Araştırma Makalesi
BibTex RIS Kaynak Göster

The MIS 9 Terrestrial Carbonate Records in Anatolia and their Palaeoclimatic Implications at Örtülü/Sarıkavak (Afyon), Karahallı (Uşak) and Bahçecik (Gümüşhane)

Yıl 2024, , 319 - 338, 31.08.2024
https://doi.org/10.25288/tjb.1386017

Öz

The MIS 9, one of the Marine Isotope Stages (MIS) that corresponds to an interglacial period, is considered as an analogue for the present warm period. However, data from terrestrial carbonate sediments for this period are limited. In this study, records of terrestrial carbonates such as travertine and tufa, which crop out in different locations in Anatolia, were investigated of the MIS 9 interglacial period.

For this purpose, the MIS 9 data of terrestrial carbonates at two locations in SW-Anatolia, (Örtülü/Sarıkavak, Afyon) and (Karahallı, Uşak) were evaluated, and one location from NE-Anatolia (Bahçecik, Gümüşhane). In light of the sedimentological, isotopic and palynological data, the environmental and palaeoclimatic conditions of the MIS 9 interglacial period were revealed. The Örtülü travertines and Sarıkavak tufa, which continued to be precipitated during the MIS 9 period, were accumulated in a depression depositional system and a fluvial system dominated by medium-highly inclined topography, respectively. Karahallı travertines were deposited in a shallow lake margin environment where tectonism was active. Bahçecik travertines were deposited within depression and slope depositional systems.

In the MIS 9 period, δ13C stable isotopes values of the Karahallı and Örtülü/Sarıkavak terrestrial carbonates were close to positive (-0.47 to 1.86 ‰), while δ18O stable isotope values were negative (-9.67 to -8.72‰). However, a significant difference is observed in the stable isotope values of the MIS 9 period in NE-Anatolia. While δ13C isotope values are more positive (4.5 to 5.0 ‰), δ18O values are much more negative (–14.67 to –14.6‰). This difference in these carbon and oxygen isotope values is directly related to wetter/drier conditions. According to palynological records, a significant difference was recorded between MIS 9e and MIS 9a, with a changing humidity, relatively.

In the light of all data obtained, it can be said that the MIS 9 in Anatolia was generally a milder period, although it showed climatic fluctuations with decreased rainfall within arid conditions.

