Araştırma Makalesi
BibTex RIS Kaynak Göster

MEKANİK ÖĞÜTME VE SİNTERLEME YÖNTEMLERİNİN AA2024 ALAŞIMININ SERTLİK, YOĞUNLUK, MİKRO YAPI ÖZELLİKLERİNE ETKİSİ

Yıl 2025, Cilt: 24 Sayı: 48, 642 - 658, 18.12.2025
https://doi.org/10.55071/ticaretfbd.1759833

Öz

Bu çalışma, AA2024 alaşımı tozlarının Mekanik öğütme ve farklı üretim süreçleri kombinasyonunun nihai ürünün içyapı, yoğunluk ve sertlik özelliklerine etkisi değerlendirilmiştir. Mekanik öğütme işlemi sonucunda tozlarda morfolojik dönüşüm ve dislokasyon yoğunluğunda artış gözlenmiş, bu durum içyapıda daha fazla soğuk kaynak izine ve ince tanelere neden olmuştur. Sıcak pres sinterleme ile partikül sınırlarında meydana gelen oksit tabakasının basınç altında kırılması ve atomik difüzyon yoluyla partiküller arası bağların güçlenmesi sonucu yoğunluk ve sertlikte önemli artışlar elde edilmiştir. Özellikle Mekanik öğütme ile sıcak pres sinterlemenin bir arada kullanıldığı S1 numunesinde, en düşük gözeneklilik (%1,8±0,25) ve en yüksek sertlik/yoğunluk (120,3±1,35HB; 2,73±0,025g/cm3) değerleri tespit edilmiştir. Elde edilen sonuçlar, sinterleme sıcaklığı ve basıncının yanı sıra Mekanik öğütme gibi ön işlemlerin Al alaşımlarının performansında belirleyici bir rol oynadığını ortaya koymuştur.

