Araştırma Makalesi
BibTex RIS Kaynak Göster

TERMOFORM YÖNTEMİ İLE TERMOPLASTİK KOMPOZİT MALZEME ÜRETİMİNİN İNCELENMESİ

Yıl 2025, Cilt: 24 Sayı: 48, 607 - 627, 18.12.2025
https://doi.org/10.55071/ticaretfbd.1777919

Öz

Kompozit malzemeler, farklı fiziksel ve kimyasal özelliklere sahip iki veya daha fazla malzemenin bir araya getirilmesiyle elde edilen çok fazlı yapılardır. Bu yapıların temel amacı, bileşenlerin avantajlı yönlerini bir arada kullanarak üstün mekanik, termal ve yapısal özellikler sağlamaktır. Polimer matrisli kompozitler; düşük yoğunluk, yüksek özgül mukavemet ve kolay işlenebilirlikleri sayesinde özellikle uzay-havacılık, otomotiv ve savunma sanayiinde yaygın kullanım alanı bulmaktadır. Bu grupta yer alan termoplastik matrisli kompozitler, termoset esaslı sistemlere kıyasla daha kısa çevrim süresi, geri dönüştürülebilirlik, uzun raf ömrü, yüksek darbe dayanımı ve çevreye duyarlı üretim süreçleriyle öne çıkmaktadır. Endüstride hızlı üretim ihtiyacını karşılayan ve karmaşık geometrilere uyum sağlayabilen termoform yöntemi, termoplastik kompozitlerin şekillendirilmesinde önemli bir teknik olarak dikkat çekmektedir. Termoform süreci; ön ısıtma, şekil verme ve kontrollü soğutma aşamalarından oluşmakta olup, sıcaklık, basınç ve süre gibi işlem parametreleri ürün kalitesi ve mekanik performans üzerinde doğrudan etkilidir. Bu çalışmada termoplastik kompozit malzemelerin endüstriyel uygulamalarda avantajları, kullanım alanları ve özellikle termoform şekillendirme süreci ayrıntılı biçimde ele alınarak literatürdeki güncel gelişmeler sistematik biçimde değerlendirilmiştir. Çalışma, termoform termoplastik kompozit üretiminde işlem parametreleri, üretim hataları ve optimizasyon stratejilerini karşılaştırmalı olarak analiz etmekte ve literatürdeki mevcut çalışmalar arasındaki temel eğilimleri ortaya koymaktadır.