Proje Numarası

115Y493

Kaynakça

  • Andrews, J. E. (2006). Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth-Science Reviews, 75(1-4), 85–104. https://doi.org/10.1016/j.earscirev.2005.08.002
  • Andrews, J. E., Riding, R. & Dennis, P.F. (1997). The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 129(1-2), 171–189. https://doi.org/10.1016/S0031-0182(96)00120-4
  • Baldini, J. U. L. (2010). Cave atmosphere controls on stalagmite growth rate and palaeoclimate records. Geological Society, London, Special Publications, 336(1), 283–294. https://doi.org/10.1144/SP336.1
  • Bertini, A., Minissale, A. & Ricci, M. (2014). Palynological approach in upper Quaternary terrestrial carbonates of central Italy: anything but a ‘mission impossible’. Sedimentology 61, 200–220.
  • Beug, H. J., (2004). Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München, Germany.
  • Brasier, A. T., Andrews, J. E., Marca-Bell, A. D. & Dennis, P.F. (2010). Depositional continuity of seasonally laminated tufas: implications for δ18O based palaeotemperatures. Global and Planetary Change, 71(3-4), 160–167. https://doi.org/10.1016/j.gloplacha.2009.03.022
  • Brook, E. J. & Buizert, C. (2018). Antarctic and Global Climate History Viewed from Ice Cores. Nature, 558(7709), 200–208. https://doi.org/10.1038/s41586-018-0172-5
  • Capezzuoli, E., Gandin, A. & Pedley, M. (2014). Decoding tufa and travertine (freshwater carbonates) in the sedimentary record: the state of the art. Sedimentology, 61(1), 1–21.
  • Capezzuoli, E., Della Porta, G., Rogerson, M. & Tagliasacchi, E. (2022). Non-marine carbonate: Wherefore art thou?. The Depositional Record, 8, 4-8.
  • Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. (2020). The ICS International Chronostratigraphic Chart 2020/03. Episodes 36,199-204.
  • Dabkowski, J., Brou, L. & Naton, H.-G. (2015). New stratigraphic and geochemical data on the Holocene environment and climate from a tufa deposit at Direndall (Mamer Valley, Luxembourg). The Holocene, 25(7), 1153-1164.
  • Erdtman, G. (1943). An Introduction to Pollen Analysis. USA. Choronica Botanica Company.
  • Facenna, C., Soligo, M., Billi, A., Filippis, L. D., Funiciello, R., Rosetti, C. & Tuccimei, P. (2008). Late Pleistocene depositional cycles of the Lapis Tiburtinus travertine (Tivoli, central Italy): possible influence of climate and fault activity. Global and Planetary Change, 63, 299-308.
  • Faegri, K. & Iversen, J. (1989). Textbook of pollen analysis, 4th edition. John Wiley & Sons Ltd. 328, Norway.
  • Fletcher, W. J., Müller, U.C., Koutsodendris, A., Christanis, K. & Pross, J. (2013). A centennial-scale record of vegetation and climate variability from 312 to 240 ka (Marine Isotope Stages 9c–a, 8 and 7e) from Tenaghi Philippon, NE Greece. Quaternary Science Reviews, 78, 108–125. https://doi.org/10.1016/j.quascirev.2013.08.005
  • Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R. L., Mudelsee, M., Göktürk, O. M., Fankhauser, A., Pickering, R., Raible, C. C., Matter, A., Kramers, J. & Tüysüz, O. (2009). Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophysical Research Letters, 36(19), L19707. https://doi.org/10.1029/2009GL040050
  • Ford, T.D. & Pedley, H.M. (1996). A review of tufa and travertine deposits of the world. Earth-Science Reviews, 41(3-4), 117–175. https://doi.org/10.1016/S0012-8252(96)00030-X
  • Frank, N., Braum, M., Hambach, U., Mangini, A. & Wagner, G. (2000). Warm period growth of travertine during the last interglaciation in southern Germany. Quaternary Research, 54(1), 38–48. https://doi.org/10.1006/qres.2000.2135
  • Frechen, M., van Vliet-Lanoë, B. & van den Haute, P. (2001). The Upper Pleistocene loess record at Harmignies/Belgium — high resolution terrestrial archive of climate forcing. Palaeogeography, Palaeoclimatology, Palaeoecology, 173(3–4), 15, 175-195.
  • Head, M. J. (2021). Review of the Early–Middle Pleistocene boundary and Marine Isotope Stage 19. Progress in Earth and Planetary Science, 8, Article 50. https://doi.org/10.1186/s40645-021-00439-2
  • Imbrie, J., Boyle, E. A., Clemens, S. C., Duffy, A. … & Toggweiler, J. R. (1993). On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography and Paleoclimatology, 8(6), 699-736. https://doi.org/10.1029/93PA02751
  • Kandemir, R., Tagliasacchi, E., Kayseri-Özer, M.S., Şaffak, D., Köroğlu, F., Hsun-Ming Hu, & Shen, C. C. (2021). The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik Travertines, Gümüşhane, NE-Turkey Turkish Journal of Earth Sciences, 30, 561-579.