Kaynakça

  • Akbarpour, M. R., Gazani, F., Mousa Mirabad, H., Khezri, I., Moeini, A., Sohrabi, N., & Kim, H. S. (2023). Recent advances in processing, and mechanical, thermal and electrical properties of Cu-SiC metal matrix composites prepared by powder metallurgy. Progress in Materials Science, 140, 101191. https://doi.org/10.1016/j.pmatsci.2023.101191
  • Angenoorth, J., Erhard, P., Wächter, D., Volk, W., & Günther, D. (2024). Sintering of 3D-printed aluminum specimens from the slurry-based binder jetting process. Progress in Additive Manufacturing, 9(3), 633-642. https://doi.org/10.1007/s40964-024-00657-2
  • Baghbaderani, H. A., Sharafi, S., & Chermahini, M. D. (2012). Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying. Powder Technology, 230, 241-246.
  • Bai, S., Perevoshchikova, N., Sha, Y., & Wu, X. (2019). The Effects of Selective Laser Melting Process Parameters on Relative Density of the AlSi10Mg Parts and Suitable Procedures of the Archimedes Method. Applied Sciences, 9(3), 583. https://www.mdpi.com/2076-3417/9/3/583
  • Brodova, I., Yolshina, L., Razorenov, S., Rasposienko, D., Petrova, A., Shirinkina, I., . . . Savinykh, A. (2022). Effect of Grain Size on the Properties of Aluminum Matrix Composites with Graphene. Metals, 12(6), 1054.https://www.mdpi.com/2075-4701/12/6/1054
  • Canakci, A., Varol, T., & Ozsahin, S. (2013). Analysis of the effect of a new process control agent technique on the mechanical milling process using a neural network model: measurement and modeling. Measurement, 46(6), 1818-1827.
  • Casati, R., Wei, X., Xia, K., Dellasega, D., Tuissi, A., Villa, E., & Vedani, M. (2014). Mechanical and functional properties of ultrafine grained Al wires reinforced by nano-Al2O3 particles. Materials & Design, 64, 102-109.
  • Cingöz, U. C., Kısasöz, B. Ö., Bayrak, Y., & Kısasöz, A. (2025). Synergetic effect of Y2O3 rare-earth oxide and in-situ phases on corrosion and wear properties of AlSi10Mg aluminium matrix composites produced by hot pressing. Ceramics International. 51(24), 43111-43124
  • Davis, J. R. (1999). Corrosion of aluminum and aluminum alloys: Asm International.
  • De Gouveia, G. L., Kakitani, R., Gomes, L. F., Afonso, C. R. M., Cheung, N., & Spinelli, J. E. (2019). Slow and rapid cooling of Al–Cu–Si ultrafine eutectic composites: Interplay of cooling rate and microstructure in mechanical properties. Journal of Materials Research, 34(8), 1381-1394.
  • German, R. M. (2005). AZ of powder metallurgy. (No Title).
  • Gökmeşe, H., & Bostan, B. (2013). AA 2014 Alaşımında Presleme ve Sinterlemenin Gözenek Morfolojisi ve Mikroyapisal Özelliklere Etkileri. Gazi University Journal of Science Part C: Design and Technology, 1(1), 1-8.
  • Gräning, T., Rieth, M., Leiste, H., Duerrschnabel, M., & Möslang, A. (2022). On the mechanical alloying of novel austenitic dual-precipitation strengthened steels. Materials & Design, 213, 110316. https://doi.org/10.1016/j.matdes.2021.110316
  • Gündoğan, K., & Özsarı, A. R. B. (2019). Basınçlı İnfiltrasyon Yöntemiyle Üretilen AA2024 ve AA6061 Matrisli, B4C ve SiC Takviyeli Kompozit Malzemelerin Mikroyapı, Mekanik ve Isıl İletkenlik Özelliklerine Basıncın Etkisi. International Journal of Engineering Research and Development, 11(2), 657-669.
  • Housaer, F., Beclin, F., Touzin, M., Tingaud, D., Legris, A., & Addad, A. (2015). Interfacial characterization in carbon nanotube reinforced aluminum matrix composites. Materials Characterization, 110, 94-101.
  • Jafari, M., Enayati, M. H., Abbasi, M. H., & Karimzadeh, F. (2010). Compressive and wear behaviors of bulk nanostructured AA2024 alloy. Materials & Design, 31(2), 663-669. https://doi.org/10.1016/j.matdes.2009.08.020
  • Jeurgens, L. P. H., Sloof, W. G., Tichelaar, F. D., & Mittemeijer, E. J. (2002). Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium. Thin solid films, 418(2), 89-101. https://doi.org/10.1016/S0040-6090(02)00787-3
