Doğrusal olmayan problemlerin çözümüne yönelik olarak geliştirilmiş bir çok teknik söz konusudur. Özellikle değişken sayısına ve veri tiplerine bağlı olarak problemlerin zorluk dereceleri de artabilmektedir. Bu tip problemlerin deterministik yöntemlerle çözümü, problemin yapısına bağlı olarak hem modellemede hem de çözüm sürecinde zorluklar içerebilmektedir. Bunların üstesinden gelebilmek için sezgisel yöntemler geliştirilmiştir. Diferansiyel gelişim algoritması (DGA), özellikle sürekli verilerin söz konusu olduğu problemlerde etkin sonuçlar verebilen, işleyiş ve operatörleri itibariyle genetik algoritmaya dayanan populasyon temelli sezgisel optimizasyon tekniklerinden biridir. Bu çalışmada, diferansiyel gelişim algoritması tanıtılmış ve aşamaları anlatılmıştır. Çalışmanın sonunda, DGA literatürden alınmış bir probleme uygulanmış, sonuçlar genetik algoritma sonuçları ile karşılaştırılmıştır
Diferansiyel Gelişim Algoritması Genetik Algoritma Mutasyon Çaprazlama Seçim
Birincil Dil | Türkçe |
---|---|
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Yayımlanma Tarihi | 1 Haziran 2006 |
Gönderilme Tarihi | 10 Ağustos 2015 |
Yayımlandığı Sayı | Yıl 2006 Cilt: 5 Sayı: 9 |
Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.