Araştırma Makalesi
BibTex RIS Kaynak Göster

MECHANICAL PROPERTIES OF CLAY/LLDPE AND ORGANOCLAY/LLDPE NANOCOMPOSITES

Yıl 2024, Cilt: 23 Sayı: 46, 529 - 542, 27.12.2024
https://doi.org/10.55071/ticaretfbd.1580794

Öz

Linear low-density polyethylene (LLDPE) is widely used in many areas in daily life because it is both light and flexible. In this study, clay/LLDPE and organoclay/LLDPE nanocomposites were obtained by melt intercalation method, incorporating small amounts (1- 5 wt.%) of nanosized clay and organoclay modified with a positively charged salt to enhance the mechanical properties of the polymer. Characterization and mechanical tests showed that the mechanical strength of the composites increased with additive content, though some flexibility was partially lost. FTIR and XRD analyses confirmed that clay and organoclay interacted with polymer chains and dispersed homogeneously. ANOVA results demonstrated that both filler type and concentration significantly influence the mechanical properties, with organophilic organoclay showing superior interaction to the LLDPE matrix compared to hydrophilic clay. Specifically, the addition of 5 wt.% organoclay resulted in increases of 56,67%, 58,73%, and 39,53% in elastic modulus, yield strength, and tensile strength, respectively. Additionally, the observed 5% rise in melting temperature suggests potential for expanding the application range of these nanocomposites to areas requiring thermal stability.

Etik Beyan

Research and publication ethics were observed in this study.

Destekleyen Kurum

Khalifa Üniversitesi (eski adıyla Petrol Enstitüsü), BAE

Proje Numarası

RAGS-09045

Kaynakça

  • As'Habi, L., Jafari, S. H., Khonakdar, H. A., Kretzschmar, B., Wagenknecht, U., & Heinrich, G. (2013). Effect of clay type and polymer matrix on microstructure and tensile properties of PLA/LLDPE/clay nanocomposites. Journal of Applied Polymer Science, 130(2), 749–758.
  • Canbaz, E. G., & Güngör, N. (2009). Kil/Kitosan ve Organokil/Kitosan nanokompozitlerinin üretimi ve karakterizasyonu [Production and characterization of Clay/Chitosan and Organoclay/Chitosan nanocomposites]. ITU Journal Series C: Basic Sciences, 7(1), 45–53.
  • Durmus, A., Kasgoz, A., & Macosko, C. W. (2007). Linear low-density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer, 48(15), 4492–4502.
  • Gulmine, J.V., Janissek, P.R., Heise, H.M., Akcelrud, L., (2002). Polyethylene characterization by FTIR, Polymer Testing, 21(5), 557-563.
  • Gunister, E., Alemdar, S. A., & Güngör, N. (2004). Effect of sodium dodecyl sulfate on flow and electrokinetic properties of Na-activated bentonite dispersions. Bulletin of Materials Science, 27, 317–322.
  • Hotta, S., & Paul, D. R. (2004). Nanocomposites formed from linear low-density polyethylene and organoclays. Polymer, 45, 7639–7654.
  • Kontou, E., & Niaounakis, M. (2006). Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer, 47(4), 1267–1280.
  • LeBaron, P. C., Wang, Z., & Pinnavaia, T. J. (1999). Polymer-layered silicate nanocomposites: An overview. Applied Clay Science, 15(1–2), 11–29.
  • Li, J., Gunister, E., & Barsoum, I. (2019). Effect of graphene oxide as a filler material on the mechanical properties of LLDPE nanocomposites. Journal of Composite Materials, 53(19), 2761–2773.
  • Liu, M., Horrocks, A.R, (2002). Effect of Carbon Black on UV stability of LLDPE films under artificial weathering conditions, Polymer Degradation and Stability, 75(3), 485-499.
  • Madejova, J., (2003), FTIR techniques in clay mineral studies, Vibrational Spectroscopy, 31, 1-10.
  • Mansoor, Z., Kowalczuk, M., Adamus, G., Manning, G., Parati, M., Radecka, I., & Khan, H. (2021). Polymers Use as Mulch Films in Agriculture—A Review of History, Problems and Current Trends. Polymers, 14(23), 5062.
  • Mezghani, K., Farooqui, M., Furquan, S., Atieh, M., (2011). Influence of carbon nanotube (CNT) on the mechanical properties of LLDPE/CNT nanocomposite fibers, Materials Letters, 65(23-24), 3633-3635.
  • Mir, S., Asghar, B., Khan, A. K., Rashid, R., Shaikh, A. J., Khan, R. A., & Murtaza, G. (2017). The effects of nanoclay on thermal, mechanical, and rheological properties of LLDPE/chitosan blend. Journal of Polymer Engineering, 37(2), 143–149.
  • Mousavi, S. M., Aghili, A., Hashemi, S. A., Goudarzian, N., Bakhoda, Z., & Baseri, S. (2016). Improved morphology and properties of nanocomposites, linear low-density polyethylene, ethylene-co-vinyl acetate, and nano clay particles by electron beam. Polymers from Renewable Resources, 7(4), 135–154.
  • Peacock, A.J. (2000). Handbook of Polyethylene: Structures, Properties, and Applications. CRC Press.
  • Sabetzadeh, M., Bagheri, R., & Masoomi, M. (2016). Effect of nanoclay on the properties of low-density polyethylene/linear low-density polyethylene/thermoplastic starch blend films. Carbohydrate Polymers, 141, 75–81.
  • Said, M., Challita, G., & Seif, S. (2020). Development of blown film linear low-density polyethylene-clay nanocomposites: Part B: Mechanical and rheological characterization. Journal of Applied Polymer Science, 137(16), Article 48590.
  • Stoeffler, K., Lafleur, P. G., Perrin-Sarazin, F., Bureau, M. N., & Denault, J. (2011). Micro-mechanisms of deformation in polyethylene/clay micro- and nanocomposites. Composites Part A: Applied Science and Manufacturing, 42(8), 916–927.
  • Yassin, A., & Günister, E. (2023). Optimization of thermal and rheological properties of HDPE-organoclay composite using response surface methodology. Gazi University Journal of Science, 36(1), 322-334.
  • Wadgaonkar, K., & Mehta, L. (2019). Enhancement of mechanical and barrier properties of LLDPE composite film via PET fiber incorporation for agricultural application. Polymers for Advanced Technologies, 30(5), 1031–1039.