  • Jiang, Y., Ding, H., Cai, M., Chen, Y., Liu, Y., & Zhang, Y. (2019). Investigation into the hot forming-quenching integrated process with cold dies for high strength aluminum alloy. Materials Characterization, 158, 109967.
  • Khan, R. (2013). Anisotropic deformation behavior of AA2024T351 aluminum alloy. The Journal of Engineering Research [TJER], 10(1), 80-87.
  • Krüger, M., Schmelzer, J., & Helmecke, M. (2016). Similarities and differences in mechanical alloying processes of V-Si-B and Mo-Si-B powders. Metals, 6(10), 241.
  • Kubota, M. (2007). Properties of nano-structured pure Al produced by mechanical grinding and spark plasma sintering. Journal of alloys and compounds, 434, 294-297.
  • Kumar, H. P., & Xavior, M. A. (2014). Graphene reinforced metal matrix composite (GRMMC): a review. Procedia engineering, 97, 1033-1040.
  • Kumar, H. P., & Xavior, M. A. (2017). Assessment of mechanical and tribological properties of Al 2024-SiC-graphene hybrid composites. Procedia engineering, 174, 992-999.
  • Kumar, K. P., Krishna, M. G., Rao, J. B., & Bhargava, N. (2015). Fabrication and characterization of 2024 aluminium–High entropy alloy composites. Journal of alloys and compounds, 640, 421-427.
  • Lamoglia, M. S., Gonçalves, P. H., Pontes, Á. M. P., Serrano, L. B., Silva, G., & Silva, A. A. A. P. d. (2022). Effect of Process control agents on Fe-15at.% Nb powder during mechanical alloying. Materials Research, 25, e20210318. https://doi.org/10.1590/1980-5373-MR-2021-0318
  • Lu, L., & Zhang, Y. (1999). Influence of process control agent on interdiffusion between Al and Mg during mechanical alloying. Journal of alloys and compounds, 290(1-2), 279-283.
  • Mao, D., Meng, X., Xie, Y., Yang, Y., Xu, Y., Qin, Z.,Huang, Y. (2022). Strength-ductility balance strategy in SiC reinforced aluminum matrix composites via deformation-driven metallurgy. Journal of alloys and compounds, 891, 162078.
  • Moustafa, S. (2011). Hot Forging and Hot Pressing of AlSi Powder Compared to Conventional Powder Metallurgy Route. Materials Sciences and Applications, 02, 1127-1133.
  • Mrówka-Nowotnik, G., & Sieniawski, J. (2013). Analysis of intermetallic phases in 2024 aluminium alloy. Solid State Phenomena, 197, 238-243.
  • Mu, D., Jiang, Z., Zhang, Z., Liang, J., Wang, J., Zhang, D., & Xian, Q. (2022). Microstructural evolution, precipitation and mechanical properties of ultrafine-grained and coarse-grained 2024 aluminum alloys fabricated by powder metallurgy. Journal of Materials Research, 37(3), 692-704.
  • Neikov, O. D., Naboychenko, S., Yefimov, N., & Neikov, O. (2019). Mechanical alloying. Handbook of Non-Ferrous Metal Powders, 2, 91-124.
  • Pickens, J. (1981). Aluminium powder metallurgy technology for high-strength applications. Journal of Materials Science, 16(6), 1437-1457.
  • Pul, M. (2019). Karbon nanotüp (cnt) ve nano grafen (g) takviyeli al 2024 kompozitlerin vorteks yöntemiyle üretilerek aşınma ve işlenebilme özelliklerinin incelenmesi. International Journal of Engineering Research and Development, 11(1), 370-382.
  • Rahimian, M., Parvin, N., & Ehsani, N. (2010). Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy. Materials Science and Engineering: A, 527(4), 1031-1038. https://doi.org/10.1016/j.msea.2009.09.034
  • Ramesh, B., & Swamy, R. (2018). Study of dry sliding wear properties for AL-2024 based metal matrix composites fabricated by stir casting method. International Journal for Research in Applied Science and Engineering Technology, 6(3), 438-446.
  • Salur, E., Acarer, M., & Nazik, C. (2021). Mekanik Alaşımlama Süresinin Toz Metalurjisi ile Üretilen AA7075 Matrisli Nanokompozit Malzemelerinin Sertliklerine Etkisi. Journal of the Institute of Science and Technology, 11(3), 2218-2231.
