Araştırma Makalesi
BibTex RIS Kaynak Göster

SÜRDÜRÜLEBİLİR MOBİL YAŞAM ALANLARI İÇİN ELEKTRİKLİ SU ISITICILARININ KONTROL SİSTEMİ ÜZERİNE KARBONSUZLAŞTIRMA VE ENERJİ MODELLEMESİ

Yıl 2025, Cilt: 24 Sayı: 48, 565 - 589, 18.12.2025
https://doi.org/10.55071/ticaretfbd.1676534

Öz

Enerji verimliliğini artırmak ve güç tüketimini azaltmak amacıyla, bu çalışmada karavanlar ve mobil evler için bir DTE (Çift Tanklı Elektrikli Su Isıtıcısı) modeli tasarlanmıştır. MATLAB/Simulink ortamında, mevcut tek tank modeli ile bu çalışmada geliştirilen DUT (Çift Tanklı Model) çalıştırılmış ve enerji tüketimleri analiz edilmiştir. EWH (Elektrikli Su Isıtıcısı) tank modellerini simüle etmek için tipik bir günlük hanehalkı su kullanım profili oluşturulmuş; bu profil, farklı coğrafi bölgelerden (kıyı, iç kesim, kırsal ve kentsel alanlar) seçilen 25 hanenin Ekim-Mart dönemi boyunca kaydedilen saatlik sıcak su kullanım verilerine dayanmaktadır. Evin sıcak su kullanımını taklit etmek için iki tank kullanılır ve tankların enerji kullanımı karşılaştırılır. Her iki tankın enerji tüketim miktarlarına bağlı olarak sera gazı (GHG) emisyonları da hesaplanır. DUT'un enerji tüketimi tek tanktan daha düşük olduğundan, GHG emisyon miktarı da daha düşüktür. DUT modeli, tek tanklı modele kıyasla ortalama %47,1 daha düşük enerji tüketimi sağlamaktadır. DUT modeli 1000 W güçte çalışırken toplam enerji tüketimi 1200 kWh'den 635 kWh'ye düşmüştür. Sera gazı emisyonlarında da benzer bir azalma gözlemlenmiştir; DUT modeli, tüm güç oranlarında (500 W, 1000 W, 1500 W) tek tank modeline göre %47,1 daha az GHG emisyonu gerçekleştirmiştir. Düşük güç değerlerinde (500 W) DUT modeli, 300 kg CO2 emisyonunu 159 kg CO2 emisyonuna düşürerek %47'lik bir azalma sağlamaktadır.