Kaynakça

  • Ahmadi, F. (2023). Study of process induced stresses and deformation in termoplastic matrix compozite . Advanced Structural Analysis and Design using Composite Materials.
  • Anka Kalkınma Ajansı. (2021). Ankara İli Savunma Sanayiinde Kullanılan Yüksek Katma Değerli Kompozit Malzmemenin Geri Dönüşümü Ön Fizibilite Raporu KUllanılan Yüksek Katma Değerli Kompozit Malzemenin . T.C. Sanayi ve Teknoloji Bakanlığı.
  • Ateş, E., & Baş, O. (2021). Havacılık Malzemelerinde Rönesans. Bilim ve Teknik.
  • Bussetta, P., & Correia, N. (2018). Numerical forming of continuous fibre reinforced composite material: A. Composites Part A.
  • Cai, X. (2012). Determination of Process Parameters for the Manufacturing of Thermoplastic . Master of Applied Science.
  • Campbell, F. (2010). Structural Composite Materials. ASM International.
  • Carbon, E. (2024). Top 17 Graphite Powder Uses you Should Know. East Carbon: https://www.eastcarb.com/graphite-powder-uses/ adresinden alındı
  • Chawla, K. K. (2008). Processing of fibre reinforced thermoplastic compozsites. International Materials Reviews.
  • Chen, H. (2021). A focused review on the thermo-stamping process and simulation progresses of continuous fibre reinforced thermoplastic composites. Composites Part B: Engineering.
  • Chermoshentseva, A. S. (2016). The behavior of delaminations in composite materials experimental results. Materials Science and Engineering.
  • Çakıcı, U. G. (2021). Üretim Parametrelerinin Termoplastik Kompozitlerin Mekanik Özelliklerine Etkisinin İncelenmesi. Gazi Mühendislik Bilimleri Dergisi.
  • Çobanoğlu, M., & Ece, R. (2021). Thermoformıng Process Parameter Optımızatıon Of Thermoplastıc. Eskişehir Technıcal Unıversıty Journal Of Scıence And Technology.
  • Çobanoğlu, M., & Öz, Y. (2024). Investigation of thermoforming processes of aerostructures:Simulation and microstructural analysis. The International Journal of Advanced Manufacturing Technology.
  • Ekşi, O., & Erdoğan, E. (2014). Effects of manufacturing defects on thermoformed product . Usak University Journal of Material.
  • Favaloro, M. (2012). A Comparison of the Environmental Attributes. Ticona.
  • Giray, M., & Bailey, S. (2019). Developments in lightweight composite ballistic. Güvenlik Bilimleri Dergisi.
  • Group, T. (2025). TORAY INDUSTRIES, INC. Toray: https://www.toray.com/contact/?s=https%3A%2F%2Fwww.toray.com%2F adresinden alındı
  • Hamada, H. (1995). Effect ofCooling Rate on the Energy Absorption Capability ofCarbon FibrelPEEK Composite Tubes. Polymers 8' Polymer Composites.
  • Hwang, S.-F. (2024). Effects of Thermoforming Parameters on Woven Carbon Fiber Thermoplastic Composites. Materials.
  • Hwang, S.-F., & Yang, C.-Y. (2024). Effects of Thermoforming Parameters on Woven Carbon Fiber Thermoplastic Composites. Yunlin: Materials.
  • Islam, S. (2024). Thermoset and thermoplastic polymer composite with datepalm fiber and its behavior: A review. Wiley.
  • Jar, B. (1991). A STUDY OF THE EFFECT OF FORMING TEMPERATURE ON THE MECHANICAL BEHAVIOUR OF CARBONFIBRE/PEEK COMPOSITES. Composites Science and Technology, 7-19.
  • Jones, R. M. (1998). Mechanics of Composite Materials. Taylor & Francis.
  • Kim, S. H. (2016). Direct impregnation of thermoplastic melt into flax textile reinforcement for semi-structural composite parts. Industrial Crops and Products.
  • Krueger, R. (2024). Advances in Thermoplastic Composites Over Three Decades. Virginia: NASA.
  • Lessard, H., Lebrun, G., & Benkaddour, A. (2015). Influence of process parameters on the thermostamping of a [0/90]12. Composites: Part A, 59-68.
  • Martin, I. (2020). Advanced Thermoplastic Composite Manufacturing by In-Situ Consolidation: A Review. Journal of Composites Science.
  • Miao, Q., & Dai, Z. (2021). Effect of consolidation force on interlaminar shear strength of CF/PEEK laminates manufactured by laser-assisted forming. Composite Structures.
  • Nardi, D. (2021). Design analysis for thermoforming of thermoplastic composites: prediction. Composites Part C.
  • Nishida, H. (2018). Thermoplastic vs. thermoset epoxy carbon textile composites. IOP Conference Series:Materials Science and Engineering.
  • Nordqvist, J. (2025). Market Business News. Market Business News: https://marketbusinessnews.com/about-us/ adresinden alındı
  • Okolie, O. (2023). Manufacturing Defects in Thermoplastic Composite Pipes and Their Effect on the in situ Performance of Thermoplastic Composite Pipes in Oil and Gas Applications. Applied Composite Materials.
  • Ouagne, P. (2009). Analysis of the Film-stacking Processing Parameters for PLLA/Flax Fiber Biocomposites. Journal of Compozsite Materials.
  • R.P.L.Nijssen. (2015). Composite Materials An Introduction. Inholland University of Applied Sciences.
  • Soğutma, A. (2025). Chiller su soğutma üniteleri. Aytek Soğutma: https://www.aytekchillers.com/urunler.asp?proses_kod=Chiller/su/sogutma/uniteleri adresinden alındı
  • Sonmez, F. O. (2002). Optimal post-manufacturing cooling paths for thermoplastic composites. Composites Part A: Applied Science and Manufacturing.
  • Tan, L. B., & Nhat, N. (2023). Prediction and Optimization of Process Parameters for Composite Thermoforming Using a Machine Learning. L. B. Tan içinde, Prime Archives in Polymer Technology. Vide Leaf.
  • Technavio. (2025). Composite Materials Market Analysis, Size, and Forecast 2025-2029:. Technsvio.
  • Toray Industries. (tarih yok). TORAY Innovation by Chemistry. Toray Industries: https://www.cf-composites.toray/products/processed/automotive.html adresinden alındı.
  • Valente, M., & Rossitti, I. (2022). Different Production Processes for Thermoplastic Composite Materials: Sustainability versus Mechanical Properties and Parameter. Polymers.
  • Walsh, S., & Spagnuolo, D. (2005). The Development of a Hybrid Thermoplastic Ballistic Material With Application to Helmets. Army Research Laboratory .
  • Winhard, J. (2023). Effects of Process Parameters in Thermoforming of Unidirectional. Zeyrek, B. Y. (2023). Recycle potential of thermoplastic composites. Niğde: Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi.
  • Zopp, C. (2017). Influence of the cooling behaviour on mechanical properties of carbon fibre-reinforced thermoplastic/metal laminates. Technologies for Lightweight Structures.