  • Kazancı, N. (2021). Çibaniyen Katı’nın İlanı, Bilimsel ve Sosyal Arka Planı. Türkiye Jeoloji Bülteni, 64(2), 249-252. https://dergipark.org.tr/tr/pub/tjb/issue/59789/847446
  • Kaufmann, G. & Dreybrodt, W. (2004). Stalagmite growth and palaeo-climate: An inverse approach. Earth and Planetary Science Letters, 224(3-4), 529–545. https://doi.org/10.1016/j.epsl.2004.05.020
  • Litt, T., Pickarski, N., Heumann, G., Stockhecke, M. & Tzedakis, P. C. (2014). A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quaternary Science Reviews, 104, 30-41.
  • Ludwig, K.R. & Paces, J.B. (2002). Urainum-series dating of pedogenic silica and carbonate, Crater Flat, Nevada. Geochimica et Cosmochimica Acta, 66(3), 487-506.
  • Merz, N., Hubig, A., Kleinen, T., Therre, S., Kaufmann, G. & Frank, N. (2022). How the climate shapes stalagmites—A comparative study of model and speleothem at the Sofular Cave, Northern Turkey. Frontiers in Earth Science, 10, Article 969211. https://doi.org/10.3389/feart.2022.969211
  • Meyers, P. A. & Teranes, J. L. (2001). Sediment Organic Matter. In W. Last, & J. P. Smol (Eds.), Tracking Environmental Change Using Lake Sediments, (pp. 240-267). Dordrecht, Kluwer Academic Publishers.
  • Minissale, A., Kerrick, D.M., Magro, G., Murrell, M.T., Paladini, M. … & Vaselli, O. (2002). Geochemistry of Quaternary travertines in the region North of Rome (Italy): structural, hydrologic and paleoclimatologic implications. Earth and Planetary Science Letters 203(2), 709–728. https://doi.org/10.1016/S0012-821X(02)00875-0
  • Moore, P. D., Webb, J. A. & Collinson, M. E. (1991). Pollen analysis, 2nd edition. Blackwell, Oxford, 1-216.
  • Nehrbass-Ahles, C. Shin, J., Schmitt, J., Bereiter, B., Joos, F., Schilt, A., Schmidely, L., Silva, L., Teste, G., Grilli, R., Chappellaz, J. A; Hodell, D. A., Fischer, H. & Stocker, T. F. (2020). Abrupt CO2 release to the atmosphere under glacial and early interglacial climate conditions. Science, 369, 1000-1005, https://doi.org/10.1126/science.aay8178
  • Ocakoğlu, F. & Akkiraz, M.S. (2019). A Lower Pleistocene to Holocene terrestrial record from the Eskişehir Graben (Central Anatolia): Paleoclimatic and morphotectonic implications. Quaternary International, 510, 88-99.
  • Özalp, S., Emre, Ö., Şaroğlu, F., Özaksoy, V., Elmacı, H. & Duman T. Y. (2018). Active fault segmentation of the Çivril Graben System and surface rupture of the 1 October 1995 Dinar Earthquake (Mw 6.2), Southwestern Anatolia, Turkey. Journal of Asian Earth Sciences, 166, 136-151.
  • Özkul, M., Kele, S., Gökgöz, A., Shen, C.C., Jones, B., Baykara, M. O., Fórizs, I., Németh, T., Chang, Y. W. & Alçiçek, M. C. (2013) Comparison of the Quaternary travertine sites in the Denizli extensional basin based on their depositional and geochemical data. Sedimentary Geology, 294, 179-204.
  • Pazdur, A., Pazdur, M.F., Starkel, L. & Szulc, J. (1988). Stable isotopes of Holocene calcareous tufa in southern Poland as palaeoclimatic indicators. Quaternary Research 30, 177–189.
  • Peña, J. L., Sancho, C. & Lozano, M.V. (2000). Climatic and tectonic significance of Pleistocene and Holocene tufa deposits in the Mijares River canyon, eastern Iberian range, Northeast Spain. Earth Surface Processes and Landforms, 25(13), 1403–1417. https://doi.org/10.1002/1096-9837(200012)25:13%3C1403::AID-ESP147%3E3.0.CO;2-N
  • Pedley, M., Andrews, J., Ordoñez, S., García del Cura, M. A., González Martín, J. A. & Taylor, D. (1996). Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain. Palaeogeography Palaeoclimatology Palaeoecology 121, 239–257.
  • Petit, J. R., Jouzel, J., Raynaud, D., … & Stievenard, M. (1999). Climate and Atmospheric History of the Past 420 000 Years from the Vostok Ice Core, Antarctica. Nature, 399(6735), 429–436. https://doi.org/10.1038/20859
  • Porter, S. C. & An, Z. S. (1995). Correlation between Climate Events in the North Atlantic and China during the Last Glaciation. Nature, 375(6529), 305–308. https://doi.org/10.1038/375305a0
  • Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G. & Toucanne, S. (2015). An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews, 111, 94-106.
  • Regattieri, E., Zanchetta, G., Isola, I., Bajo, P., Perchiazzi, N., Drysdale, R. N., Boschi, C., Hellstrom, J.C., Francke, A. & Wagner, B. (2018). A MIS 9/MIS 8 speleothem record of hydrological variability from Macedonia (F.Y.R.O.M.). Global and Planetary Change, 162, 39-52.
  • Rickets, J. W., Ma, L., Wagler, A. E. & Garcia, V. H. (2019). Global travertine deposition modulated by oscillations in climate. Journal of Quaternary Science 34, 558-568. https://doi.org/10.1002/jqs.3144