Kaynakça

  • Ahmed, K., Pylsy, P., & Kurnitski, J. (2016). Hourly consumption profiles of domestic hot water for different occupant groups in dwellings. Solar Energy, 137, 516–530. https://doi.org/10.1016/j.solener.2016.08.033
  • Ahmed, M. S., Mohamed, A., Homod, R. Z., Shareef, H., & Khalid, K. (2016). Modeling of electric water heater and air conditioner for residential demand response strategy. International Journal of Applied Engineering Research, 11(16), 9037–9046.
  • Ahmed, M. S., Mohamed, A., Homod, R. Z., Shareef, H., Sabry, A. H., & Khalid, K. B. (2015). Smart plug prototype for monitoring electrical appliances in Home Energy Management System. In 2015 IEEE Student Conference on Research and Development (SCOReD) (32–36). IEEE. https://doi.org/10.1109/SCORED.2015.7449270
  • American Society of Heating, Refrigerating and Air-Conditioning Engineers. (1993). ANSI/ASHRAE Standard 90.2-1993, Energy efficient design of low-rise residential buildings. Atlanta, GA: ASHRAE.
  • Balke, E. C., Healy, W. M., & Ullah, T. (2016). An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate. Energy and Buildings, 133, 371–380. https://doi.org/10.1016/j.enbuild.2016.09.052
  • Becker, B., & Stogsdill, K. (1990). A domestic hot water use database. ASHRAE Journal, 32(9), 21–25.
  • Bergk, F., Biemann, K., Kämper, C., Kräck, J., & Knörr, W. (2020). Klimabilanz von Reisen mit Reisemobilen und Caravans. Heidelberg: ifeu – Institut für Energie- und Umweltforschung.
  • Bouchelle, M. P., Parker, D. S., & Anello, M. (2000). Factors influencing water heating energy use and peak demand in a large scale residential monitoring study. Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings.
  • Booysen, M., Engelbrecht, J., Ritchie, M., Apperley, M., & Cloete, A. (2019). How much energy can optimal control of domestic water heating save? Energy for Sustainable Development, 51, 73–85. https://doi.org/10.1016/j.esd.2019.05.004
  • Butler, D. (2022). Caravanning statistics. Finder. Retrieved November 10, 2022, from https://www.finder.com/uk/caravanning-statistics
  • Carrington, C., Warrington, D., & Yak, Y. (1985). Structure of domestic hot water consumption. International Journal of Energy Research, 9(1), 65–75. https://doi.org/10.1002/er.4440090108
  • Diao, R., Lu, S., Elizondo, M., Mayhorn, E., Zhang, Y., & Samaan, N. (2012). Electric water heater modeling and control strategies for demand response. In 2012 IEEE Power and Energy Society General Meeting (pp. 1–8). IEEE. https://doi.org/10.1109/PESGM.2012.6345597
  • Dennis, K. (2015). Environmentally beneficial electrification: Electricity as the end-use option. The Electricity Journal, 28(9), 100–112. https://doi.org/10.1016/j.tej.2015.09.011
  • Engelbrecht, J., Ritchie, M. J., & Booysen, M. (2021). Optimal schedule and temperature control of stratified water heaters. Energy for Sustainable Development, 62, 67–81. https://doi.org/10.1016/j.esd.2021.03.009
  • European Caravan Federation. (2022). Environment. Retrieved November 9, 2022, from https://www.e-c-f.com/artikel/environment/
  • European Commission. (2019). The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
  • Fairey, P., & Parker, D. (2004). A review of hot water draw profiles used in performance analysis of residential domestic hot water systems. Florida Solar Energy Center.
  • Fetting, C. (2020). The European Green Deal (ESDN Report). Vienna: ESDN Office.
  • Feyzioglu, A. (2012). Development of control strategies and implementation to electrical water heaters for energy conservation [Doctoral dissertation], Marmara University, Turkey.
  • Feyzioglu, A., & Kar, A. K. (2016). Development of control strategies and implementation to electrical water heaters for energy conservation. Cybernetics and Information Technologies, 16(4), 98–112. https://doi.org/10.1515/cait-2016-0073
  • Five eco friendly caravans for a green living on the go. (2022). Ecofriend. Retrieved November 9, 2022, from https://ecofriend.com/eco-friendly-caravans-green-living.html
  • Fuentes, E., Arce, L., & Salom, J. (2018). A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renewable and Sustainable Energy Reviews, 81, 1530–1547. https://doi.org/10.1016/j.rser.2017.05.229
  • Hejazi, S. A. (1989). Sizing a storage type water heating system. ASHRAE Journal, 31(2).
  • Holloway, S., Akai, M., Pipatti, R., & Rypdal, K. (2006). Carbon dioxide transport, injection and geological storage. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Vol. 2, Chapter 5). Intergovernmental Panel on Climate Change.
  • Kar, A., & Al-Dossary, K. (1995). Thermal performances of water heaters in series. Applied Energy, 52(1), 47–53. https://doi.org/10.1016/0306-2619(95)00022-6
  • Kar, A. K., & Kar, Ü. (1996). Optimum design and selection of residential storage-type electric water heaters for energy conservation. Energy Conversion and Management, 37(9), 1445–1452. https://doi.org/10.1016/0196-8904(95)00225-1
  • Kar, A., Yazicioglu, R., & Yazıcıoğlu, O. (2020). Thermal optimization of partitioned electric water heaters for energy conservation. Journal of Energy Research and Reviews, 6(1), 59–73. https://doi.org/10.9734/jenrr/2020/v6i130161
  • Kartal, M. A. (2024). Data-driven decarbonization: Optimizing P+R in Istanbul with machine learning energy modeling and ITS. Frontiers in Energy Research, 12, Article 1395814. https://doi.org/10.3389/fenrg.2024.1395814
  • Kartal, M. A. (2024). Contamination in heat exchangers: Types, energy effects and prevention methods. IgMin Research, 2(7), 503–507. https://doi.org/10.61927/igmin209
  • Kartal, M. A., & Ersoy, S. (2024). Cooling and multiphase analysis of heated environmentally-friendly R152a (C2H4F2) fluid coming from the production process according to NIST indicators. Applied Sciences, 14(19), Article 2976853.
  • Kartal, M. A., & Feyzioğlu, A. (2023). Numerical analysis of multipurpose shell-tube-heat exchanger with stylized geometry at different baffle gaps and various flow rates. Case Studies in Thermal Engineering, 52, Article 103810. https://doi.org/10.1016/j.csite.2023.103810