  • Shaw, L., Villegas, J., Luo, H., Zawrah, M., & Miracle, D. (2003). Effects of process-control agents on mechanical alloying of nanostructured aluminum alloys. Metallurgical and Materials Transactions A, 34(1), 159-170.
  • Stergioudi, F., Prospathopoulos, A., Farazas, A., Tsirogiannis, E. C., & Michailidis, N. (2022). Mechanical Properties of AA2024 Aluminum/MWCNTs Nanocomposites Produced Using Different Powder Metallurgy Methods. Metals, 12(8), 1315. https://www.mdpi.com/2075-4701/12/8/1315
  • Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1-2), 1-184.
  • Taneroğlu, H., Akar, N., & Kılıçlı, V. (2013). Tikso-Döküm Yöntemiyle Üretilen AA2024 Alaşımının Mikroyapı Ve Mekanik Özelliklerinin İncelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 28(4).
  • Taşkin, A., & Şenel, M. C. (2024). Tribological Properties and Microstructures of Tungsten Carbide and Few-Layer Graphene-Reinforced Aluminum-Based Composites. Transactions of the Indian Institute of Metals, 77(2), 445-456.
  • Toozandehjani, M., Matori, K. A., Ostovan, F., Abdul Aziz, S., & Mamat, M. S. (2017). Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy. Materials, 10(11), 1232. Retrieved from https://www.mdpi.com/1996-1944/10/11/1232
  • Torralba, J. D., Da Costa, C., & Velasco, F. (2003). P/M aluminum matrix composites: an overview. Journal of Materials Processing Technology, 133(1-2), 203-206.
  • Varol, T., Canakci, A., & Ozsahin, S. (2018). Prediction of effect of reinforcement content, flake size and flake time on the density and hardness of flake AA2024-SiC nanocomposites using neural networks. Journal of alloys and compounds, 739, 1005-1014. https://doi.org/10.1016/j.jallcom.2017.12.256
  • Vitjaz, P., Lovshenko, F., & Lovshenko, G. (1998). Mechanical alloyed alloys based on aluminium and copper. Minsk (Byelorussia): Byelorusskaja Nauka.
  • Wang, G. (2022). Superplastic Forming (SPF) of Complex Sheet Metal Parts and Structures. In F. G. Caballero (Ed.), Encyclopedia of Materials: Metals and Alloys (pp. 417-434).
  • Wang, X., Scudino, S., & Eckert, J. (2013). Production and characterization of Al 2024 matrix composites reinforced with β-Al3Mg2 complex metallic alloy particles. MRS Online Proceedings Library, 1517(1), 405.
  • Wang, Z., K G, P., Zhang, W. W., Scudino, S., & Eckert, J. (2018). Removing the oxide layer in a nanostructured aluminum alloy by local shear deformation between nanoscale phases. Powder Technology, 343.
  • Wendel, J., Manchili, S. K., Hryha, E., & Nyborg, L. (2020). Sintering behaviour of compacted water-atomised iron powder: effect of initial state and processing conditions. Powder Metallurgy, 63(5), 338-348.
  • Xavior, M. A., Kumar, H. P., & Kumar, K. A. (2018). Tribological studies on AA 2024–graphene/CNT nanocomposites processed through powder metallurgy. Materials Today: Proceedings, 5(2), 6588-6596.
  • Xie, Y., Meng, X., Li, Y., Mao, D., Wan, L., & Huang, Y. (2021). Insight into ultra-refined grains of aluminum matrix composites via deformation-driven metallurgy. Composites Communications, 26, 100776.
  • Yakovtseva, O. A., Mochugovskiy, A. G., Prosviryakov, A. S., Bazlov, A. I., Emelina, N. B., & Mikhaylovskaya, A. V. (2024). The Microstructure and Properties of Al–Mn–Cu–Zr Alloy after High-Energy Ball Milling and Hot-Press Sintering. Metals, 14(3), 310. https://www.mdpi.com/2075-4701/14/3/310
  • Yuan, X., Qu, X., Yin, H., Yan, Z., & Tan, Z. (2019). Effects of Compaction Velocity on the Sinterability of Al-Fe-Cr-Ti PM Alloy. Materials, 12(18), 3005. https://www.mdpi.com/1996-1944/12/18/3005
  • Zahmatkesh, B., Enayati, M. H., & Karimzadeh, F. (2010). Tribological and microstructural evaluation of friction stir processed AA2024 alloy. Materials & Design, 31(10), 4891-4896. https://doi.org/10.1016/j.matdes.2010.04.054