KİL/LLDPE VE ORGANİK KİL/LLDPE NANOKOMPOZİTELERİNİN MEKANİK ÖZELLİKLERİ

Yıl 2024, Cilt: 23 Sayı: 46, 529 - 542, 27.12.2024
https://doi.org/10.55071/ticaretfbd.1580794

Öz

Lineer düşük yoğunluklu polietilen (LLDPE), hem hafif hem de esnek olması nedeniyle günlük yaşamda birçok alanda yaygın olarak kullanılmaktadır. Bu çalışmada, polimerin mekanik özelliklerini iyileştirmek amacıyla pozitif yüklü tuz ile modifiye edilmiş organokil ve nano boyutlu kilin düşük miktarlarının (ağ. %1-5) kullanıldığı eriyik interkalasyon yöntemi ile kil/LLDPE ve organokil/LLDPE nanokompozitleri elde edilmiştir. Karakterizasyon ve mekanik testler, katkı miktarının artışıyla kompozitlerin mekanik dayanımının arttığını ancak esnekliklerinin kısmen azaldığını göstermiştir. FTIR ve XRD analizleri, kil ve organokilin polimer zincirleriyle etkileşime girerek homojen bir şekilde dağıldığını doğrulamıştır. ANOVA sonuçları, dolgu tipi ve konsantrasyonunun mekanik özellikler üzerinde önemli bir etkiye sahip olduğunu ve organofilik organokilin, hidrofilik kile kıyasla LLDPE matrisi ile daha üstün bir etkileşme gösterdiğini ortaya koymuştur. Özellikle, %5 ağırlık oranında organokil ilavesi ile elastik modülde %56,67, akma dayanımında %58,73 ve çekme dayanımında %39,53 oranında artış gözlenmiştir. Ayrıca, erime sıcaklığındaki %5’lik artış, bu nanokompozitlerin sıcaklık değişimlerine karşı dayanıklılık gerektiren uygulama alanlarında kullanım potansiyelini artırabileceğini göstermektedir.