  • Rowe, P. J., Mason, J. E., Andrews, J. E., Marca, A. D., Thomas, L., van Calsteren, P., Jex, C. N., Vonhof, H. B. ve Al-Omari, S. (2012). Speleothem isotopic evidence of winter rainfall variability in northeast Turkey between 77 and 6 ka. Quaternary Science Reviews, 45, 60-72.
  • Sadori, L., Koutsodendris, A., Masi, A., Bertini, A., Combourieu-Nebout, N., Francke, A. & Peyron, O. (2016) Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (SE Europe) during the past 500 ka. Biogeosciences 13, 1423–1437.
  • Sancho, C., Arenas, C., Vázquez-Urbez, M., Pardo G., Lozano, M.V., José Luis Peña-Monné c, John Hellstromd, José Eugenio Ortiz e, Osácar, M.C., Auqué, L. & Torres, T. (2015). Climatic implications of the Quaternary fluvial tufa record in the NE Iberian Peninsula over the last 500 ka. Quaternary Research 84, 398–414.
  • Sun, H. L. & Liu, Z. H. (2010). Wet-dry seasonal and spatial variations in the δ13C and δ18O values of the modern endogenic travertine at Baishuitai, Yunnan, SW China and their paleoclimatic and paleoenvironmental implications. Geochimica et Cosmochimica Acta, 74(3), 1016-1029. https://doi.org/10.1016/j.gca.2009.11.008
  • Sun, J., Ding, Z., Liu, T., Rokosh, D. & Rutter, N. (1999). 580,000-year environmental reconstruction from aeolian deposits at the Mu Us Desert margin, China. Quaternary Science Reviews,18(12), 1351-1364.
  • Şensoy, S., Demircan, M., Ulupınar, Y. ve Balta, İ. (2019). Türkiye İklimi, Meteoroloji Genel Müdürlüğü, URL https://www.mgm.gov.tr/FILES/genel/makale/13_turkiye_iklimi.pdf
  • Tagliasacchi, E. & Kayseri-Özer, M.S. (2018). Palaeoclimate changes in the Afyon province, SW-Turkey, during the middle-late Pleistocene: signals from calcareous tufa pollen and stable isotope records. Alpine and Mediterranean quaternary. In: (Quaternary: Past, Present, Future - AIQUA Conference, Florence, Alpine and Mediterranean Quaternary, 31, 161–164. https://amq.aiqua.it/index.php/amq/article/view/208
  • Tagliasacchi, E. & Kayseri-Özer, M.S. (2020). Multidisciplinary approach palaeoclimatic signals of the non-marine carbonates: the case of the Sarıkavak tufa deposits (Afyon, SW-Turkey). Quaternary International, 544, 41-56. https://doi.org/10.1016/j.quaint.2019.12.016
  • Tagliasacchi, E., Kayseri-Özer, M.S. & Altay, T. (2024). Environmental, vegetational and climatic investigations during the Plio-Pleistocene in SW-Anatolia: A case study from the fluvio-lacustrine deposits in Uşak-Karahallı area. Palaeobiodiversity and Palaeoenvironments, 104, 29-51. https://doi.org/10.1007/s12549-023-00590-2
  • Toker, E. (2009). Acıgöl-Çardak (Denizli) Grabeninin kuzeyindeki Tersiyer çökellerinin tektono-sedimanter gelişiminin incelenmesi [Tayımlanmamış Doktora Tezi]. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Isparta.
  • Toker, E. (2017). Quaternary fluvial tufas of Sarıkavak area, southwestern Turkey: facies and depositional systems. Quaternary International, Non-marine Carbonates. Special Issue. 437, 37–50.
  • Toker, E., Kayseri-Özer, M.S., Özkul, M. & Kele, S. (2015). Depositional system and palaeoclimatic interpretations of middle to late Pleistocene travertines: Kocabaş, Denizli, SW Turkey. Sedimentology 62(5), 1360–1383.
  • Toker-Tagliasacchi, E. (2018). The Sedimentological Properties and Priliminary Results of Palaeoenvironmental Development of Middle-Late Pleistocene Gürlek-Kocabaş (Denizli) and Örtülü (Afyon) Travertines, SW-Turkey. Geological Bulletin of Turkey, 61(1), 1-22. https://doi.org/10.25288/tjb.358160
  • Tzedakis, P. C., McManus, J. F., Hooghiemstra, H., Oppo, D. W. & Wijmstra, T. A. (2003). Comparison of changes in vegetation in northeast Greece with records of climate variability on orbital and suborbital frequencies over the last 450 000 years. Earth and Planetary Science Letters, 212(1-2), 197- 960. https://doi.org/10.1016/S0012-821X(03)00233-4
  • Wagner B., Wilke T., Francke A., Albrecht C., Baumgarten H., Bertini A., Combourieu-Nebout N., Cvetkoska A., …& Zhang X.S. (2017). The environmental and evolutionary history of Lake Ohrid (FYROM/Albania): Interim results from the SCOPSCO deep drilling project. Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017
  • Wu, T., Cheng, A., Lin, H., Zhang, H. & Jie, Y. (2023). Climatic Fluctuation of Marine Isotope Stage 9: A Case Study in the Southern Margin of the Chinese Loess Plateau. Journal of Earth Science, 34, 2556-1566. https://doi.org/10.1007/s12583-022-1610-8

