Derleme
BibTex RIS Kaynak Göster

İŞLETMELER ARASI HETEROJEN VERİLERİN GİZLİLİĞİNİ KORUMAYA YÖNELİK ÖĞRENME MODEL ÇERÇEVESİ

Yıl 2025, Cilt: 24 Sayı: 48, 725 - 743, 18.12.2025
https://doi.org/10.55071/ticaretfbd.1762972

Öz

Yapay zekâ uygulamalarının hızla yaygınlaştığı bir çağda, veri kullanımının yaygınlaşması ve kişisel hakların korunmasının giderek zorlaşması, bu alanın doğası gereği dijital kişisel veri koruma tekniklerinin geliştirilmesinin önünü açmıştır. Bu çalışmada, kavramsal analiz kullanılarak literatürden kişisel verilerin korunmasına yönelik gizlilik koruma teknikleri çıkarılmıştır. Literatür analizinden 30 farklı makaleye dayanarak, aynı amaç için farklı verilerin eğitilmesine olanak tanıyan Federe Transfer Öğrenme yöntemini tanımlayan bir model önerisi geliştirilmiştir. Böylece çalışma, yerel verileri paylaşmadan çeşitli verilerin kullanılmasını sağlayarak ve ortak sorunların çözümü için gizlilik koruması ile karar alma desteği sağlayarak sahadaki pratik veri kullanım zorluklarını ele alan teorik ve pratik katkılar sağlayacaktır.