  • Kartal, M. A., & Feyzioğlu, A. (2024). Experimental comparison and numerical heat analysis of new designed shell and tube-heat exchanger with designed geometry at different baffle intervals: Status of energy efficiency. International Journal of Low-Carbon Technologies, Article IJLCT-2024-011.R1.
  • Kartal, M. A., & Feyzioğlu, A. (2024). Numerical analysis of altered parallel flow heat exchanger with promoted geometry at multifarious baffle prolongs. Energies, 17(7), Article 1676. https://doi.org/10.3390/en17071676
  • Kelly, J. A., Fu, M., & Clinch, J. P. (2016). Residential home heating: The potential for air source heat pump technologies as an alternative to solid and liquid fuels. Energy Policy, 98, 431–442. https://doi.org/10.1016/j.enpol.2016.09.017
  • Kepplinger, P., Huber, G., & Petrasch, J. (2015). Autonomous optimal control for demand side management with resistive domestic hot water heaters using linear optimization. Energy and Buildings, 100, 50–55. https://doi.org/10.1016/j.enbuild.2015.04.046
  • Kondoh, J., Lu, N., & Hammerstrom, D. J. (2011). An evaluation of the water heater load potential for providing regulation service. In 2011 IEEE Power and Energy Society General Meeting (pp. 1–8). IEEE. https://doi.org/10.1109/PES.2011.6039419
  • Mabina, P. G., & Mukoma, P. (2019). Energy optimization and management of electric water heaters using direct load control. Proceedings of the Domestic Use of Energy Conference.
  • Maclean, K., Sansom, R., Watson, T., & Gross, R. (2016). Managing heat system decarbonisation: Comparing the impacts and costs of transitions in heat infrastructure. London: Imperial College London.
  • Mínguez, J. M. (1987). Water-heaters in series. International Journal of Energy Research, 11(1), 145–151. https://doi.org/10.1002/er.4440110114
  • Munuera, L., Bradford, J., Kelly, N., & Hawkes, A. (2013). The role of energy efficiency in decarbonising heat via electrification. In Proceedings of the ECEEE 2013 Summer Study on Energy Efficiency (pp. 1159–1164). European Council for an Energy Efficient Economy.
  • Nehrir, M. H., Jia, R., Pierre, D. A., & Hammerstrom, D. J. (2007). Power management of aggregate electric water heater loads by voltage control. In 2007 IEEE Power Engineering Society General Meeting (pp. 1–6). IEEE. https://doi.org/10.1109/PES.2007.385975
  • Perlman, M., & Mills, B. (1985). Development of residential hot water use patterns. ASHRAE Transactions, 91(2A), 657–679.
  • Pitchup.com. (2022). Facts and figures. Retrieved November 10, 2022, from https://www.pitchup.com/about/media/
  • Raghavan, S. V., Wei, M., & Kammen, D. M. (2017). Scenarios to decarbonize residential water heating in California. Energy Policy, 109, 441–451. https://doi.org/10.1016/j.enpol.2017.07.002
  • Ritchie, M. J., Engelbrecht, J., & Booysen, M. J. (2021a). Practically-achievable energy savings with the optimal control of stratified water heaters with predicted usage. Energies, 14(7), Article 1963. https://doi.org/10.3390/en14071963
  • Ritchie, M., Engelbrecht, J., & Booysen, M. (2021b). A probabilistic hot water usage model and simulator for use in residential energy management. Energy and Buildings, 235, Article 110727. https://doi.org/10.1016/j.enbuild.2021.110727
  • Saidur, R., Masjuki, H. H., Jamaluddin, M., & Ahmed, S. (2007). Energy and associated greenhouse gas emissions from household appliances in Malaysia. Energy Policy, 35(3), 1648–1657. https://doi.org/10.1016/j.enpol.2006.05.006
  • Sheikh, I. (2017). Decarbonizing residential space and water heating: The case for electrification. In ACEEE Summer Study Proceedings. American Council for an Energy-Efficient Economy.
  • Shimoda, Y., Sugiyama, M., Nishimoto, R., & Momonoki, T. (2021). Evaluating decarbonization scenarios and energy management requirement for the residential sector in Japan through bottom-up simulations of energy end-use demand in 2050. Applied Energy, 303, Article 117510. https://doi.org/10.1016/j.apenergy.2021.117510
  • Smart Networks for the Energy Transition. (2016). Final 10-year ETIP SNET R&I roadmap covering 2017-26. Brussels: European Technology and Innovation Platform for Smart Networks for the Energy Transition.
  • The Greenhouse Gas Protocol. (2015). A corporate accounting and reporting standard. World Business Council for Sustainable Development & World Resources Institute.
  • Things you should know about water heaters for caravans and motor homes. (2022). Truma. Retrieved November 10, 2022, from https://www.truma.com/uk/en/camping-guides/guide-water-heater-caravan
  • Türkiye Elektrik Üretim-İletim İstatistikleri. (2022). Retrieved October 17, 2022, from https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri
  • Türkiye Ulusal Elektrik Şebekesi Emisyon Faktörü. (2022). T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Enerji Verimliliği ve Çevre Dairesi Başkanlığı.
  • U.S. Department of Energy. (2012). 2011 Building energy data book. Energy Efficiency & Renewable Energy Department.
  • U.S. Environmental Protection Agency. (2016). Inventory of US greenhouse gas emissions and sinks: 1990–2014 (EPA 430-R-16-002). Washington, DC: U.S. Environmental Protection Agency.
  • Ureden, A., & Ozden, S. (2018). Kurumsal karbon ayak izi nasıl hesaplanır: Teorik bir çalışma. Anadolu Orman Araştırmaları Dergisi, 4(2), 98–108. https://doi.org/10.53516/aoad.476547
  • United Nations. (2015). Transforming our world: The 2030 Agenda for Sustainable Development. United Nations General Assembly. https://sdgs.un.org/2030agenda
  • United Nations Framework Convention on Climate Change. (2016). The Paris Agreement. United Nations.
  • Wei, M., Nelson, J. H., Greenblatt, J. B., Mileva, A., Johnston, J., Ting, M., Yang, C., Jones, C., McMahon, J. E., & Kammen, D. M. (2013). Deep carbon reductions in California require electrification and integration across economic sectors. Environmental Research Letters, 8(1), Article 014038. https://doi.org/10.1088/1748-9326/8/1/014038