EFFECTS OF MECHANICAL MILLING AND SINTERING TECHNIQUES ON THE HARDNESS, DENSIFICATION, AND MICROSTRUCTURAL CHARACTERISTICS OF AA2024 ALLOY

Yıl 2025, Cilt: 24 Sayı: 48, 642 - 658, 18.12.2025
https://doi.org/10.55071/ticaretfbd.1759833

Öz

This study investigates the influence of mechanical milling combined with various production routes on the microstructural, densification, and hardness characteristics of AA2024 alloy powders. The mechanical milling process resulted in notable morphological transformation and increased dislocation density within the powders, promoting finer grain structures and more evident cold welding traces. During hot press sintering, the oxide layer present along particle boundaries was fragmented under applied pressure, enabling atomic diffusion and enhancing interparticle bonding. These mechanisms led to significant improvements in both density and hardness. Among all samples, the one processed through the combination of mechanical alloying and hot pressing (labeled S1) exhibited the lowest porosity (%1,8±0,25) and the highest density and hardness values (120,3±1,35HB; 2,73±0,025g/cm3. The findings clearly demonstrate that not only sintering temperature and applied pressure, but also pre-treatments such as mechanical alloying, play a decisive role in determining the final performance of aluminum alloy components.

Kaynakça

  • Akbarpour, M. R., Gazani, F., Mousa Mirabad, H., Khezri, I., Moeini, A., Sohrabi, N., & Kim, H. S. (2023). Recent advances in processing, and mechanical, thermal and electrical properties of Cu-SiC metal matrix composites prepared by powder metallurgy. Progress in Materials Science, 140, 101191. https://doi.org/10.1016/j.pmatsci.2023.101191
  • Angenoorth, J., Erhard, P., Wächter, D., Volk, W., & Günther, D. (2024). Sintering of 3D-printed aluminum specimens from the slurry-based binder jetting process. Progress in Additive Manufacturing, 9(3), 633-642. https://doi.org/10.1007/s40964-024-00657-2
  • Baghbaderani, H. A., Sharafi, S., & Chermahini, M. D. (2012). Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying. Powder Technology, 230, 241-246.
  • Bai, S., Perevoshchikova, N., Sha, Y., & Wu, X. (2019). The Effects of Selective Laser Melting Process Parameters on Relative Density of the AlSi10Mg Parts and Suitable Procedures of the Archimedes Method. Applied Sciences, 9(3), 583. https://www.mdpi.com/2076-3417/9/3/583
  • Brodova, I., Yolshina, L., Razorenov, S., Rasposienko, D., Petrova, A., Shirinkina, I., . . . Savinykh, A. (2022). Effect of Grain Size on the Properties of Aluminum Matrix Composites with Graphene. Metals, 12(6), 1054.https://www.mdpi.com/2075-4701/12/6/1054
  • Canakci, A., Varol, T., & Ozsahin, S. (2013). Analysis of the effect of a new process control agent technique on the mechanical milling process using a neural network model: measurement and modeling. Measurement, 46(6), 1818-1827.
  • Casati, R., Wei, X., Xia, K., Dellasega, D., Tuissi, A., Villa, E., & Vedani, M. (2014). Mechanical and functional properties of ultrafine grained Al wires reinforced by nano-Al2O3 particles. Materials & Design, 64, 102-109.
  • Cingöz, U. C., Kısasöz, B. Ö., Bayrak, Y., & Kısasöz, A. (2025). Synergetic effect of Y2O3 rare-earth oxide and in-situ phases on corrosion and wear properties of AlSi10Mg aluminium matrix composites produced by hot pressing. Ceramics International. 51(24), 43111-43124
  • Davis, J. R. (1999). Corrosion of aluminum and aluminum alloys: Asm International.
  • De Gouveia, G. L., Kakitani, R., Gomes, L. F., Afonso, C. R. M., Cheung, N., & Spinelli, J. E. (2019). Slow and rapid cooling of Al–Cu–Si ultrafine eutectic composites: Interplay of cooling rate and microstructure in mechanical properties. Journal of Materials Research, 34(8), 1381-1394.
  • German, R. M. (2005). AZ of powder metallurgy. (No Title).
  • Gökmeşe, H., & Bostan, B. (2013). AA 2014 Alaşımında Presleme ve Sinterlemenin Gözenek Morfolojisi ve Mikroyapisal Özelliklere Etkileri. Gazi University Journal of Science Part C: Design and Technology, 1(1), 1-8.
  • Gräning, T., Rieth, M., Leiste, H., Duerrschnabel, M., & Möslang, A. (2022). On the mechanical alloying of novel austenitic dual-precipitation strengthened steels. Materials & Design, 213, 110316. https://doi.org/10.1016/j.matdes.2021.110316