Kaynakça

  • Acar, A., Aksu, H., Uluagac, A. S., & Conti, M. (2018). A survey on homomorphic encryption schemes: Theory and implementation. ACM Computing Surveys, 51(4). https://doi.org/10.1145/3214303
  • Acquisti, A., Brandimarte, L., & Loewenstein, G. (2015). Age of information. Science, 347(6221), 509–514. https://doi.org/10.1017/9781108943321
  • Al-Rubaie, M., & Chang, J. M. (2019). Privacy-Preserving Machine Learning: Threats and Solutions. IEEE Security and Privacy, 17(2), 49–58. https://doi.org/10.1109/MSEC.2018.2888775
  • Barker, K., Askari, M., Banerjee, M., Ghazinour, K., MacKas, B., Majedi, M., Pun, S., & Williams, A. (2009). A data privacy taxonomy. Lecture Notes in Computer Science (subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5588 LNCS, 42–54. https://doi.org/10.1007/978-3-642-02843-4_7
  • Baumeister, R. F., & Leary, M. R. (1997). Writing narrative literature reviews. Review of General Psychology, 1(3), 311–320. https://doi.org/10.1037/1089-2680.1.3.311
  • Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., & Virza, M. (2014). Zerocash: Decentralized anonymous payments from bitcoin. Proceedings - IEEE Symposium on Security and Privacy, 459–474. https://doi.org/10.1109/SP.2014.36
  • Briggs, C., Fan, Z., & Andras, P. (2020). Federated learning with hierarchical clustering of local updates to improve training on non-IID data. Proceedings of the International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN48605.2020.9207469
  • Bunz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., & Maxwell, G. (2018). Bulletproofs: Short Proofs for Confidential Transactions and More. Proceedings - IEEE Symposium on Security and Privacy, 2018-May, 315–334. https://doi.org/10.1109/SP.2018.00020
  • Chamikara, M. A. P., Bertok, P., Khalil, I., Liu, D., & Camtepe, S. (2021a). PPaaS: Privacy Preservation as a Service. Computer Communications, 173(December 2020), 192–205. https://doi.org/10.1016/j.comcom.2021.04.006
  • Chamikara, M. A. P., Bertok, P., Khalil, I., Liu, D., & Camtepe, S. (2021b). Privacy preserving distributed machine learning with federated learning. Computer Communications, 171(April 2020), 112–125. https://doi.org/10.1016/j.comcom.2021.02.014
  • Chen, Y., Qin, X., Wang, J., Yu, C., & Gao, W. (2020). FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare. IEEE Intelligent Systems, 35(4), 83–93. https://doi.org/10.1109/MIS.2020.2988604
  • Dülger, M. V. (2021). Sağlık Hukukunda Kişisel Verilerin Korunması ve Hasta Mahremiyeti (Sağlık Hukukunda Kişisel Verilerin Korunması ve Hasta Mahremiyeti. Ssrn, 1(2), 43–80. https://ssrn.com/abstract=3792208%0Ahttp://dx.doi.org/10.2139/ssrn.3792208
  • Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3–4), 211–487. https://doi.org/10.1561/0400000042
  • European Parliament & Council of the European Union. (2016). General Data Protection Regulation. Official Journal of the European Union, 2014(March 2014).
  • Fano, R. M. (1968). The balance of knowledge and the balance of power. Scientific American, 218(5), 149–152.
  • Giancaspro, M. (2017). Is a ‘smart contract’ really a smart idea? Insights from a legal perspective. Computer Law and Security Review, 33(6), 825–835. https://doi.org/10.1016/j.clsr.2017.05.007
  • Guo, W., Wang, Y., Chen, X., & Jiang, P. (2024). Federated transfer learning for auxiliary classifier generative adversarial networks: framework and industrial application. Journal of Intelligent Manufacturing, 35(4), 1439–1454. https://doi.org/10.1007/s10845-023-02126-z
  • Guo, W., Zhuang, F., Zhang, X., Tong, Y., & Dong, J. (2024). A comprehensive survey of federated transfer learning: challenges, methods and applications. Frontiers of Computer Science, 18(6). https://doi.org/10.1007/s11704-024-40065-x
  • Hassan, M. U., Rehmani, M. H., & Chen, J. (2020). Differential Privacy Techniques for Cyber Physical Systems: A Survey. IEEE Communications Surveys and Tutorials, 22(1), 746–789. https://doi.org/10.1109/COMST.2019.2944748
  • Kardaş, S., & Kiraz, M. (2018). Bitcoin’DMahremi̇yeti̇ SağlamaYöntemleri̇. Uluslararası Bilgi Güvenliği Mühendisliği Dergisi, 4(1), 1–9. https://doi.org/10.18640/ubgmd.429461
  • Keshk, M., Turnbull, B., Moustafa, N., Vatsalan, D., & Choo, K. K. R. (2020). A Privacy-Preserving-Framework-Based Blockchain and Deep Learning for Protecting Smart Power Networks. IEEE Transactions on Industrial Informatics, 16(8), 5110–5118. https://doi.org/10.1109/TII.2019.2957140