Etik Beyan

Bu çalışmada araştırma ve yayın etiği gözetilmiştir.

Destekleyen Kurum

Khalifa University (formerly known as The Petroleum Institute), UAE

Proje Numarası

RAGS-09045

Kaynakça

  • As'Habi, L., Jafari, S. H., Khonakdar, H. A., Kretzschmar, B., Wagenknecht, U., & Heinrich, G. (2013). Effect of clay type and polymer matrix on microstructure and tensile properties of PLA/LLDPE/clay nanocomposites. Journal of Applied Polymer Science, 130(2), 749–758.
  • Canbaz, E. G., & Güngör, N. (2009). Kil/Kitosan ve Organokil/Kitosan nanokompozitlerinin üretimi ve karakterizasyonu [Production and characterization of Clay/Chitosan and Organoclay/Chitosan nanocomposites]. ITU Journal Series C: Basic Sciences, 7(1), 45–53.
  • Durmus, A., Kasgoz, A., & Macosko, C. W. (2007). Linear low-density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer, 48(15), 4492–4502.
  • Gulmine, J.V., Janissek, P.R., Heise, H.M., Akcelrud, L., (2002). Polyethylene characterization by FTIR, Polymer Testing, 21(5), 557-563.
  • Gunister, E., Alemdar, S. A., & Güngör, N. (2004). Effect of sodium dodecyl sulfate on flow and electrokinetic properties of Na-activated bentonite dispersions. Bulletin of Materials Science, 27, 317–322.
  • Hotta, S., & Paul, D. R. (2004). Nanocomposites formed from linear low-density polyethylene and organoclays. Polymer, 45, 7639–7654.
  • Kontou, E., & Niaounakis, M. (2006). Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer, 47(4), 1267–1280.
  • LeBaron, P. C., Wang, Z., & Pinnavaia, T. J. (1999). Polymer-layered silicate nanocomposites: An overview. Applied Clay Science, 15(1–2), 11–29.
  • Li, J., Gunister, E., & Barsoum, I. (2019). Effect of graphene oxide as a filler material on the mechanical properties of LLDPE nanocomposites. Journal of Composite Materials, 53(19), 2761–2773.
  • Liu, M., Horrocks, A.R, (2002). Effect of Carbon Black on UV stability of LLDPE films under artificial weathering conditions, Polymer Degradation and Stability, 75(3), 485-499.
  • Madejova, J., (2003), FTIR techniques in clay mineral studies, Vibrational Spectroscopy, 31, 1-10.
  • Mansoor, Z., Kowalczuk, M., Adamus, G., Manning, G., Parati, M., Radecka, I., & Khan, H. (2021). Polymers Use as Mulch Films in Agriculture—A Review of History, Problems and Current Trends. Polymers, 14(23), 5062.
  • Mezghani, K., Farooqui, M., Furquan, S., Atieh, M., (2011). Influence of carbon nanotube (CNT) on the mechanical properties of LLDPE/CNT nanocomposite fibers, Materials Letters, 65(23-24), 3633-3635.
  • Mir, S., Asghar, B., Khan, A. K., Rashid, R., Shaikh, A. J., Khan, R. A., & Murtaza, G. (2017). The effects of nanoclay on thermal, mechanical, and rheological properties of LLDPE/chitosan blend. Journal of Polymer Engineering, 37(2), 143–149.
  • Mousavi, S. M., Aghili, A., Hashemi, S. A., Goudarzian, N., Bakhoda, Z., & Baseri, S. (2016). Improved morphology and properties of nanocomposites, linear low-density polyethylene, ethylene-co-vinyl acetate, and nano clay particles by electron beam. Polymers from Renewable Resources, 7(4), 135–154.
  • Peacock, A.J. (2000). Handbook of Polyethylene: Structures, Properties, and Applications. CRC Press.
  • Sabetzadeh, M., Bagheri, R., & Masoomi, M. (2016). Effect of nanoclay on the properties of low-density polyethylene/linear low-density polyethylene/thermoplastic starch blend films. Carbohydrate Polymers, 141, 75–81.
  • Said, M., Challita, G., & Seif, S. (2020). Development of blown film linear low-density polyethylene-clay nanocomposites: Part B: Mechanical and rheological characterization. Journal of Applied Polymer Science, 137(16), Article 48590.
  • Stoeffler, K., Lafleur, P. G., Perrin-Sarazin, F., Bureau, M. N., & Denault, J. (2011). Micro-mechanisms of deformation in polyethylene/clay micro- and nanocomposites. Composites Part A: Applied Science and Manufacturing, 42(8), 916–927.
  • Yassin, A., & Günister, E. (2023). Optimization of thermal and rheological properties of HDPE-organoclay composite using response surface methodology. Gazi University Journal of Science, 36(1), 322-334.
  • Wadgaonkar, K., & Mehta, L. (2019). Enhancement of mechanical and barrier properties of LLDPE composite film via PET fiber incorporation for agricultural application. Polymers for Advanced Technologies, 30(5), 1031–1039.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Fiziği, Malzemelerin Fiziksel Özellikleri, Kompozit ve Hibrit Malzemeler, Polimerler ve Plastikler
Bölüm Araştırma Makalesi
Yazarlar