  • Gündoğan, K., & Özsarı, A. R. B. (2019). Basınçlı İnfiltrasyon Yöntemiyle Üretilen AA2024 ve AA6061 Matrisli, B4C ve SiC Takviyeli Kompozit Malzemelerin Mikroyapı, Mekanik ve Isıl İletkenlik Özelliklerine Basıncın Etkisi. International Journal of Engineering Research and Development, 11(2), 657-669.
  • Housaer, F., Beclin, F., Touzin, M., Tingaud, D., Legris, A., & Addad, A. (2015). Interfacial characterization in carbon nanotube reinforced aluminum matrix composites. Materials Characterization, 110, 94-101.
  • Jafari, M., Enayati, M. H., Abbasi, M. H., & Karimzadeh, F. (2010). Compressive and wear behaviors of bulk nanostructured AA2024 alloy. Materials & Design, 31(2), 663-669. https://doi.org/10.1016/j.matdes.2009.08.020
  • Jeurgens, L. P. H., Sloof, W. G., Tichelaar, F. D., & Mittemeijer, E. J. (2002). Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium. Thin solid films, 418(2), 89-101. https://doi.org/10.1016/S0040-6090(02)00787-3
  • Jiang, Y., Ding, H., Cai, M., Chen, Y., Liu, Y., & Zhang, Y. (2019). Investigation into the hot forming-quenching integrated process with cold dies for high strength aluminum alloy. Materials Characterization, 158, 109967.
  • Khan, R. (2013). Anisotropic deformation behavior of AA2024T351 aluminum alloy. The Journal of Engineering Research [TJER], 10(1), 80-87.
  • Krüger, M., Schmelzer, J., & Helmecke, M. (2016). Similarities and differences in mechanical alloying processes of V-Si-B and Mo-Si-B powders. Metals, 6(10), 241.
  • Kubota, M. (2007). Properties of nano-structured pure Al produced by mechanical grinding and spark plasma sintering. Journal of alloys and compounds, 434, 294-297.
  • Kumar, H. P., & Xavior, M. A. (2014). Graphene reinforced metal matrix composite (GRMMC): a review. Procedia engineering, 97, 1033-1040.
  • Kumar, H. P., & Xavior, M. A. (2017). Assessment of mechanical and tribological properties of Al 2024-SiC-graphene hybrid composites. Procedia engineering, 174, 992-999.
  • Kumar, K. P., Krishna, M. G., Rao, J. B., & Bhargava, N. (2015). Fabrication and characterization of 2024 aluminium–High entropy alloy composites. Journal of alloys and compounds, 640, 421-427.
  • Lamoglia, M. S., Gonçalves, P. H., Pontes, Á. M. P., Serrano, L. B., Silva, G., & Silva, A. A. A. P. d. (2022). Effect of Process control agents on Fe-15at.% Nb powder during mechanical alloying. Materials Research, 25, e20210318. https://doi.org/10.1590/1980-5373-MR-2021-0318
  • Lu, L., & Zhang, Y. (1999). Influence of process control agent on interdiffusion between Al and Mg during mechanical alloying. Journal of alloys and compounds, 290(1-2), 279-283.
  • Mao, D., Meng, X., Xie, Y., Yang, Y., Xu, Y., Qin, Z.,Huang, Y. (2022). Strength-ductility balance strategy in SiC reinforced aluminum matrix composites via deformation-driven metallurgy. Journal of alloys and compounds, 891, 162078.
  • Moustafa, S. (2011). Hot Forging and Hot Pressing of AlSi Powder Compared to Conventional Powder Metallurgy Route. Materials Sciences and Applications, 02, 1127-1133.
  • Mrówka-Nowotnik, G., & Sieniawski, J. (2013). Analysis of intermetallic phases in 2024 aluminium alloy. Solid State Phenomena, 197, 238-243.
  • Mu, D., Jiang, Z., Zhang, Z., Liang, J., Wang, J., Zhang, D., & Xian, Q. (2022). Microstructural evolution, precipitation and mechanical properties of ultrafine-grained and coarse-grained 2024 aluminum alloys fabricated by powder metallurgy. Journal of Materials Research, 37(3), 692-704.
  • Neikov, O. D., Naboychenko, S., Yefimov, N., & Neikov, O. (2019). Mechanical alloying. Handbook of Non-Ferrous Metal Powders, 2, 91-124.
  • Pickens, J. (1981). Aluminium powder metallurgy technology for high-strength applications. Journal of Materials Science, 16(6), 1437-1457.
  • Pul, M. (2019). Karbon nanotüp (cnt) ve nano grafen (g) takviyeli al 2024 kompozitlerin vorteks yöntemiyle üretilerek aşınma ve işlenebilme özelliklerinin incelenmesi. International Journal of Engineering Research and Development, 11(1), 370-382.
  • Rahimian, M., Parvin, N., & Ehsani, N. (2010). Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy. Materials Science and Engineering: A, 527(4), 1031-1038. https://doi.org/10.1016/j.msea.2009.09.034