  • Khalid, N., Qayyum, A., Bilal, M., Al-Fuqaha, A., & Qadir, J. (2023). Privacy-preserving artificial intelligence in healthcare: Techniques and applications. Computers in Biology and Medicine, 158(April), 106848. https://doi.org/10.1016/j.compbiomed.2023.106848
  • Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.2020.2975749
  • Li, X., Chi, H. lin, Lu, W., Xue, F., Zeng, J., & Li, C. Z. (2021). Federated transfer learning enabled smart work packaging for preserving personal image information of construction worker. Automation in Construction, 128(January), 103738. https://doi.org/10.1016/j.autcon.2021.103738
  • Liu, L., Zhang, J., Song, S. H., & Letaief, K. B. (2020). Client-Edge-Cloud Hierarchical Federated Learning. IEEE International Conference on Communications, 2020-June. https://doi.org/10.1109/ICC40277.2020.9148862
  • Marijan, D., & Lal, C. (2022). Blockchain verification and validation: Techniques, challenges, and research directions. Computer Science Review, 45, 100492. https://doi.org/10.1016/j.cosrev.2022.100492
  • McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. y. (2017). Communication-Efficient Learning of Deep Networks from Decentralized Data. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 54, 10.
  • Metin, B., Erkan, S., Atasu, İ., & Yılmaz, E. (2019). Privacy Impact Assessment as a Tool for GDPR Compliance Preparation. Kişisel Verileri Koruma Dergisi, 1(2), 75–86.
  • Mulligan, D. K., Koopman, C., & Doty, N. (2016). Privacy is an essentially contested concept: A multi-dimensional analytic for mapping privacy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2083). https://doi.org/10.1098/rsta.2016.0118
  • Nissim, K., & Wood, A. (2018). Is privacy privacy? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2128).
  • Oktay, E. (2022). Genomik Çalişmalarda Kullanilan Makine Öğrenmesi Modellerinin Blokzincir Temelli Bir Eko Sistemde Federe Öğrenme Yöntemiyle Geliştirilmesi İçin Kavramsal Bir Çalişma. Istanbul Medeniyet Üniversitesi.
  • Özcandan, N., Kalkar, Ö., Bingöl, M. A., Sertaya, İ., Dursun, T., Yıldız, O., & Türk, E. (2020). Blokzincirlerde Güvenlik ve Mahremiyet.
  • Pouriyeh, S., Shahid, O., Parizi, R. M., Sheng, Q. Z., Srivastava, G., Zhao, L., & Nasajpour, M. (2022). Secure Smart Communication Efficiency in Federated Learning: Achievements and Challenges. Applied Sciences (Switzerland), 12(18). https://doi.org/10.3390/app12188980
  • Putra, M. A. P., Rachmawati, S. M., Abisado, M., & Sampedro, G. A. (2023). HFTL: Hierarchical Federated Transfer Learning for Secure and Efficient Fault Classification in Additive Manufacturing. IEEE Access, 11, 54795–54807. https://doi.org/10.1109/ACCESS.2023.3280471
  • Ram Mohan Rao, P., Murali Krishna, S., & Siva Kumar, A. P. (2018). Privacy preservation techniques in big data analytics: a survey. Journal of Big Data, 5(1). https://doi.org/10.1186/s40537-018-0141-8
  • Shin, D. D. H. (2019). Blockchain: The emerging technology of digital trust. Telematics and Informatics, 45(August). https://doi.org/10.1016/j.tele.2019.101278
  • Solove, D. J. (2008). Understanding Privacy. Massachusetts: Harvard University Press.
  • Türkiye Büyük Millet Meclisi (T.B.M.M). (2016). Kişisel verilerin korunmasi kanunu. Resmi Gazete, 12301–12317.
  • Zhang, Z., Ming, Y., & Wang, Y. (2024). A federated transfer learning approach for surface electromyographic hand gesture recognition with emphasis on privacy preservation. Engineering Applications of Artificial Intelligence, 136(PA), 108952. https://doi.org/10.1016/j.engappai.2024.108952
  • Zheng, G., Kong, L., & Brintrup, A. (2023). Federated machine learning for privacy preserving, collective supply chain risk prediction. International Journal of Production Research, 61(23), 8115–8132. https://doi.org/10.1080/00207543.2022.2164628
  • Zhou, X., Ye, X., Wang, K. I. K., Liang, W., Nair, N. K. C., Shimizu, S., Yan, Z., & Jin, Q. (2023). Hierarchical Federated Learning With Social Context Clustering-Based Participant Selection for Internet of Medical Things Applications. IEEE Transactions on Computational Social Systems, 10(4), 1742–1751. https://doi.org/10.1109/TCSS.2023.3259431

