeye, H. (2003). Strong and weak convergence theorems for asymptotically nonexpansive mappings. Journal of Mathematical Analysis and Applications, 280(2), 364-374.
  • Cho, Y. J., Zhou, H., & Guo, G. (2004). Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings. Computers & Mathematics with Applications, 47(4-5), 707-717.
  • Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., & Freeman, W. T. (2006). Removing camera shake from a single photograph. In Acm Siggraph 2006 Papers (pp. 787-794).
  • Goebel, K., & Kirk, W. A. (1990). Topics in metric fixed point theory (No. 28). Cambridge university press.
  • Göhde, D. (1965). Zum prinzip der kontraktiven abbildung. Mathematische Nachrichten, 30(3‐4), 251-258.
  • Grossmann, A., & Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, 15(4), 723–736. https://doi.org/10.1137/0515056
  • Haykin, S. S. (2002). Adaptive filter theory. Pearson Education India.
  • Ishikawa, S. (1974). Fixed points by a new iteration method. Proceedings of the American Mathematical Society, 44(1), 147-150.
  • Ji, H., & Wang, K. (2011). Robust image deblurring with an inaccurate blur kernel. IEEE Transactions on Image processing, 21(4), 1624-1634.
  • Lee, H. C. (1990). Review of image-blur models in a photographic system using the principles of optics. Optical Engineering, 29(5), 405-421.
  • Levy, M. M. (1946). Fourier transform analysis. Journal of the British Institution of Radio Engineers, 6(6), 228-246.
  • Mann, W. R. (1953). Mean value methods in iteration. Proceedings of the American Mathematical Society, 4(3), 506-510.
  • Navarro, F., Serón, F. J., & Gutierrez, D. (2011, March). Motion blur rendering: State of the art. In Computer Graphics Forum (Vol. 30, No. 1, pp. 3-26). Oxford, UK: Blackwell Publishing Ltd.
  • Opial, Z. (1967). Weak convergence of the sequence of successive approximations for nonexpansive mappings.
  • Peters, R. A. (1995). A new algorithm for image noise reduction using mathematical morphology. IEEE transactions on Image Processing, 4(5), 554-568.
  • Picard, É. (1890). Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. Journal de Mathématiques pures et appliquées, 6, 145-210.
  • Proakis, J. G. (2001). Digital signal processing: principles algorithms and applications. Pearson Education India.
  • Senter, H. F., & Dotson, W. (1974). Approximating fixed points of nonexpansive mappings. Proceedings of the American Mathematical Society, 44(2), 375-380.
  • Srivastava, R., Ahmed, W., Tassaddiq, A., & Alotaibi, N. (2024). Efficiency of a New Iterative Algorithm Using Fixed-Point Approach in the Settings of Uniformly Convex Banach Spaces. Axioms, 13(8), 502.
  • Tan, K. K., & Xu, H. K. (1993). Approximating fixed points of non-expansive mappings by the Ishikawa iteration process. Journal of Mathematical Analysis and Applications, 178, 301-301.
  • Thakur, B. S., Thakur, D., & Postolache, M. (a2016). A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings. Applied Mathematics and Computation, 275, 147-155.
  • Thakur, B. S., Thakur, D., & Postolache, M. (b2016). A new iteration scheme for approximating fixed points of nonexpansive mappings. Filomat, 30(10), 2711-2720.
  • Ullah, K., & Arshad, M. (2018). Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process. Filomat, 32(1), 187-196.
  • Vandeginste, B. M., Massart, D., Buydens, L., De Jong, S., Lewi, P., & Verbeke, J. (1998). Handbook of Chemometrics and Qualimetrics.
  • Vaseghi, S. V. (2008). Advanced digital signal processing and noise reduction. John Wiley & Sons.
  • Wang, R., & Tao, D. (2014). Recent progress in image deblurring. arXiv preprint arXiv:1409.6838.
  • Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series, 2. Cambridge, MA: MIT press.