Ebru Günister 0000-0002-7797-604X

Edgar Alejandro Ayala Iracheta Bu kişi benim 0009-0004-6409-2933

Proje Numarası RAGS-09045
Yayımlanma Tarihi 27 Aralık 2024
Gönderilme Tarihi 8 Kasım 2024
Kabul Tarihi 25 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 23 Sayı: 46

Kaynak Göster

APA Günister, E., & Iracheta, E. A. A. (2024). MECHANICAL PROPERTIES OF CLAY/LLDPE AND ORGANOCLAY/LLDPE NANOCOMPOSITES. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 23(46), 529-542. https://doi.org/10.55071/ticaretfbd.1580794
AMA Günister E, Iracheta EAA. MECHANICAL PROPERTIES OF CLAY/LLDPE AND ORGANOCLAY/LLDPE NANOCOMPOSITES. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Aralık 2024;23(46):529-542. doi:10.55071/ticaretfbd.1580794
Chicago Günister, Ebru, ve Edgar Alejandro Ayala Iracheta. “MECHANICAL PROPERTIES OF CLAY/LLDPE AND ORGANOCLAY/LLDPE NANOCOMPOSITES”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23, sy. 46 (Aralık 2024): 529-42. https://doi.org/10.55071/ticaretfbd.1580794.
EndNote Günister E, Iracheta EAA (01 Aralık 2024) MECHANICAL PROPERTIES OF CLAY/LLDPE AND ORGANOCLAY/LLDPE NANOCOMPOSITES. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23 46 529–542.
IEEE E. Günister ve E. A. A. Iracheta, “MECHANICAL PROPERTIES OF CLAY/LLDPE AND ORGANOCLAY/LLDPE NANOCOMPOSITES”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 23, sy. 46, ss. 529–542, 2024, doi: 10.55071/ticaretfbd.1580794.
ISNAD Günister, Ebru - Iracheta, Edgar Alejandro Ayala. “MECHANICAL PROPERTIES OF CLAY/LLDPE AND ORGANOCLAY/LLDPE NANOCOMPOSITES”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23/46 (Aralık 2024), 529-542. https://doi.org/10.55071/ticaretfbd.1580794.
JAMA Günister E, Iracheta EAA. MECHANICAL PROPERTIES OF CLAY/LLDPE AND ORGANOCLAY/LLDPE NANOCOMPOSITES. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23:529–542.
MLA Günister, Ebru ve Edgar Alejandro Ayala Iracheta. “MECHANICAL PROPERTIES OF CLAY/LLDPE AND ORGANOCLAY/LLDPE NANOCOMPOSITES”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 23, sy. 46, 2024, ss. 529-42, doi:10.55071/ticaretfbd.1580794.
Vancouver Günister E, Iracheta EAA. MECHANICAL PROPERTIES OF CLAY/LLDPE AND ORGANOCLAY/LLDPE NANOCOMPOSITES. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23(46):529-42.