  • Ramesh, B., & Swamy, R. (2018). Study of dry sliding wear properties for AL-2024 based metal matrix composites fabricated by stir casting method. International Journal for Research in Applied Science and Engineering Technology, 6(3), 438-446.
  • Salur, E., Acarer, M., & Nazik, C. (2021). Mekanik Alaşımlama Süresinin Toz Metalurjisi ile Üretilen AA7075 Matrisli Nanokompozit Malzemelerinin Sertliklerine Etkisi. Journal of the Institute of Science and Technology, 11(3), 2218-2231.
  • Shaw, L., Villegas, J., Luo, H., Zawrah, M., & Miracle, D. (2003). Effects of process-control agents on mechanical alloying of nanostructured aluminum alloys. Metallurgical and Materials Transactions A, 34(1), 159-170.
  • Stergioudi, F., Prospathopoulos, A., Farazas, A., Tsirogiannis, E. C., & Michailidis, N. (2022). Mechanical Properties of AA2024 Aluminum/MWCNTs Nanocomposites Produced Using Different Powder Metallurgy Methods. Metals, 12(8), 1315. https://www.mdpi.com/2075-4701/12/8/1315
  • Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1-2), 1-184.
  • Taneroğlu, H., Akar, N., & Kılıçlı, V. (2013). Tikso-Döküm Yöntemiyle Üretilen AA2024 Alaşımının Mikroyapı Ve Mekanik Özelliklerinin İncelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 28(4).
  • Taşkin, A., & Şenel, M. C. (2024). Tribological Properties and Microstructures of Tungsten Carbide and Few-Layer Graphene-Reinforced Aluminum-Based Composites. Transactions of the Indian Institute of Metals, 77(2), 445-456.
  • Toozandehjani, M., Matori, K. A., Ostovan, F., Abdul Aziz, S., & Mamat, M. S. (2017). Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy. Materials, 10(11), 1232. Retrieved from https://www.mdpi.com/1996-1944/10/11/1232
  • Torralba, J. D., Da Costa, C., & Velasco, F. (2003). P/M aluminum matrix composites: an overview. Journal of Materials Processing Technology, 133(1-2), 203-206.
  • Varol, T., Canakci, A., & Ozsahin, S. (2018). Prediction of effect of reinforcement content, flake size and flake time on the density and hardness of flake AA2024-SiC nanocomposites using neural networks. Journal of alloys and compounds, 739, 1005-1014. https://doi.org/10.1016/j.jallcom.2017.12.256
  • Vitjaz, P., Lovshenko, F., & Lovshenko, G. (1998). Mechanical alloyed alloys based on aluminium and copper. Minsk (Byelorussia): Byelorusskaja Nauka.
  • Wang, G. (2022). Superplastic Forming (SPF) of Complex Sheet Metal Parts and Structures. In F. G. Caballero (Ed.), Encyclopedia of Materials: Metals and Alloys (pp. 417-434).
  • Wang, X., Scudino, S., & Eckert, J. (2013). Production and characterization of Al 2024 matrix composites reinforced with β-Al3Mg2 complex metallic alloy particles. MRS Online Proceedings Library, 1517(1), 405.
  • Wang, Z., K G, P., Zhang, W. W., Scudino, S., & Eckert, J. (2018). Removing the oxide layer in a nanostructured aluminum alloy by local shear deformation between nanoscale phases. Powder Technology, 343.
  • Wendel, J., Manchili, S. K., Hryha, E., & Nyborg, L. (2020). Sintering behaviour of compacted water-atomised iron powder: effect of initial state and processing conditions. Powder Metallurgy, 63(5), 338-348.
  • Xavior, M. A., Kumar, H. P., & Kumar, K. A. (2018). Tribological studies on AA 2024–graphene/CNT nanocomposites processed through powder metallurgy. Materials Today: Proceedings, 5(2), 6588-6596.
  • Xie, Y., Meng, X., Li, Y., Mao, D., Wan, L., & Huang, Y. (2021). Insight into ultra-refined grains of aluminum matrix composites via deformation-driven metallurgy. Composites Communications, 26, 100776.
  • Yakovtseva, O. A., Mochugovskiy, A. G., Prosviryakov, A. S., Bazlov, A. I., Emelina, N. B., & Mikhaylovskaya, A. V. (2024). The Microstructure and Properties of Al–Mn–Cu–Zr Alloy after High-Energy Ball Milling and Hot-Press Sintering. Metals, 14(3), 310. https://www.mdpi.com/2075-4701/14/3/310
  • Yuan, X., Qu, X., Yin, H., Yan, Z., & Tan, Z. (2019). Effects of Compaction Velocity on the Sinterability of Al-Fe-Cr-Ti PM Alloy. Materials, 12(18), 3005. https://www.mdpi.com/1996-1944/12/18/3005
  • Zahmatkesh, B., Enayati, M. H., & Karimzadeh, F. (2010). Tribological and microstructural evaluation of friction stir processed AA2024 alloy. Materials & Design, 31(10), 4891-4896. https://doi.org/10.1016/j.matdes.2010.04.054
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Toz Metalurjisi
Bölüm Araştırma Makalesi
Yazarlar