DECARBONIZATION AND ENERGY MODELING ON THE CONTROL SYSTEM OF ELECTRIC WATER HEATERS FOR SUSTAINABLE MOBILE LIVING SPACES

Yıl 2025, Cilt: 24 Sayı: 48, 565 - 589, 18.12.2025
https://doi.org/10.55071/ticaretfbd.1676534

Öz

In order to ensure energy efficiency by reducing power consumption, a DTE model designed for use in caravans and mobile homes was developed. In Matlab/Simulink, the only tank model that is currently in use and the DUT developed in this study were operated and the energy uses were examined. In order to simulate the EWH Tank models, a typical daily household water use profile is created and water consumption data is based on the hourly hot water usage profile recorded from different geographical regions (such as coastal, inner, rural and urban areas). Two tanks are used to mimic the use of hot water of the house and the energy use of the tanks is compared. Greenhouse gas (GHG) emissions are also calculated depending on the energy consumption amounts of both tanks. Since the energy consumption of DUT is lower than a single tank, the GHG emission amount is lower. The DUT model provides an average of 47,1 % lower energy consumption compared to a single tank model. While the DUT model works with 1000 W, total energy consumption has dropped from 1200 kWh to 635 kWh. A similar decrease in greenhouse gas emissions was observed; The DUT model performed 47,1 % GHG emissions at all power ratios (500 W, 1000 W, 1500 W) than a single tank model. The DUT model at low power values (500 W) reduces the 300 kg CO2 emissions to 159 kg CO2 emissions and provides a decrease of 47 %.