SİNYAL GELİŞTİRME VE GÖRÜNTÜ BULANIKLIĞINI GİDERME İÇİN DEĞİŞTİRİLMİŞ Z-İTERATİF YÖNTEMİ

Yıl 2025, Cilt: 24 Sayı: 48, 534 - 551, 18.12.2025
https://doi.org/10.55071/ticaretfbd.1668029

Öz

Bu çalışma, düzgün dışbükey Banach uzaylarında genişlemeyen eşlemeler için yeni bir yinelemeli yöntem sunmaktadır. Zayıf ve güçlü yakınsama teoremleri belirli varsayımlar altında türetilmiştir. Teorik bulguları desteklemek için sayısal örnekler sunulmuş ve genişlemeyen eşlemenin sabit noktası Matlab R2016a kullanılarak hesaplamalı olarak yaklaşık olarak hesaplanmıştır. Ek olarak, makalede önerilen yöntemin görüntü bulanıklığını giderme ve sinyal iyileştirme alanlarındaki uygulamaları tartışılmaktadır. Görüntü bulanıklığını giderme teknikleri, bir görüntüdeki bulanıklığı azaltmayı ve daha keskin ve daha belirgin bir forma geri getirmeyi amaçlarken, sinyal iyileştirme, bir sinyalin netliğini iyileştirmek için gürültüyü azaltmayı ve böylece sinyal-gürültü oranını iyileştirmeyi içerir. Bu çalışmanın temel katkısı, hem görüntü bulanıklığını giderme hem de sinyal iyileştirme için yeni bir algoritmanın geliştirilmesinde yatmaktadır ve bu zorlukların ele alınması için etkili bir yaklaşım sağlamaktadır.

Kaynakça

  • Abbas, M., & Nazir, T. (2014). A new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesnik, 66(2), 223-234.
  • Agarwal, R. P., O Regan, D., & Sahu, D. (2007). Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. Journal of Nonlinear and convex Analysis, 8(1), 61.
  • Agarwal, R. P., O'Regan, D., & Sahu, D. R. (2009). Fixed point theory for Lipschitzian-type mappings with applications (Vol. 6, pp. x+-368). New York: Springer.
  • Biemond, J., Lagendijk, R. L., & Mersereau, R. M. (2002). Iterative methods for image deblurring. Proceedings of the IEEE, 78(5), 856-883.
  • Browder, F. E. (1965). Fixed-point theorems for noncompact mappings in Hilbert space. Proceedings of the National Academy of Sciences, 53(6), 1272-1276.
  • Byrne, C. (2003). A unified treatment of some iterative algorithms in signal processing and imagereconstruction. Inverse problems, 20(1), 103.
  • Cadzow, J. A. (1988). Signal enhancement-a composite property mapping algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(1), 49-62.
  • Chidume, C. E., Ofoedu, E. U., & Zegeye, H. (2003). Strong and weak convergence theorems for asymptotically nonexpansive mappings. Journal of Mathematical Analysis and Applications, 280(2), 364-374.
  • Cho, Y. J., Zhou, H., & Guo, G. (2004). Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings. Computers & Mathematics with Applications, 47(4-5), 707-717.
  • Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., & Freeman, W. T. (2006). Removing camera shake from a single photograph. In Acm Siggraph 2006 Papers (pp. 787-794).
  • Goebel, K., & Kirk, W. A. (1990). Topics in metric fixed point theory (No. 28). Cambridge university press.
  • Göhde, D. (1965). Zum prinzip der kontraktiven abbildung. Mathematische Nachrichten, 30(3‐4), 251-258.
  • Grossmann, A., & Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, 15(4), 723–736. https://doi.org/10.1137/0515056
  • Haykin, S. S. (2002). Adaptive filter theory. Pearson Education India.
  • Ishikawa, S. (1974). Fixed points by a new iteration method. Proceedings of the American Mathematical Society, 44(1), 147-150.
  • Ji, H., & Wang, K. (2011). Robust image deblurring with an inaccurate blur kernel. IEEE Transactions on Image processing, 21(4), 1624-1634.
  • Lee, H. C. (1990). Review of image-blur models in a photographic system using the principles of optics. Optical Engineering, 29(5), 405-421.
  • Levy, M. M. (1946). Fourier transform analysis. Journal of the British Institution of Radio Engineers, 6(6), 228-246.
  • Mann, W. R. (1953). Mean value methods in iteration. Proceedings of the American Mathematical Society, 4(3), 506-510.
  • Navarro, F., Serón, F. J., & Gutierrez, D. (2011, March). Motion blur rendering: State of the art. In Computer Graphics Forum (Vol. 30, No. 1, pp. 3-26). Oxford, UK: Blackwell Publishing Ltd.
  • Opial, Z. (1967). Weak convergence of the sequence of successive approximations for nonexpansive mappings.
  • Peters, R. A. (1995). A new algorithm for image noise reduction using mathematical morphology. IEEE transactions on Image Processing, 4(5), 554-568.
  • Picard, É. (1890). Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. Journal de Mathématiques pures et appliquées, 6, 145-210.
  • Proakis, J. G. (2001). Digital signal processing: principles algorithms and applications. Pearson Education India.
  • Senter, H. F., & Dotson, W. (1974). Approximating fixed points of nonexpansive mappings. Proceedings of the American Mathematical Society, 44(2), 375-380.
  • Srivastava, R., Ahmed, W., Tassaddiq, A., & Alotaibi, N. (2024). Efficiency of a New Iterative Algorithm Using Fixed-Point Approach in the Settings of Uniformly Convex Banach Spaces. Axioms, 13(8), 502.
  • Tan, K. K., & Xu, H. K. (1993). Approximating fixed points of non-expansive mappings by the Ishikawa iteration process. Journal of Mathematical Analysis and Applications, 178, 301-301.
  • Thakur, B. S., Thakur, D., & Postolache, M. (a2016). A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings. Applied Mathematics and Computation, 275, 147-155.
  • Thakur, B. S., Thakur, D., & Postolache, M. (b2016). A new iteration scheme for approximating fixed points of nonexpansive mappings. Filomat, 30(10), 2711-2720.
  • Ullah, K., & Arshad, M. (2018). Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process. Filomat, 32(1), 187-196.
  • Vandeginste, B. M., Massart, D., Buydens, L., De Jong, S., Lewi, P., & Verbeke, J. (1998). Handbook of Chemometrics and Qualimetrics.
  • Vaseghi, S. V. (2008). Advanced digital signal processing and noise reduction. John Wiley & Sons.
  • Wang, R., & Tao, D. (2014). Recent progress in image deblurring. arXiv preprint arXiv:1409.6838.
  • Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series, 2. Cambridge, MA: MIT press.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Operatör Cebirleri ve Fonksiyonel Analiz
Bölüm Araştırma Makalesi
Yazarlar