INVESTIGATION OF THERMOPLASTIC COMPOSITE MATERIAL PRODUCTION BY THERMOFORMING METHOD

Yıl 2025, Cilt: 24 Sayı: 48, 607 - 627, 18.12.2025
https://doi.org/10.55071/ticaretfbd.1777919

Öz

Composite materials are multi-phase structures obtained by combining two or more materials with different physical and chemical properties. The main purpose of these structures is to utilize the advantageous aspects of each constituent together to achieve superior mechanical, thermal, and structural properties. Polymer matrix composites, owing to their low density, high specific strength, and ease of processing, are widely used in aerospace, automotive, and defense industries. Within this group, thermoplastic matrix composites stand out over thermoset systems with their shorter cycle time, recyclability, long shelf life, high impact resistance, and environmentally friendly manufacturing processes. The thermoforming method, which meets industrial demands for rapid production and adaptability to complex geometries, has become a prominent technique for shaping thermoplastic composites. The thermoforming process consists of three main stages—preheating, forming, and controlled cooling—and process parameters such as temperature, pressure, and time have a direct influence on product quality and mechanical performance. In this study, the advantages, application areas, and particularly the thermoforming process of thermoplastic composite materials are examined in detail, and recent developments in the literature are systematically evaluated. The study comparatively analyzes the process parameters, manufacturing defects, and optimization strategies in thermoformed thermoplastic composites, revealing the key trends among current research studies.