Kaynakça

  • Ahmed, K., Pylsy, P., & Kurnitski, J. (2016). Hourly consumption profiles of domestic hot water for different occupant groups in dwellings. Solar Energy, 137, 516–530. https://doi.org/10.1016/j.solener.2016.08.033
  • Ahmed, M. S., Mohamed, A., Homod, R. Z., Shareef, H., & Khalid, K. (2016). Modeling of electric water heater and air conditioner for residential demand response strategy. International Journal of Applied Engineering Research, 11(16), 9037–9046.
  • Ahmed, M. S., Mohamed, A., Homod, R. Z., Shareef, H., Sabry, A. H., & Khalid, K. B. (2015). Smart plug prototype for monitoring electrical appliances in Home Energy Management System. In 2015 IEEE Student Conference on Research and Development (SCOReD) (32–36). IEEE. https://doi.org/10.1109/SCORED.2015.7449270
  • American Society of Heating, Refrigerating and Air-Conditioning Engineers. (1993). ANSI/ASHRAE Standard 90.2-1993, Energy efficient design of low-rise residential buildings. Atlanta, GA: ASHRAE.
  • Balke, E. C., Healy, W. M., & Ullah, T. (2016). An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate. Energy and Buildings, 133, 371–380. https://doi.org/10.1016/j.enbuild.2016.09.052
  • Becker, B., & Stogsdill, K. (1990). A domestic hot water use database. ASHRAE Journal, 32(9), 21–25.
  • Bergk, F., Biemann, K., Kämper, C., Kräck, J., & Knörr, W. (2020). Klimabilanz von Reisen mit Reisemobilen und Caravans. Heidelberg: ifeu – Institut für Energie- und Umweltforschung.
  • Bouchelle, M. P., Parker, D. S., & Anello, M. (2000). Factors influencing water heating energy use and peak demand in a large scale residential monitoring study. Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings.
  • Booysen, M., Engelbrecht, J., Ritchie, M., Apperley, M., & Cloete, A. (2019). How much energy can optimal control of domestic water heating save? Energy for Sustainable Development, 51, 73–85. https://doi.org/10.1016/j.esd.2019.05.004
  • Butler, D. (2022). Caravanning statistics. Finder. Retrieved November 10, 2022, from https://www.finder.com/uk/caravanning-statistics
  • Carrington, C., Warrington, D., & Yak, Y. (1985). Structure of domestic hot water consumption. International Journal of Energy Research, 9(1), 65–75. https://doi.org/10.1002/er.4440090108
  • Diao, R., Lu, S., Elizondo, M., Mayhorn, E., Zhang, Y., & Samaan, N. (2012). Electric water heater modeling and control strategies for demand response. In 2012 IEEE Power and Energy Society General Meeting (pp. 1–8). IEEE. https://doi.org/10.1109/PESGM.2012.6345597
  • Dennis, K. (2015). Environmentally beneficial electrification: Electricity as the end-use option. The Electricity Journal, 28(9), 100–112. https://doi.org/10.1016/j.tej.2015.09.011
  • Engelbrecht, J., Ritchie, M. J., & Booysen, M. (2021). Optimal schedule and temperature control of stratified water heaters. Energy for Sustainable Development, 62, 67–81. https://doi.org/10.1016/j.esd.2021.03.009
  • European Caravan Federation. (2022). Environment. Retrieved November 9, 2022, from https://www.e-c-f.com/artikel/environment/
  • European Commission. (2019). The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
  • Fairey, P., & Parker, D. (2004). A review of hot water draw profiles used in performance analysis of residential domestic hot water systems. Florida Solar Energy Center.
  • Fetting, C. (2020). The European Green Deal (ESDN Report). Vienna: ESDN Office.
  • Feyzioglu, A. (2012). Development of control strategies and implementation to electrical water heaters for energy conservation [Doctoral dissertation], Marmara University, Turkey.
  • Feyzioglu, A., & Kar, A. K. (2016). Development of control strategies and implementation to electrical water heaters for energy conservation. Cybernetics and Information Technologies, 16(4), 98–112. https://doi.org/10.1515/cait-2016-0073
  • Five eco friendly caravans for a green living on the go. (2022). Ecofriend. Retrieved November 9, 2022, from https://ecofriend.com/eco-friendly-caravans-green-living.html