Halit Sübütay 0000-0002-1027-3016

Gönderilme Tarihi 6 Ağustos 2025
Kabul Tarihi 25 Kasım 2025
Erken Görünüm Tarihi 9 Aralık 2025
Yayımlanma Tarihi 18 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 24 Sayı: 48

Kaynak Göster

APA Sübütay, H. (2025). MEKANİK ÖĞÜTME VE SİNTERLEME YÖNTEMLERİNİN AA2024 ALAŞIMININ SERTLİK, YOĞUNLUK, MİKRO YAPI ÖZELLİKLERİNE ETKİSİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 24(48), 642-658. https://doi.org/10.55071/ticaretfbd.1759833
AMA Sübütay H. MEKANİK ÖĞÜTME VE SİNTERLEME YÖNTEMLERİNİN AA2024 ALAŞIMININ SERTLİK, YOĞUNLUK, MİKRO YAPI ÖZELLİKLERİNE ETKİSİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Aralık 2025;24(48):642-658. doi:10.55071/ticaretfbd.1759833
Chicago Sübütay, Halit. “MEKANİK ÖĞÜTME VE SİNTERLEME YÖNTEMLERİNİN AA2024 ALAŞIMININ SERTLİK, YOĞUNLUK, MİKRO YAPI ÖZELLİKLERİNE ETKİSİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24, sy. 48 (Aralık 2025): 642-58. https://doi.org/10.55071/ticaretfbd.1759833.
EndNote Sübütay H (01 Aralık 2025) MEKANİK ÖĞÜTME VE SİNTERLEME YÖNTEMLERİNİN AA2024 ALAŞIMININ SERTLİK, YOĞUNLUK, MİKRO YAPI ÖZELLİKLERİNE ETKİSİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24 48 642–658.
IEEE H. Sübütay, “MEKANİK ÖĞÜTME VE SİNTERLEME YÖNTEMLERİNİN AA2024 ALAŞIMININ SERTLİK, YOĞUNLUK, MİKRO YAPI ÖZELLİKLERİNE ETKİSİ”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 24, sy. 48, ss. 642–658, 2025, doi: 10.55071/ticaretfbd.1759833.
ISNAD Sübütay, Halit. “MEKANİK ÖĞÜTME VE SİNTERLEME YÖNTEMLERİNİN AA2024 ALAŞIMININ SERTLİK, YOĞUNLUK, MİKRO YAPI ÖZELLİKLERİNE ETKİSİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24/48 (Aralık2025), 642-658. https://doi.org/10.55071/ticaretfbd.1759833.
JAMA Sübütay H. MEKANİK ÖĞÜTME VE SİNTERLEME YÖNTEMLERİNİN AA2024 ALAŞIMININ SERTLİK, YOĞUNLUK, MİKRO YAPI ÖZELLİKLERİNE ETKİSİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24:642–658.
MLA Sübütay, Halit. “MEKANİK ÖĞÜTME VE SİNTERLEME YÖNTEMLERİNİN AA2024 ALAŞIMININ SERTLİK, YOĞUNLUK, MİKRO YAPI ÖZELLİKLERİNE ETKİSİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 24, sy. 48, 2025, ss. 642-58, doi:10.55071/ticaretfbd.1759833.
Vancouver Sübütay H. MEKANİK ÖĞÜTME VE SİNTERLEME YÖNTEMLERİNİN AA2024 ALAŞIMININ SERTLİK, YOĞUNLUK, MİKRO YAPI ÖZELLİKLERİNE ETKİSİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24(48):642-58.