Kaynakça

  • Ahmadi, F. (2023). Study of process induced stresses and deformation in termoplastic matrix compozite . Advanced Structural Analysis and Design using Composite Materials.
  • Anka Kalkınma Ajansı. (2021). Ankara İli Savunma Sanayiinde Kullanılan Yüksek Katma Değerli Kompozit Malzmemenin Geri Dönüşümü Ön Fizibilite Raporu KUllanılan Yüksek Katma Değerli Kompozit Malzemenin . T.C. Sanayi ve Teknoloji Bakanlığı.
  • Ateş, E., & Baş, O. (2021). Havacılık Malzemelerinde Rönesans. Bilim ve Teknik.
  • Bussetta, P., & Correia, N. (2018). Numerical forming of continuous fibre reinforced composite material: A. Composites Part A.
  • Cai, X. (2012). Determination of Process Parameters for the Manufacturing of Thermoplastic . Master of Applied Science.
  • Campbell, F. (2010). Structural Composite Materials. ASM International.
  • Carbon, E. (2024). Top 17 Graphite Powder Uses you Should Know. East Carbon: https://www.eastcarb.com/graphite-powder-uses/ adresinden alındı
  • Chawla, K. K. (2008). Processing of fibre reinforced thermoplastic compozsites. International Materials Reviews.
  • Chen, H. (2021). A focused review on the thermo-stamping process and simulation progresses of continuous fibre reinforced thermoplastic composites. Composites Part B: Engineering.
  • Chermoshentseva, A. S. (2016). The behavior of delaminations in composite materials experimental results. Materials Science and Engineering.
  • Çakıcı, U. G. (2021). Üretim Parametrelerinin Termoplastik Kompozitlerin Mekanik Özelliklerine Etkisinin İncelenmesi. Gazi Mühendislik Bilimleri Dergisi.
  • Çobanoğlu, M., & Ece, R. (2021). Thermoformıng Process Parameter Optımızatıon Of Thermoplastıc. Eskişehir Technıcal Unıversıty Journal Of Scıence And Technology.
  • Çobanoğlu, M., & Öz, Y. (2024). Investigation of thermoforming processes of aerostructures:Simulation and microstructural analysis. The International Journal of Advanced Manufacturing Technology.
  • Ekşi, O., & Erdoğan, E. (2014). Effects of manufacturing defects on thermoformed product . Usak University Journal of Material.
  • Favaloro, M. (2012). A Comparison of the Environmental Attributes. Ticona.
  • Giray, M., & Bailey, S. (2019). Developments in lightweight composite ballistic. Güvenlik Bilimleri Dergisi.
  • Group, T. (2025). TORAY INDUSTRIES, INC. Toray: https://www.toray.com/contact/?s=https%3A%2F%2Fwww.toray.com%2F adresinden alındı
  • Hamada, H. (1995). Effect ofCooling Rate on the Energy Absorption Capability ofCarbon FibrelPEEK Composite Tubes. Polymers 8' Polymer Composites.
  • Hwang, S.-F. (2024). Effects of Thermoforming Parameters on Woven Carbon Fiber Thermoplastic Composites. Materials.
  • Hwang, S.-F., & Yang, C.-Y. (2024). Effects of Thermoforming Parameters on Woven Carbon Fiber Thermoplastic Composites. Yunlin: Materials.
  • Islam, S. (2024). Thermoset and thermoplastic polymer composite with datepalm fiber and its behavior: A review. Wiley.
  • Jar, B. (1991). A STUDY OF THE EFFECT OF FORMING TEMPERATURE ON THE MECHANICAL BEHAVIOUR OF CARBONFIBRE/PEEK COMPOSITES. Composites Science and Technology, 7-19.
  • Jones, R. M. (1998). Mechanics of Composite Materials. Taylor & Francis.
  • Kim, S. H. (2016). Direct impregnation of thermoplastic melt into flax textile reinforcement for semi-structural composite parts. Industrial Crops and Products.
  • Krueger, R. (2024). Advances in Thermoplastic Composites Over Three Decades. Virginia: NASA.
  • Lessard, H., Lebrun, G., & Benkaddour, A. (2015). Influence of process parameters on the thermostamping of a [0/90]12. Composites: Part A, 59-68.
  • Martin, I. (2020). Advanced Thermoplastic Composite Manufacturing by In-Situ Consolidation: A Review. Journal of Composites Science.
  • Miao, Q., & Dai, Z. (2021). Effect of consolidation force on interlaminar shear strength of CF/PEEK laminates manufactured by laser-assisted forming. Composite Structures.
  • Nardi, D. (2021). Design analysis for thermoforming of thermoplastic composites: prediction. Composites Part C.
  • Nishida, H. (2018). Thermoplastic vs. thermoset epoxy carbon textile composites. IOP Conference Series:Materials Science and Engineering.
  • Nordqvist, J. (2025). Market Business News. Market Business News: https://marketbusinessnews.com/about-us/ adresinden alındı
  • Okolie, O. (2023). Manufacturing Defects in Thermoplastic Composite Pipes and Their Effect on the in situ Performance of Thermoplastic Composite Pipes in Oil and Gas Applications. Applied Composite Materials.
  • Ouagne, P. (2009). Analysis of the Film-stacking Processing Parameters for PLLA/Flax Fiber Biocomposites. Journal of Compozsite Materials.
  • R.P.L.Nijssen. (2015). Composite Materials An Introduction. Inholland University of Applied Sciences.
  • Soğutma, A. (2025). Chiller su soğutma üniteleri. Aytek Soğutma: https://www.aytekchillers.com/urunler.asp?proses_kod=Chiller/su/sogutma/uniteleri adresinden alındı
  • Sonmez, F. O. (2002). Optimal post-manufacturing cooling paths for thermoplastic composites. Composites Part A: Applied Science and Manufacturing.
  • Tan, L. B., & Nhat, N. (2023). Prediction and Optimization of Process Parameters for Composite Thermoforming Using a Machine Learning. L. B. Tan içinde, Prime Archives in Polymer Technology. Vide Leaf.
  • Technavio. (2025). Composite Materials Market Analysis, Size, and Forecast 2025-2029:. Technsvio.
  • Toray Industries. (tarih yok). TORAY Innovation by Chemistry. Toray Industries: https://www.cf-composites.toray/products/processed/automotive.html adresinden alındı.
  • Valente, M., & Rossitti, I. (2022). Different Production Processes for Thermoplastic Composite Materials: Sustainability versus Mechanical Properties and Parameter. Polymers.
  • Walsh, S., & Spagnuolo, D. (2005). The Development of a Hybrid Thermoplastic Ballistic Material With Application to Helmets. Army Research Laboratory .
  • Winhard, J. (2023). Effects of Process Parameters in Thermoforming of Unidirectional. Zeyrek, B. Y. (2023). Recycle potential of thermoplastic composites. Niğde: Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi.
  • Zopp, C. (2017). Influence of the cooling behaviour on mechanical properties of carbon fibre-reinforced thermoplastic/metal laminates. Technologies for Lightweight Structures.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler, Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Fatih Uzunkök 0000-0002-0677-3958