  • Fuentes, E., Arce, L., & Salom, J. (2018). A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renewable and Sustainable Energy Reviews, 81, 1530–1547. https://doi.org/10.1016/j.rser.2017.05.229
  • Hejazi, S. A. (1989). Sizing a storage type water heating system. ASHRAE Journal, 31(2).
  • Holloway, S., Akai, M., Pipatti, R., & Rypdal, K. (2006). Carbon dioxide transport, injection and geological storage. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Vol. 2, Chapter 5). Intergovernmental Panel on Climate Change.
  • Kar, A., & Al-Dossary, K. (1995). Thermal performances of water heaters in series. Applied Energy, 52(1), 47–53. https://doi.org/10.1016/0306-2619(95)00022-6
  • Kar, A. K., & Kar, Ü. (1996). Optimum design and selection of residential storage-type electric water heaters for energy conservation. Energy Conversion and Management, 37(9), 1445–1452. https://doi.org/10.1016/0196-8904(95)00225-1
  • Kar, A., Yazicioglu, R., & Yazıcıoğlu, O. (2020). Thermal optimization of partitioned electric water heaters for energy conservation. Journal of Energy Research and Reviews, 6(1), 59–73. https://doi.org/10.9734/jenrr/2020/v6i130161
  • Kartal, M. A. (2024). Data-driven decarbonization: Optimizing P+R in Istanbul with machine learning energy modeling and ITS. Frontiers in Energy Research, 12, Article 1395814. https://doi.org/10.3389/fenrg.2024.1395814
  • Kartal, M. A. (2024). Contamination in heat exchangers: Types, energy effects and prevention methods. IgMin Research, 2(7), 503–507. https://doi.org/10.61927/igmin209
  • Kartal, M. A., & Ersoy, S. (2024). Cooling and multiphase analysis of heated environmentally-friendly R152a (C2H4F2) fluid coming from the production process according to NIST indicators. Applied Sciences, 14(19), Article 2976853.
  • Kartal, M. A., & Feyzioğlu, A. (2023). Numerical analysis of multipurpose shell-tube-heat exchanger with stylized geometry at different baffle gaps and various flow rates. Case Studies in Thermal Engineering, 52, Article 103810. https://doi.org/10.1016/j.csite.2023.103810
  • Kartal, M. A., & Feyzioğlu, A. (2024). Experimental comparison and numerical heat analysis of new designed shell and tube-heat exchanger with designed geometry at different baffle intervals: Status of energy efficiency. International Journal of Low-Carbon Technologies, Article IJLCT-2024-011.R1.
  • Kartal, M. A., & Feyzioğlu, A. (2024). Numerical analysis of altered parallel flow heat exchanger with promoted geometry at multifarious baffle prolongs. Energies, 17(7), Article 1676. https://doi.org/10.3390/en17071676
  • Kelly, J. A., Fu, M., & Clinch, J. P. (2016). Residential home heating: The potential for air source heat pump technologies as an alternative to solid and liquid fuels. Energy Policy, 98, 431–442. https://doi.org/10.1016/j.enpol.2016.09.017
  • Kepplinger, P., Huber, G., & Petrasch, J. (2015). Autonomous optimal control for demand side management with resistive domestic hot water heaters using linear optimization. Energy and Buildings, 100, 50–55. https://doi.org/10.1016/j.enbuild.2015.04.046
  • Kondoh, J., Lu, N., & Hammerstrom, D. J. (2011). An evaluation of the water heater load potential for providing regulation service. In 2011 IEEE Power and Energy Society General Meeting (pp. 1–8). IEEE. https://doi.org/10.1109/PES.2011.6039419
  • Mabina, P. G., & Mukoma, P. (2019). Energy optimization and management of electric water heaters using direct load control. Proceedings of the Domestic Use of Energy Conference.
  • Maclean, K., Sansom, R., Watson, T., & Gross, R. (2016). Managing heat system decarbonisation: Comparing the impacts and costs of transitions in heat infrastructure. London: Imperial College London.
  • Mínguez, J. M. (1987). Water-heaters in series. International Journal of Energy Research, 11(1), 145–151. https://doi.org/10.1002/er.4440110114
  • Munuera, L., Bradford, J., Kelly, N., & Hawkes, A. (2013). The role of energy efficiency in decarbonising heat via electrification. In Proceedings of the ECEEE 2013 Summer Study on Energy Efficiency (pp. 1159–1164). European Council for an Energy Efficient Economy.