Anadolu’nun MIS 9 Karasal Karbonat Kayıtları ve Paleoiklimsel Çıkarımlar: Örtülü/Sarıkavak (Afyon), Karahallı (Uşak) ve Bahçecik (Gümüşhane)

Yıl 2024, , 319 - 338, 31.08.2024
https://doi.org/10.25288/tjb.1386017

Öz

Denizel izotop fazlarından biri olan ve buzul arası döneme karşılık gelen MIS 9 dönemi, günümüzdeki sıcak dönem için bir analog olarak görülmektedir. Ancak karasal karbonat çökellerinden bu döneme ait veriler oldukça sınırlıdır. Bu çalışmada, Anadolu’nun farklı bölgelerinde yüzlek veren traverten ve tufa gibi karasal karbonatların MIS 9 buzul arası dönemine ait kayıtları incelenmiştir. Bu amaçla, GB-Anadolu’dan iki lokasyona (Örtülü/Sarıkavak (Afyon) ve Karahallı (Uşak)) ve KD-Anadolu’dan bir lokasyona (Bahçecik, Gümüşhane) ait karasal karbonat çökellerinin MIS 9 verileri, ayrıntılı olarak incelenmiştir. Sedimantolojik, izotopik ve palinolojik verilerin ışığında, MIS 9 buzul arası dönemin ortamsal ve iklimsel koşulları ortaya konmuştur. MIS 9 döneminde çökelimine devam etmiş olan Örtülü travertenler, sığ bir göl ortamında çöküntü depolanma sistemi içinde çökelirken Sarıkavak tufaları ise orta-yüksek eğimli bir topoğrafyanın egemen olduğu, akarsu ortamında çökelmişlerdir. Karahallı travertenleri ise, tektonizmanın etkin olduğu sığ bir göl kenarı ortamında çökelmişlerdir. Bir diğer çalışma alanı olan Bahçecik travertenleri ise, çöküntü ve yamaç depolanma sistemi içinde çökelmiş traverten oluşuklarıdır. MIS 9 döneminde, GB-Anadolu’da yer alan Karahallı travertenleri ve Örtülü/Sarıkavak karasal karbonatlarında δ13C duraylı izotopları, pozitife yakın (‰ -0,47 ile ‰ 1,86) değerler sunarken δ18O duraylı izotop değerleri ise negatiftir (‰ -9,67 ile ‰ -8,72). Ancak KD-Anadolu’da MIS 9 dönemine ait duraylı izotop değerlerinde önemli bir farklılık gözlenmiştir. δ13C izotop değerleri daha pozitif (‰ 4,5 ile ‰ 5,0) iken, δ18O değerleri ise çok daha negatiftir (‰ -14,67 ile ‰ -14,6). Karbon ve oksijen izotop değerlerindeki bu belirgin farklılık, yağış/buharlaşma ile doğrudan ilişkilidir. Palinolojik kayıtlara göre, MIS 9e ve MIS9a arasında önemli bir farklılık kaydedilmiş ve nemlilikte göreceli bir değişim tespit edilmiştir. Elde edilen tüm veriler ışığında, Anadolu’da MIS 9 dönemi, belli dönemlerde yağışın azaldığı kuraklaşmanın hüküm sürdüğü iklimsel dalgalanmalar gösterse de genel itibariyle daha ılıman ve yağışlı bir dönem olduğu söylenebilir.

Destekleyen Kurum

Tübitak

Proje Numarası

115Y493

Teşekkür

Sarıkavak karasal karbonatlarından elde edilen veriler, TUBİTAK projesinin (No.115Y493) bir kısmını oluşturmaktadır. Tübitak'a destekleri için teşekkür ederiz.