A LEARNING MODEL FRAMEWORK FOR PRIVACY PRESERVATION OF HETEROGENEOUS DATA BETWEEN BUSINESSES

Yıl 2025, Cilt: 24 Sayı: 48, 725 - 743, 18.12.2025
https://doi.org/10.55071/ticaretfbd.1762972

Öz

In the era of rapid artificial intelligence implementations, the proliferation of data use and the increasing difficulty of protecting personal rights, coupled with its inherent nature, have paved the way for the development of digital personal data protection techniques. In this study, privacy preservation techniques for protecting personal data were extracted from the literature using conceptual analysis. A model proposal was developed based on 30 different articles from the literature analysis, identifying the Federated Transfer Learning method, which enables training different data for the same purpose. Thus, the study will provide theoretical and practical contributions that address practical data usage challenges in the field by enabling the use of diverse data without sharing local data and providing privacy preservation with decision-making support for solving common problems.

Kaynakça

  • Acar, A., Aksu, H., Uluagac, A. S., & Conti, M. (2018). A survey on homomorphic encryption schemes: Theory and implementation. ACM Computing Surveys, 51(4). https://doi.org/10.1145/3214303
  • Acquisti, A., Brandimarte, L., & Loewenstein, G. (2015). Age of information. Science, 347(6221), 509–514. https://doi.org/10.1017/9781108943321
  • Al-Rubaie, M., & Chang, J. M. (2019). Privacy-Preserving Machine Learning: Threats and Solutions. IEEE Security and Privacy, 17(2), 49–58. https://doi.org/10.1109/MSEC.2018.2888775
  • Barker, K., Askari, M., Banerjee, M., Ghazinour, K., MacKas, B., Majedi, M., Pun, S., & Williams, A. (2009). A data privacy taxonomy. Lecture Notes in Computer Science (subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5588 LNCS, 42–54. https://doi.org/10.1007/978-3-642-02843-4_7
  • Baumeister, R. F., & Leary, M. R. (1997). Writing narrative literature reviews. Review of General Psychology, 1(3), 311–320. https://doi.org/10.1037/1089-2680.1.3.311
  • Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., & Virza, M. (2014). Zerocash: Decentralized anonymous payments from bitcoin. Proceedings - IEEE Symposium on Security and Privacy, 459–474. https://doi.org/10.1109/SP.2014.36
  • Briggs, C., Fan, Z., & Andras, P. (2020). Federated learning with hierarchical clustering of local updates to improve training on non-IID data. Proceedings of the International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN48605.2020.9207469
  • Bunz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., & Maxwell, G. (2018). Bulletproofs: Short Proofs for Confidential Transactions and More. Proceedings - IEEE Symposium on Security and Privacy, 2018-May, 315–334. https://doi.org/10.1109/SP.2018.00020
  • Chamikara, M. A. P., Bertok, P., Khalil, I., Liu, D., & Camtepe, S. (2021a). PPaaS: Privacy Preservation as a Service. Computer Communications, 173(December 2020), 192–205. https://doi.org/10.1016/j.comcom.2021.04.006
  • Chamikara, M. A. P., Bertok, P., Khalil, I., Liu, D., & Camtepe, S. (2021b). Privacy preserving distributed machine learning with federated learning. Computer Communications, 171(April 2020), 112–125. https://doi.org/10.1016/j.comcom.2021.02.014
  • Chen, Y., Qin, X., Wang, J., Yu, C., & Gao, W. (2020). FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare. IEEE Intelligent Systems, 35(4), 83–93. https://doi.org/10.1109/MIS.2020.2988604
  • Dülger, M. V. (2021). Sağlık Hukukunda Kişisel Verilerin Korunması ve Hasta Mahremiyeti (Sağlık Hukukunda Kişisel Verilerin Korunması ve Hasta Mahremiyeti. Ssrn, 1(2), 43–80. https://ssrn.com/abstract=3792208%0Ahttp://dx.doi.org/10.2139/ssrn.3792208
  • Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3–4), 211–487. https://doi.org/10.1561/0400000042
  • European Parliament & Council of the European Union. (2016). General Data Protection Regulation. Official Journal of the European Union, 2014(March 2014).
  • Fano, R. M. (1968). The balance of knowledge and the balance of power. Scientific American, 218(5), 149–152.
  • Giancaspro, M. (2017). Is a ‘smart contract’ really a smart idea? Insights from a legal perspective. Computer Law and Security Review, 33(6), 825–835. https://doi.org/10.1016/j.clsr.2017.05.007
  • Guo, W., Wang, Y., Chen, X., & Jiang, P. (2024). Federated transfer learning for auxiliary classifier generative adversarial networks: framework and industrial application. Journal of Intelligent Manufacturing, 35(4), 1439–1454. https://doi.org/10.1007/s10845-023-02126-z
  • Guo, W., Zhuang, F., Zhang, X., Tong, Y., & Dong, J. (2024). A comprehensive survey of federated transfer learning: challenges, methods and applications. Frontiers of Computer Science, 18(6). https://doi.org/10.1007/s11704-024-40065-x
  • Hassan, M. U., Rehmani, M. H., & Chen, J. (2020). Differential Privacy Techniques for Cyber Physical Systems: A Survey. IEEE Communications Surveys and Tutorials, 22(1), 746–789. https://doi.org/10.1109/COMST.2019.2944748