  • Nehrir, M. H., Jia, R., Pierre, D. A., & Hammerstrom, D. J. (2007). Power management of aggregate electric water heater loads by voltage control. In 2007 IEEE Power Engineering Society General Meeting (pp. 1–6). IEEE. https://doi.org/10.1109/PES.2007.385975
  • Perlman, M., & Mills, B. (1985). Development of residential hot water use patterns. ASHRAE Transactions, 91(2A), 657–679.
  • Pitchup.com. (2022). Facts and figures. Retrieved November 10, 2022, from https://www.pitchup.com/about/media/
  • Raghavan, S. V., Wei, M., & Kammen, D. M. (2017). Scenarios to decarbonize residential water heating in California. Energy Policy, 109, 441–451. https://doi.org/10.1016/j.enpol.2017.07.002
  • Ritchie, M. J., Engelbrecht, J., & Booysen, M. J. (2021a). Practically-achievable energy savings with the optimal control of stratified water heaters with predicted usage. Energies, 14(7), Article 1963. https://doi.org/10.3390/en14071963
  • Ritchie, M., Engelbrecht, J., & Booysen, M. (2021b). A probabilistic hot water usage model and simulator for use in residential energy management. Energy and Buildings, 235, Article 110727. https://doi.org/10.1016/j.enbuild.2021.110727
  • Saidur, R., Masjuki, H. H., Jamaluddin, M., & Ahmed, S. (2007). Energy and associated greenhouse gas emissions from household appliances in Malaysia. Energy Policy, 35(3), 1648–1657. https://doi.org/10.1016/j.enpol.2006.05.006
  • Sheikh, I. (2017). Decarbonizing residential space and water heating: The case for electrification. In ACEEE Summer Study Proceedings. American Council for an Energy-Efficient Economy.
  • Shimoda, Y., Sugiyama, M., Nishimoto, R., & Momonoki, T. (2021). Evaluating decarbonization scenarios and energy management requirement for the residential sector in Japan through bottom-up simulations of energy end-use demand in 2050. Applied Energy, 303, Article 117510. https://doi.org/10.1016/j.apenergy.2021.117510
  • Smart Networks for the Energy Transition. (2016). Final 10-year ETIP SNET R&I roadmap covering 2017-26. Brussels: European Technology and Innovation Platform for Smart Networks for the Energy Transition.
  • The Greenhouse Gas Protocol. (2015). A corporate accounting and reporting standard. World Business Council for Sustainable Development & World Resources Institute.
  • Things you should know about water heaters for caravans and motor homes. (2022). Truma. Retrieved November 10, 2022, from https://www.truma.com/uk/en/camping-guides/guide-water-heater-caravan
  • Türkiye Elektrik Üretim-İletim İstatistikleri. (2022). Retrieved October 17, 2022, from https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri
  • Türkiye Ulusal Elektrik Şebekesi Emisyon Faktörü. (2022). T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Enerji Verimliliği ve Çevre Dairesi Başkanlığı.
  • U.S. Department of Energy. (2012). 2011 Building energy data book. Energy Efficiency & Renewable Energy Department.
  • U.S. Environmental Protection Agency. (2016). Inventory of US greenhouse gas emissions and sinks: 1990–2014 (EPA 430-R-16-002). Washington, DC: U.S. Environmental Protection Agency.
  • Ureden, A., & Ozden, S. (2018). Kurumsal karbon ayak izi nasıl hesaplanır: Teorik bir çalışma. Anadolu Orman Araştırmaları Dergisi, 4(2), 98–108. https://doi.org/10.53516/aoad.476547
  • United Nations. (2015). Transforming our world: The 2030 Agenda for Sustainable Development. United Nations General Assembly. https://sdgs.un.org/2030agenda
  • United Nations Framework Convention on Climate Change. (2016). The Paris Agreement. United Nations.
  • Wei, M., Nelson, J. H., Greenblatt, J. B., Mileva, A., Johnston, J., Ting, M., Yang, C., Jones, C., McMahon, J. E., & Kammen, D. M. (2013). Deep carbon reductions in California require electrification and integration across economic sectors. Environmental Research Letters, 8(1), Article 014038. https://doi.org/10.1088/1748-9326/8/1/014038
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Akif Kartal 0000-0002-9156-8907

Ahmet Feyzioğlu 0000-0003-0296-106X

Gönderilme Tarihi 15 Nisan 2025
Kabul Tarihi 5 Mayıs 2025
Erken Görünüm Tarihi 9 Aralık 2025
Yayımlanma Tarihi 18 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 24 Sayı: 48

Kaynak Göster

APA Kartal, M. A., & Feyzioğlu, A. (2025). SÜRDÜRÜLEBİLİR MOBİL YAŞAM ALANLARI İÇİN ELEKTRİKLİ SU ISITICILARININ KONTROL SİSTEMİ ÜZERİNE KARBONSUZLAŞTIRMA VE ENERJİ MODELLEMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 24(48), 565-589. https://doi.org/10.55071/ticaretfbd.1676534
AMA Kartal MA, Feyzioğlu A. SÜRDÜRÜLEBİLİR MOBİL YAŞAM ALANLARI İÇİN ELEKTRİKLİ SU ISITICILARININ KONTROL SİSTEMİ ÜZERİNE KARBONSUZLAŞTIRMA VE ENERJİ MODELLEMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Aralık 2025;24(48):565-589. doi:10.55071/ticaretfbd.1676534
Chicago Kartal, Mehmet Akif, ve Ahmet Feyzioğlu. “SÜRDÜRÜLEBİLİR MOBİL YAŞAM ALANLARI İÇİN ELEKTRİKLİ SU ISITICILARININ KONTROL SİSTEMİ ÜZERİNE KARBONSUZLAŞTIRMA VE ENERJİ MODELLEMESİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24, sy. 48 (Aralık 2025): 565-89. https://doi.org/10.55071/ticaretfbd.1676534.
EndNote Kartal MA, Feyzioğlu A (01 Aralık 2025) SÜRDÜRÜLEBİLİR MOBİL YAŞAM ALANLARI İÇİN ELEKTRİKLİ SU ISITICILARININ KONTROL SİSTEMİ ÜZERİNE KARBONSUZLAŞTIRMA VE ENERJİ MODELLEMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24 48 565–589.
IEEE M. A. Kartal ve A. Feyzioğlu, “SÜRDÜRÜLEBİLİR MOBİL YAŞAM ALANLARI İÇİN ELEKTRİKLİ SU ISITICILARININ KONTROL SİSTEMİ ÜZERİNE KARBONSUZLAŞTIRMA VE ENERJİ MODELLEMESİ”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 24, sy. 48, ss. 565–589, 2025, doi: 10.55071/ticaretfbd.1676534.
ISNAD Kartal, Mehmet Akif - Feyzioğlu, Ahmet. “SÜRDÜRÜLEBİLİR MOBİL YAŞAM ALANLARI İÇİN ELEKTRİKLİ SU ISITICILARININ KONTROL SİSTEMİ ÜZERİNE KARBONSUZLAŞTIRMA VE ENERJİ MODELLEMESİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24/48 (Aralık2025), 565-589. https://doi.org/10.55071/ticaretfbd.1676534.
JAMA Kartal MA, Feyzioğlu A. SÜRDÜRÜLEBİLİR MOBİL YAŞAM ALANLARI İÇİN ELEKTRİKLİ SU ISITICILARININ KONTROL SİSTEMİ ÜZERİNE KARBONSUZLAŞTIRMA VE ENERJİ MODELLEMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24:565–589.
MLA Kartal, Mehmet Akif ve Ahmet Feyzioğlu. “SÜRDÜRÜLEBİLİR MOBİL YAŞAM ALANLARI İÇİN ELEKTRİKLİ SU ISITICILARININ KONTROL SİSTEMİ ÜZERİNE KARBONSUZLAŞTIRMA VE ENERJİ MODELLEMESİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 24, sy. 48, 2025, ss. 565-89, doi:10.55071/ticaretfbd.1676534.
Vancouver Kartal MA, Feyzioğlu A. SÜRDÜRÜLEBİLİR MOBİL YAŞAM ALANLARI İÇİN ELEKTRİKLİ SU ISITICILARININ KONTROL SİSTEMİ ÜZERİNE KARBONSUZLAŞTIRMA VE ENERJİ MODELLEMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24(48):565-89.