Ahmet Erol 0009-0000-0910-9158

Ramazan Çağıl Çiçekdiken 0009-0006-1485-0139

Muhammed Yildiz 0009-0008-3845-3765

Furkan Alemdar 0009-0007-2255-947X

Gönderilme Tarihi 7 Ekim 2025
Kabul Tarihi 29 Ekim 2025
Erken Görünüm Tarihi 9 Aralık 2025
Yayımlanma Tarihi 18 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 24 Sayı: 48

Kaynak Göster

APA Uzunkök, M. F., Erol, A., Çiçekdiken, R. Ç., … Yildiz, M. (2025). TERMOFORM YÖNTEMİ İLE TERMOPLASTİK KOMPOZİT MALZEME ÜRETİMİNİN İNCELENMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 24(48), 607-627. https://doi.org/10.55071/ticaretfbd.1777919
AMA Uzunkök MF, Erol A, Çiçekdiken RÇ, Yildiz M, Alemdar F. TERMOFORM YÖNTEMİ İLE TERMOPLASTİK KOMPOZİT MALZEME ÜRETİMİNİN İNCELENMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Aralık 2025;24(48):607-627. doi:10.55071/ticaretfbd.1777919
Chicago Uzunkök, Mehmet Fatih, Ahmet Erol, Ramazan Çağıl Çiçekdiken, Muhammed Yildiz, ve Furkan Alemdar. “TERMOFORM YÖNTEMİ İLE TERMOPLASTİK KOMPOZİT MALZEME ÜRETİMİNİN İNCELENMESİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24, sy. 48 (Aralık 2025): 607-27. https://doi.org/10.55071/ticaretfbd.1777919.
EndNote Uzunkök MF, Erol A, Çiçekdiken RÇ, Yildiz M, Alemdar F (01 Aralık 2025) TERMOFORM YÖNTEMİ İLE TERMOPLASTİK KOMPOZİT MALZEME ÜRETİMİNİN İNCELENMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24 48 607–627.
IEEE M. F. Uzunkök, A. Erol, R. Ç. Çiçekdiken, M. Yildiz, ve F. Alemdar, “TERMOFORM YÖNTEMİ İLE TERMOPLASTİK KOMPOZİT MALZEME ÜRETİMİNİN İNCELENMESİ”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 24, sy. 48, ss. 607–627, 2025, doi: 10.55071/ticaretfbd.1777919.
ISNAD Uzunkök, Mehmet Fatih vd. “TERMOFORM YÖNTEMİ İLE TERMOPLASTİK KOMPOZİT MALZEME ÜRETİMİNİN İNCELENMESİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24/48 (Aralık2025), 607-627. https://doi.org/10.55071/ticaretfbd.1777919.
JAMA Uzunkök MF, Erol A, Çiçekdiken RÇ, Yildiz M, Alemdar F. TERMOFORM YÖNTEMİ İLE TERMOPLASTİK KOMPOZİT MALZEME ÜRETİMİNİN İNCELENMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24:607–627.
MLA Uzunkök, Mehmet Fatih vd. “TERMOFORM YÖNTEMİ İLE TERMOPLASTİK KOMPOZİT MALZEME ÜRETİMİNİN İNCELENMESİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 24, sy. 48, 2025, ss. 607-2, doi:10.55071/ticaretfbd.1777919.
Vancouver Uzunkök MF, Erol A, Çiçekdiken RÇ, Yildiz M, Alemdar F. TERMOFORM YÖNTEMİ İLE TERMOPLASTİK KOMPOZİT MALZEME ÜRETİMİNİN İNCELENMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24(48):607-2.