  • Kardaş, S., & Kiraz, M. (2018). Bitcoin’DMahremi̇yeti̇ SağlamaYöntemleri̇. Uluslararası Bilgi Güvenliği Mühendisliği Dergisi, 4(1), 1–9. https://doi.org/10.18640/ubgmd.429461
  • Keshk, M., Turnbull, B., Moustafa, N., Vatsalan, D., & Choo, K. K. R. (2020). A Privacy-Preserving-Framework-Based Blockchain and Deep Learning for Protecting Smart Power Networks. IEEE Transactions on Industrial Informatics, 16(8), 5110–5118. https://doi.org/10.1109/TII.2019.2957140
  • Khalid, N., Qayyum, A., Bilal, M., Al-Fuqaha, A., & Qadir, J. (2023). Privacy-preserving artificial intelligence in healthcare: Techniques and applications. Computers in Biology and Medicine, 158(April), 106848. https://doi.org/10.1016/j.compbiomed.2023.106848
  • Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.2020.2975749
  • Li, X., Chi, H. lin, Lu, W., Xue, F., Zeng, J., & Li, C. Z. (2021). Federated transfer learning enabled smart work packaging for preserving personal image information of construction worker. Automation in Construction, 128(January), 103738. https://doi.org/10.1016/j.autcon.2021.103738
  • Liu, L., Zhang, J., Song, S. H., & Letaief, K. B. (2020). Client-Edge-Cloud Hierarchical Federated Learning. IEEE International Conference on Communications, 2020-June. https://doi.org/10.1109/ICC40277.2020.9148862
  • Marijan, D., & Lal, C. (2022). Blockchain verification and validation: Techniques, challenges, and research directions. Computer Science Review, 45, 100492. https://doi.org/10.1016/j.cosrev.2022.100492
  • McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. y. (2017). Communication-Efficient Learning of Deep Networks from Decentralized Data. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 54, 10.
  • Metin, B., Erkan, S., Atasu, İ., & Yılmaz, E. (2019). Privacy Impact Assessment as a Tool for GDPR Compliance Preparation. Kişisel Verileri Koruma Dergisi, 1(2), 75–86.
  • Mulligan, D. K., Koopman, C., & Doty, N. (2016). Privacy is an essentially contested concept: A multi-dimensional analytic for mapping privacy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2083). https://doi.org/10.1098/rsta.2016.0118
  • Nissim, K., & Wood, A. (2018). Is privacy privacy? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2128).
  • Oktay, E. (2022). Genomik Çalişmalarda Kullanilan Makine Öğrenmesi Modellerinin Blokzincir Temelli Bir Eko Sistemde Federe Öğrenme Yöntemiyle Geliştirilmesi İçin Kavramsal Bir Çalişma. Istanbul Medeniyet Üniversitesi.
  • Özcandan, N., Kalkar, Ö., Bingöl, M. A., Sertaya, İ., Dursun, T., Yıldız, O., & Türk, E. (2020). Blokzincirlerde Güvenlik ve Mahremiyet.
  • Pouriyeh, S., Shahid, O., Parizi, R. M., Sheng, Q. Z., Srivastava, G., Zhao, L., & Nasajpour, M. (2022). Secure Smart Communication Efficiency in Federated Learning: Achievements and Challenges. Applied Sciences (Switzerland), 12(18). https://doi.org/10.3390/app12188980
  • Putra, M. A. P., Rachmawati, S. M., Abisado, M., & Sampedro, G. A. (2023). HFTL: Hierarchical Federated Transfer Learning for Secure and Efficient Fault Classification in Additive Manufacturing. IEEE Access, 11, 54795–54807. https://doi.org/10.1109/ACCESS.2023.3280471
  • Ram Mohan Rao, P., Murali Krishna, S., & Siva Kumar, A. P. (2018). Privacy preservation techniques in big data analytics: a survey. Journal of Big Data, 5(1). https://doi.org/10.1186/s40537-018-0141-8
  • Shin, D. D. H. (2019). Blockchain: The emerging technology of digital trust. Telematics and Informatics, 45(August). https://doi.org/10.1016/j.tele.2019.101278
  • Solove, D. J. (2008). Understanding Privacy. Massachusetts: Harvard University Press.
  • Türkiye Büyük Millet Meclisi (T.B.M.M). (2016). Kişisel verilerin korunmasi kanunu. Resmi Gazete, 12301–12317.
  • Zhang, Z., Ming, Y., & Wang, Y. (2024). A federated transfer learning approach for surface electromyographic hand gesture recognition with emphasis on privacy preservation. Engineering Applications of Artificial Intelligence, 136(PA), 108952. https://doi.org/10.1016/j.engappai.2024.108952
  • Zheng, G., Kong, L., & Brintrup, A. (2023). Federated machine learning for privacy preserving, collective supply chain risk prediction. International Journal of Production Research, 61(23), 8115–8132. https://doi.org/10.1080/00207543.2022.2164628
  • Zhou, X., Ye, X., Wang, K. I. K., Liang, W., Nair, N. K. C., Shimizu, S., Yan, Z., & Jin, Q. (2023). Hierarchical Federated Learning With Social Context Clustering-Based Participant Selection for Internet of Medical Things Applications. IEEE Transactions on Computational Social Systems, 10(4), 1742–1751. https://doi.org/10.1109/TCSS.2023.3259431
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgi Modelleme, Yönetim ve Ontolojiler, Bilgi Sistemleri Geliştirme Metodolojileri ve Uygulamaları, Bilgi Sistemleri Organizasyonu ve Yönetimi, Veri ve Bilgi Gizliliği
Bölüm Derleme
Yazarlar

Arafat Salih Aydıner 0000-0002-1133-5995

Gönderilme Tarihi 11 Ağustos 2025
Kabul Tarihi 4 Kasım 2025
Erken Görünüm Tarihi 9 Aralık 2025
Yayımlanma Tarihi 18 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 24 Sayı: 48

Kaynak Göster

APA Aydıner, A. S. (2025). İŞLETMELER ARASI HETEROJEN VERİLERİN GİZLİLİĞİNİ KORUMAYA YÖNELİK ÖĞRENME MODEL ÇERÇEVESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 24(48), 725-743. https://doi.org/10.55071/ticaretfbd.1762972
AMA Aydıner AS. İŞLETMELER ARASI HETEROJEN VERİLERİN GİZLİLİĞİNİ KORUMAYA YÖNELİK ÖĞRENME MODEL ÇERÇEVESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Aralık 2025;24(48):725-743. doi:10.55071/ticaretfbd.1762972
Chicago Aydıner, Arafat Salih. “İŞLETMELER ARASI HETEROJEN VERİLERİN GİZLİLİĞİNİ KORUMAYA YÖNELİK ÖĞRENME MODEL ÇERÇEVESİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24, sy. 48 (Aralık 2025): 725-43. https://doi.org/10.55071/ticaretfbd.1762972.
EndNote Aydıner AS (01 Aralık 2025) İŞLETMELER ARASI HETEROJEN VERİLERİN GİZLİLİĞİNİ KORUMAYA YÖNELİK ÖĞRENME MODEL ÇERÇEVESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24 48 725–743.
IEEE A. S. Aydıner, “İŞLETMELER ARASI HETEROJEN VERİLERİN GİZLİLİĞİNİ KORUMAYA YÖNELİK ÖĞRENME MODEL ÇERÇEVESİ”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 24, sy. 48, ss. 725–743, 2025, doi: 10.55071/ticaretfbd.1762972.
ISNAD Aydıner, Arafat Salih. “İŞLETMELER ARASI HETEROJEN VERİLERİN GİZLİLİĞİNİ KORUMAYA YÖNELİK ÖĞRENME MODEL ÇERÇEVESİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24/48 (Aralık2025), 725-743. https://doi.org/10.55071/ticaretfbd.1762972.
JAMA Aydıner AS. İŞLETMELER ARASI HETEROJEN VERİLERİN GİZLİLİĞİNİ KORUMAYA YÖNELİK ÖĞRENME MODEL ÇERÇEVESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24:725–743.
MLA Aydıner, Arafat Salih. “İŞLETMELER ARASI HETEROJEN VERİLERİN GİZLİLİĞİNİ KORUMAYA YÖNELİK ÖĞRENME MODEL ÇERÇEVESİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 24, sy. 48, 2025, ss. 725-43, doi:10.55071/ticaretfbd.1762972.
Vancouver Aydıner AS. İŞLETMELER ARASI HETEROJEN VERİLERİN GİZLİLİĞİNİ KORUMAYA YÖNELİK ÖĞRENME MODEL ÇERÇEVESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24(48):725-43.