Hüseyin Gül 0009-0001-9028-3053

Esra Yolacan 0000-0002-1655-0993

Gönderilme Tarihi 29 Mart 2025
Kabul Tarihi 25 Temmuz 2025
Erken Görünüm Tarihi 9 Aralık 2025
Yayımlanma Tarihi 18 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 24 Sayı: 48

Kaynak Göster

APA Gül, H., & Yolacan, E. (2025). MODIFIED Z-ITERATIVE METHOD FOR SIGNAL ENHANCEMENT AND IMAGE DEBLURRING. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 24(48), 534-551. https://doi.org/10.55071/ticaretfbd.1668029
AMA Gül H, Yolacan E. MODIFIED Z-ITERATIVE METHOD FOR SIGNAL ENHANCEMENT AND IMAGE DEBLURRING. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Aralık 2025;24(48):534-551. doi:10.55071/ticaretfbd.1668029
Chicago Gül, Hüseyin, ve Esra Yolacan. “MODIFIED Z-ITERATIVE METHOD FOR SIGNAL ENHANCEMENT AND IMAGE DEBLURRING”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24, sy. 48 (Aralık 2025): 534-51. https://doi.org/10.55071/ticaretfbd.1668029.
EndNote Gül H, Yolacan E (01 Aralık 2025) MODIFIED Z-ITERATIVE METHOD FOR SIGNAL ENHANCEMENT AND IMAGE DEBLURRING. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24 48 534–551.
IEEE H. Gül ve E. Yolacan, “MODIFIED Z-ITERATIVE METHOD FOR SIGNAL ENHANCEMENT AND IMAGE DEBLURRING”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 24, sy. 48, ss. 534–551, 2025, doi: 10.55071/ticaretfbd.1668029.
ISNAD Gül, Hüseyin - Yolacan, Esra. “MODIFIED Z-ITERATIVE METHOD FOR SIGNAL ENHANCEMENT AND IMAGE DEBLURRING”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24/48 (Aralık2025), 534-551. https://doi.org/10.55071/ticaretfbd.1668029.
JAMA Gül H, Yolacan E. MODIFIED Z-ITERATIVE METHOD FOR SIGNAL ENHANCEMENT AND IMAGE DEBLURRING. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24:534–551.
MLA Gül, Hüseyin ve Esra Yolacan. “MODIFIED Z-ITERATIVE METHOD FOR SIGNAL ENHANCEMENT AND IMAGE DEBLURRING”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 24, sy. 48, 2025, ss. 534-51, doi:10.55071/ticaretfbd.1668029.
Vancouver Gül H, Yolacan E. MODIFIED Z-ITERATIVE METHOD FOR SIGNAL ENHANCEMENT AND IMAGE DEBLURRING. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24(48):534-51.