Kaynakça

  • Andrews, J. E. (2006). Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth-Science Reviews, 75(1-4), 85–104. https://doi.org/10.1016/j.earscirev.2005.08.002
  • Andrews, J. E., Riding, R. & Dennis, P.F. (1997). The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 129(1-2), 171–189. https://doi.org/10.1016/S0031-0182(96)00120-4
  • Baldini, J. U. L. (2010). Cave atmosphere controls on stalagmite growth rate and palaeoclimate records. Geological Society, London, Special Publications, 336(1), 283–294. https://doi.org/10.1144/SP336.1
  • Bertini, A., Minissale, A. & Ricci, M. (2014). Palynological approach in upper Quaternary terrestrial carbonates of central Italy: anything but a ‘mission impossible’. Sedimentology 61, 200–220.
  • Beug, H. J., (2004). Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München, Germany.
  • Brasier, A. T., Andrews, J. E., Marca-Bell, A. D. & Dennis, P.F. (2010). Depositional continuity of seasonally laminated tufas: implications for δ18O based palaeotemperatures. Global and Planetary Change, 71(3-4), 160–167. https://doi.org/10.1016/j.gloplacha.2009.03.022
  • Brook, E. J. & Buizert, C. (2018). Antarctic and Global Climate History Viewed from Ice Cores. Nature, 558(7709), 200–208. https://doi.org/10.1038/s41586-018-0172-5
  • Capezzuoli, E., Gandin, A. & Pedley, M. (2014). Decoding tufa and travertine (freshwater carbonates) in the sedimentary record: the state of the art. Sedimentology, 61(1), 1–21.
  • Capezzuoli, E., Della Porta, G., Rogerson, M. & Tagliasacchi, E. (2022). Non-marine carbonate: Wherefore art thou?. The Depositional Record, 8, 4-8.
  • Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. (2020). The ICS International Chronostratigraphic Chart 2020/03. Episodes 36,199-204.
  • Dabkowski, J., Brou, L. & Naton, H.-G. (2015). New stratigraphic and geochemical data on the Holocene environment and climate from a tufa deposit at Direndall (Mamer Valley, Luxembourg). The Holocene, 25(7), 1153-1164.
  • Erdtman, G. (1943). An Introduction to Pollen Analysis. USA. Choronica Botanica Company.
  • Facenna, C., Soligo, M., Billi, A., Filippis, L. D., Funiciello, R., Rosetti, C. & Tuccimei, P. (2008). Late Pleistocene depositional cycles of the Lapis Tiburtinus travertine (Tivoli, central Italy): possible influence of climate and fault activity. Global and Planetary Change, 63, 299-308.
  • Faegri, K. & Iversen, J. (1989). Textbook of pollen analysis, 4th edition. John Wiley & Sons Ltd. 328, Norway.
  • Fletcher, W. J., Müller, U.C., Koutsodendris, A., Christanis, K. & Pross, J. (2013). A centennial-scale record of vegetation and climate variability from 312 to 240 ka (Marine Isotope Stages 9c–a, 8 and 7e) from Tenaghi Philippon, NE Greece. Quaternary Science Reviews, 78, 108–125. https://doi.org/10.1016/j.quascirev.2013.08.005
  • Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R. L., Mudelsee, M., Göktürk, O. M., Fankhauser, A., Pickering, R., Raible, C. C., Matter, A., Kramers, J. & Tüysüz, O. (2009). Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophysical Research Letters, 36(19), L19707. https://doi.org/10.1029/2009GL040050
  • Ford, T.D. & Pedley, H.M. (1996). A review of tufa and travertine deposits of the world. Earth-Science Reviews, 41(3-4), 117–175. https://doi.org/10.1016/S0012-8252(96)00030-X
  • Frank, N., Braum, M., Hambach, U., Mangini, A. & Wagner, G. (2000). Warm period growth of travertine during the last interglaciation in southern Germany. Quaternary Research, 54(1), 38–48. https://doi.org/10.1006/qres.2000.2135
  • Frechen, M., van Vliet-Lanoë, B. & van den Haute, P. (2001). The Upper Pleistocene loess record at Harmignies/Belgium — high resolution terrestrial archive of climate forcing. Palaeogeography, Palaeoclimatology, Palaeoecology, 173(3–4), 15, 175-195.
  • Head, M. J. (2021). Review of the Early–Middle Pleistocene boundary and Marine Isotope Stage 19. Progress in Earth and Planetary Science, 8, Article 50. https://doi.org/10.1186/s40645-021-00439-2
  • Imbrie, J., Boyle, E. A., Clemens, S. C., Duffy, A. … & Toggweiler, J. R. (1993). On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography and Paleoclimatology, 8(6), 699-736. https://doi.org/10.1029/93PA02751
  • Kandemir, R., Tagliasacchi, E., Kayseri-Özer, M.S., Şaffak, D., Köroğlu, F., Hsun-Ming Hu, & Shen, C. C. (2021). The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik Travertines, Gümüşhane, NE-Turkey Turkish Journal of Earth Sciences, 30, 561-579.
  • Kazancı, N. (2021). Çibaniyen Katı’nın İlanı, Bilimsel ve Sosyal Arka Planı. Türkiye Jeoloji Bülteni, 64(2), 249-252. https://dergipark.org.tr/tr/pub/tjb/issue/59789/847446
  • Kaufmann, G. & Dreybrodt, W. (2004). Stalagmite growth and palaeo-climate: An inverse approach. Earth and Planetary Science Letters, 224(3-4), 529–545. https://doi.org/10.1016/j.epsl.2004.05.020
  • Litt, T., Pickarski, N., Heumann, G., Stockhecke, M. & Tzedakis, P. C. (2014). A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quaternary Science Reviews, 104, 30-41.
  • Ludwig, K.R. & Paces, J.B. (2002). Urainum-series dating of pedogenic silica and carbonate, Crater Flat, Nevada. Geochimica et Cosmochimica Acta, 66(3), 487-506.
  • Merz, N., Hubig, A., Kleinen, T., Therre, S., Kaufmann, G. & Frank, N. (2022). How the climate shapes stalagmites—A comparative study of model and speleothem at the Sofular Cave, Northern Turkey. Frontiers in Earth Science, 10, Article 969211. https://doi.org/10.3389/feart.2022.969211
  • Meyers, P. A. & Teranes, J. L. (2001). Sediment Organic Matter. In W. Last, & J. P. Smol (Eds.), Tracking Environmental Change Using Lake Sediments, (pp. 240-267). Dordrecht, Kluwer Academic Publishers.
  • Minissale, A., Kerrick, D.M., Magro, G., Murrell, M.T., Paladini, M. … & Vaselli, O. (2002). Geochemistry of Quaternary travertines in the region North of Rome (Italy): structural, hydrologic and paleoclimatologic implications. Earth and Planetary Science Letters 203(2), 709–728. https://doi.org/10.1016/S0012-821X(02)00875-0
  • Moore, P. D., Webb, J. A. & Collinson, M. E. (1991). Pollen analysis, 2nd edition. Blackwell, Oxford, 1-216.
  • Nehrbass-Ahles, C. Shin, J., Schmitt, J., Bereiter, B., Joos, F., Schilt, A., Schmidely, L., Silva, L., Teste, G., Grilli, R., Chappellaz, J. A; Hodell, D. A., Fischer, H. & Stocker, T. F. (2020). Abrupt CO2 release to the atmosphere under glacial and early interglacial climate conditions. Science, 369, 1000-1005, https://doi.org/10.1126/science.aay8178
  • Ocakoğlu, F. & Akkiraz, M.S. (2019). A Lower Pleistocene to Holocene terrestrial record from the Eskişehir Graben (Central Anatolia): Paleoclimatic and morphotectonic implications. Quaternary International, 510, 88-99.
  • Özalp, S., Emre, Ö., Şaroğlu, F., Özaksoy, V., Elmacı, H. & Duman T. Y. (2018). Active fault segmentation of the Çivril Graben System and surface rupture of the 1 October 1995 Dinar Earthquake (Mw 6.2), Southwestern Anatolia, Turkey. Journal of Asian Earth Sciences, 166, 136-151.
  • Özkul, M., Kele, S., Gökgöz, A., Shen, C.C., Jones, B., Baykara, M. O., Fórizs, I., Németh, T., Chang, Y. W. & Alçiçek, M. C. (2013) Comparison of the Quaternary travertine sites in the Denizli extensional basin based on their depositional and geochemical data. Sedimentary Geology, 294, 179-204.
  • Pazdur, A., Pazdur, M.F., Starkel, L. & Szulc, J. (1988). Stable isotopes of Holocene calcareous tufa in southern Poland as palaeoclimatic indicators. Quaternary Research 30, 177–189.
  • Peña, J. L., Sancho, C. & Lozano, M.V. (2000). Climatic and tectonic significance of Pleistocene and Holocene tufa deposits in the Mijares River canyon, eastern Iberian range, Northeast Spain. Earth Surface Processes and Landforms, 25(13), 1403–1417. https://doi.org/10.1002/1096-9837(200012)25:13%3C1403::AID-ESP147%3E3.0.CO;2-N
  • Pedley, M., Andrews, J., Ordoñez, S., García del Cura, M. A., González Martín, J. A. & Taylor, D. (1996). Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain. Palaeogeography Palaeoclimatology Palaeoecology 121, 239–257.
  • Petit, J. R., Jouzel, J., Raynaud, D., … & Stievenard, M. (1999). Climate and Atmospheric History of the Past 420 000 Years from the Vostok Ice Core, Antarctica. Nature, 399(6735), 429–436. https://doi.org/10.1038/20859
  • Porter, S. C. & An, Z. S. (1995). Correlation between Climate Events in the North Atlantic and China during the Last Glaciation. Nature, 375(6529), 305–308. https://doi.org/10.1038/375305a0
  • Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G. & Toucanne, S. (2015). An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews, 111, 94-106.
  • Regattieri, E., Zanchetta, G., Isola, I., Bajo, P., Perchiazzi, N., Drysdale, R. N., Boschi, C., Hellstrom, J.C., Francke, A. & Wagner, B. (2018). A MIS 9/MIS 8 speleothem record of hydrological variability from Macedonia (F.Y.R.O.M.). Global and Planetary Change, 162, 39-52.
  • Rickets, J. W., Ma, L., Wagler, A. E. & Garcia, V. H. (2019). Global travertine deposition modulated by oscillations in climate. Journal of Quaternary Science 34, 558-568. https://doi.org/10.1002/jqs.3144
  • Rowe, P. J., Mason, J. E., Andrews, J. E., Marca, A. D., Thomas, L., van Calsteren, P., Jex, C. N., Vonhof, H. B. ve Al-Omari, S. (2012). Speleothem isotopic evidence of winter rainfall variability in northeast Turkey between 77 and 6 ka. Quaternary Science Reviews, 45, 60-72.
  • Sadori, L., Koutsodendris, A., Masi, A., Bertini, A., Combourieu-Nebout, N., Francke, A. & Peyron, O. (2016) Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (SE Europe) during the past 500 ka. Biogeosciences 13, 1423–1437.
  • Sancho, C., Arenas, C., Vázquez-Urbez, M., Pardo G., Lozano, M.V., José Luis Peña-Monné c, John Hellstromd, José Eugenio Ortiz e, Osácar, M.C., Auqué, L. & Torres, T. (2015). Climatic implications of the Quaternary fluvial tufa record in the NE Iberian Peninsula over the last 500 ka. Quaternary Research 84, 398–414.
  • Sun, H. L. & Liu, Z. H. (2010). Wet-dry seasonal and spatial variations in the δ13C and δ18O values of the modern endogenic travertine at Baishuitai, Yunnan, SW China and their paleoclimatic and paleoenvironmental implications. Geochimica et Cosmochimica Acta, 74(3), 1016-1029. https://doi.org/10.1016/j.gca.2009.11.008
  • Sun, J., Ding, Z., Liu, T., Rokosh, D. & Rutter, N. (1999). 580,000-year environmental reconstruction from aeolian deposits at the Mu Us Desert margin, China. Quaternary Science Reviews,18(12), 1351-1364.
  • Şensoy, S., Demircan, M., Ulupınar, Y. ve Balta, İ. (2019). Türkiye İklimi, Meteoroloji Genel Müdürlüğü, URL https://www.mgm.gov.tr/FILES/genel/makale/13_turkiye_iklimi.pdf
  • Tagliasacchi, E. & Kayseri-Özer, M.S. (2018). Palaeoclimate changes in the Afyon province, SW-Turkey, during the middle-late Pleistocene: signals from calcareous tufa pollen and stable isotope records. Alpine and Mediterranean quaternary. In: (Quaternary: Past, Present, Future - AIQUA Conference, Florence, Alpine and Mediterranean Quaternary, 31, 161–164. https://amq.aiqua.it/index.php/amq/article/view/208
  • Tagliasacchi, E. & Kayseri-Özer, M.S. (2020). Multidisciplinary approach palaeoclimatic signals of the non-marine carbonates: the case of the Sarıkavak tufa deposits (Afyon, SW-Turkey). Quaternary International, 544, 41-56. https://doi.org/10.1016/j.quaint.2019.12.016
  • Tagliasacchi, E., Kayseri-Özer, M.S. & Altay, T. (2024). Environmental, vegetational and climatic investigations during the Plio-Pleistocene in SW-Anatolia: A case study from the fluvio-lacustrine deposits in Uşak-Karahallı area. Palaeobiodiversity and Palaeoenvironments, 104, 29-51. https://doi.org/10.1007/s12549-023-00590-2
  • Toker, E. (2009). Acıgöl-Çardak (Denizli) Grabeninin kuzeyindeki Tersiyer çökellerinin tektono-sedimanter gelişiminin incelenmesi [Tayımlanmamış Doktora Tezi]. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Isparta.
  • Toker, E. (2017). Quaternary fluvial tufas of Sarıkavak area, southwestern Turkey: facies and depositional systems. Quaternary International, Non-marine Carbonates. Special Issue. 437, 37–50.
  • Toker, E., Kayseri-Özer, M.S., Özkul, M. & Kele, S. (2015). Depositional system and palaeoclimatic interpretations of middle to late Pleistocene travertines: Kocabaş, Denizli, SW Turkey. Sedimentology 62(5), 1360–1383.
  • Toker-Tagliasacchi, E. (2018). The Sedimentological Properties and Priliminary Results of Palaeoenvironmental Development of Middle-Late Pleistocene Gürlek-Kocabaş (Denizli) and Örtülü (Afyon) Travertines, SW-Turkey. Geological Bulletin of Turkey, 61(1), 1-22. https://doi.org/10.25288/tjb.358160
  • Tzedakis, P. C., McManus, J. F., Hooghiemstra, H., Oppo, D. W. & Wijmstra, T. A. (2003). Comparison of changes in vegetation in northeast Greece with records of climate variability on orbital and suborbital frequencies over the last 450 000 years. Earth and Planetary Science Letters, 212(1-2), 197- 960. https://doi.org/10.1016/S0012-821X(03)00233-4
  • Wagner B., Wilke T., Francke A., Albrecht C., Baumgarten H., Bertini A., Combourieu-Nebout N., