BibTex RIS Kaynak Göster

The Use of Back-Propagation Algorithm in the Estimation of Firm Performance

Yıl 2006, Cilt: 5 Sayı: 10, 51 - 64, 01.12.2006

Öz

Kaynakça

  • Ağdelen, Z. (2003), “Human Resource Contribution Model and Analysis of the Link Between Human Resource Management and Firm Performance”, Unpublished Ph.D. Thesis, İstanbul Technical University, Institute of Science & Technology, İstanbul. Akaya, G. and Gökçen, T., (2006), “Yapay Sinir Ağları ile Atölye Çizelgeleme Tasarımı”, YA/EM 2006, Yöneylem Araştırması / Endüstri Mühendisliği- XXVI. Ulusal Kongresi, 3-5 Temmuz, Kocaeli
  • Becker, B., E. and Huselid, M., A., (1998), “High Performance Work Systems and
  • Firm Performance: A Synthesis of Research and Managerial Implications”. Research in Personnel and Human Resources Journal, 16, 1, 53-101.
  • Chandler, G., N. and Mcevoy, G., M., (2000), “Human Resource Management, TQM and Firm Performance in Small and Medium-Size Enterprises”, Entrepreneurship: Theory and Practice, Fall, 25, 43
  • Chin-Teng, L. and George Lee, C.S., (1996), “Neural Fuzzy Systems”, Prentice Hall.
  • Christopher, J. C. and Ken, G. S., (2006), “Knowledge Exchange and Combination: The Role of Human Resource Practices in the Performance of High-Technology Firms”, The Academy of Management Journal, 49, 3, 544-560.
  • Cichoclar, A., Unbehaven, R., (1993), Neural Networks for Optimization and Signal Processing”, John Wiley & Sons.
  • Delaney, J., T. and Huselid, M., A., (1996), “The Impact of Human Resource Management Practices on Performance in For-Profit and Nonprofit Organizations”, Academy of Management Journal, 39, 949-969.
  • Fey, C., F. and Björkman, I., (2000), “The Effect of Human Resource Management Practices on MNC Subsidiary Performance in Russia”, Working Paper, Stockholm School of Economics in St. Petersburg, SSE/EFI Working Paper Series in Business Administration, No. 2000:6.
  • Haydar A., Ağdelen Z., (2006), “The Effect of Changes in Human Resource Management Measures on the Firm Performance Through the Use of Nonlinear Model”, 5th International Symposium on Intelligent Manufacturing Systems, Sakarya.
  • Huang, L-C., Huang, K-S, Huang, H-P. and Jaw, B-S., (2004), “Applying Fuzzy Neural Network in Human Selection System”, IEEE, 169-174.
  • Huselid, M., A., (1995), “The Impact of Human Resource Management Practices on Turnover, Productivity, and Corporate Financial Performance”, Academy of Management Journal, 38, 635-672
  • Kent V. Rondeau, (2007), “The Adoption of High Involvement Work Practices in Canadian Nursing Homes”, Leadership in Health Services, 20, 1, 16
  • Li, E. Y., (1994), “Artificial Networks and Their Business Applications”, Information and Management, 27, 5, 303-313.
  • Mahesh Subramony, (2006), “Why Organizations Adopt Some Human Resource Management Practices and Reject Others: An Exploration of Rationales”, Human Resource Management 45, 2, 195
  • Patrick, M. W., Timoty, M. G., Lisa, M. M. and Mathew, R., A, (2005), “The Relationship Between HR Practices and Firm Performance: Examining Causal Order”, Personnel Psychology, 58, 2, 409-446.
  • Saraç, T., Dengiz, B. and Altıparmak, F., (2006), “Yapay Sinir Ağları ile Yazılım Proje Süresinin Tahmini”, YA/EM 2006, Yöneylem Araştırması / Endüstri Mühendisliği- XXVI. Ulusal Kongresi, 3-5 Temmuz, Kocaeli
  • Sexton, R. S. and Mcmurtey S., (2005), “Employee Turnover: A Neural Network Solution”, Computers and Operations Research, 32, 10, 2635-2651.
  • Shay S. Tzafrir. (2006), “A Universalistic Perspective for Explaining the Relationship Between HRM Practices and Firm Performance at Different Points in Time”, Journal of Managerial Psychology 21, 2, 109
  • Simon H., (1999),” Neural Networks”, Second Edition, Prentice Hall.

The Use of Back-Propagation Algorithm in the Estimation of Firm Performance

Yıl 2006, Cilt: 5 Sayı: 10, 51 - 64, 01.12.2006

Öz

Son zamanlarda, insan kaynaklarının firma performansı üzerindeki etkisini incelemek için birçok araştırma yapılmıştır. İstatistiksel yöntemler temel alınarak yapılan bu çalışmalar sonucunda, insan kaynakları yönetimi göstergeleri ile firma performansı arasında ilişki olduğu tespit edilmiştir. Bu çalışmanın esas amacı, doğrusal olmayan ve geriye yayılma algoritması olarak da bilinen model kullanılarak firma performansını tahmin etmektir. Bu amaçla kullanılan, doğrusal olmayan yöntemlerden bir tanesi de yapay sinir ağlarıdır. Yapay sinir ağları, yapay nöron olarak adlandırılan birimlerin birbirine bağlanarak sinyal ve bilgi işleme amacıyla kullanılan hesaplama sistemleridir. Bu çalışmada, geriye yayılma algoritması olarak adlandırılan yapay sinir ağları yaklaşımlarından birisi kullanılmıştır. Veri toplama amacıyla, insan kaynakları yönetimi performans göstergeleri ve firma performans göstergeleri ile ilgili sorulardan oluşan bir anket tasarlanmıştır. Veriler Türkiye’de üretim sektöründe faaliyet gösteren firmalardan toplanmıştır. Toplanan veriler kullanılarak insan kaynakları yönetimi performans göstergeleri ile firma performansı göstergeleri arasında bu model yardımı ile bir ilişki kurulup kurulamayacağı test edilmiştir. Deneysel sonuçlar, bu algoritma kullanılarak girdi ve çıktı değişkenleri arasında ilişki kurulabileceğini göstermiştir. Buna ek olarak, modelin eğitilmesinde kullanılmayan firmalar için de bu algoritmanın firma performasının tahmini için kullanılabileceği sonucu elde edilmiştir

Kaynakça

  • Ağdelen, Z. (2003), “Human Resource Contribution Model and Analysis of the Link Between Human Resource Management and Firm Performance”, Unpublished Ph.D. Thesis, İstanbul Technical University, Institute of Science & Technology, İstanbul. Akaya, G. and Gökçen, T., (2006), “Yapay Sinir Ağları ile Atölye Çizelgeleme Tasarımı”, YA/EM 2006, Yöneylem Araştırması / Endüstri Mühendisliği- XXVI. Ulusal Kongresi, 3-5 Temmuz, Kocaeli
  • Becker, B., E. and Huselid, M., A., (1998), “High Performance Work Systems and
  • Firm Performance: A Synthesis of Research and Managerial Implications”. Research in Personnel and Human Resources Journal, 16, 1, 53-101.
  • Chandler, G., N. and Mcevoy, G., M., (2000), “Human Resource Management, TQM and Firm Performance in Small and Medium-Size Enterprises”, Entrepreneurship: Theory and Practice, Fall, 25, 43
  • Chin-Teng, L. and George Lee, C.S., (1996), “Neural Fuzzy Systems”, Prentice Hall.
  • Christopher, J. C. and Ken, G. S., (2006), “Knowledge Exchange and Combination: The Role of Human Resource Practices in the Performance of High-Technology Firms”, The Academy of Management Journal, 49, 3, 544-560.
  • Cichoclar, A., Unbehaven, R., (1993), Neural Networks for Optimization and Signal Processing”, John Wiley & Sons.
  • Delaney, J., T. and Huselid, M., A., (1996), “The Impact of Human Resource Management Practices on Performance in For-Profit and Nonprofit Organizations”, Academy of Management Journal, 39, 949-969.
  • Fey, C., F. and Björkman, I., (2000), “The Effect of Human Resource Management Practices on MNC Subsidiary Performance in Russia”, Working Paper, Stockholm School of Economics in St. Petersburg, SSE/EFI Working Paper Series in Business Administration, No. 2000:6.
  • Haydar A., Ağdelen Z., (2006), “The Effect of Changes in Human Resource Management Measures on the Firm Performance Through the Use of Nonlinear Model”, 5th International Symposium on Intelligent Manufacturing Systems, Sakarya.
  • Huang, L-C., Huang, K-S, Huang, H-P. and Jaw, B-S., (2004), “Applying Fuzzy Neural Network in Human Selection System”, IEEE, 169-174.
  • Huselid, M., A., (1995), “The Impact of Human Resource Management Practices on Turnover, Productivity, and Corporate Financial Performance”, Academy of Management Journal, 38, 635-672
  • Kent V. Rondeau, (2007), “The Adoption of High Involvement Work Practices in Canadian Nursing Homes”, Leadership in Health Services, 20, 1, 16
  • Li, E. Y., (1994), “Artificial Networks and Their Business Applications”, Information and Management, 27, 5, 303-313.
  • Mahesh Subramony, (2006), “Why Organizations Adopt Some Human Resource Management Practices and Reject Others: An Exploration of Rationales”, Human Resource Management 45, 2, 195
  • Patrick, M. W., Timoty, M. G., Lisa, M. M. and Mathew, R., A, (2005), “The Relationship Between HR Practices and Firm Performance: Examining Causal Order”, Personnel Psychology, 58, 2, 409-446.
  • Saraç, T., Dengiz, B. and Altıparmak, F., (2006), “Yapay Sinir Ağları ile Yazılım Proje Süresinin Tahmini”, YA/EM 2006, Yöneylem Araştırması / Endüstri Mühendisliği- XXVI. Ulusal Kongresi, 3-5 Temmuz, Kocaeli
  • Sexton, R. S. and Mcmurtey S., (2005), “Employee Turnover: A Neural Network Solution”, Computers and Operations Research, 32, 10, 2635-2651.
  • Shay S. Tzafrir. (2006), “A Universalistic Perspective for Explaining the Relationship Between HRM Practices and Firm Performance at Different Points in Time”, Journal of Managerial Psychology 21, 2, 109
  • Simon H., (1999),” Neural Networks”, Second Edition, Prentice Hall.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Ali Haydar Bu kişi benim

Zafer Ağdelen Bu kişi benim

Pınar Özbeşeker Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2006
Gönderilme Tarihi 10 Ağustos 2015
Yayımlandığı Sayı Yıl 2006 Cilt: 5 Sayı: 10

Kaynak Göster

APA Haydar, A., Ağdelen, Z., & Özbeşeker, P. (2006). The Use of Back-Propagation Algorithm in the Estimation of Firm Performance. İstanbul Commerce University Journal of Science, 5(10), 51-64.
AMA Haydar A, Ağdelen Z, Özbeşeker P. The Use of Back-Propagation Algorithm in the Estimation of Firm Performance. İstanbul Commerce University Journal of Science. Aralık 2006;5(10):51-64.
Chicago Haydar, Ali, Zafer Ağdelen, ve Pınar Özbeşeker. “The Use of Back-Propagation Algorithm in the Estimation of Firm Performance”. İstanbul Commerce University Journal of Science 5, sy. 10 (Aralık 2006): 51-64.
EndNote Haydar A, Ağdelen Z, Özbeşeker P (01 Aralık 2006) The Use of Back-Propagation Algorithm in the Estimation of Firm Performance. İstanbul Commerce University Journal of Science 5 10 51–64.
IEEE A. Haydar, Z. Ağdelen, ve P. Özbeşeker, “The Use of Back-Propagation Algorithm in the Estimation of Firm Performance”, İstanbul Commerce University Journal of Science, c. 5, sy. 10, ss. 51–64, 2006.
ISNAD Haydar, Ali vd. “The Use of Back-Propagation Algorithm in the Estimation of Firm Performance”. İstanbul Commerce University Journal of Science 5/10 (Aralık 2006), 51-64.
JAMA Haydar A, Ağdelen Z, Özbeşeker P. The Use of Back-Propagation Algorithm in the Estimation of Firm Performance. İstanbul Commerce University Journal of Science. 2006;5:51–64.
MLA Haydar, Ali vd. “The Use of Back-Propagation Algorithm in the Estimation of Firm Performance”. İstanbul Commerce University Journal of Science, c. 5, sy. 10, 2006, ss. 51-64.
Vancouver Haydar A, Ağdelen Z, Özbeşeker P. The Use of Back-Propagation Algorithm in the Estimation of Firm Performance. İstanbul Commerce University Journal of Science. 2006;5(10):51-64.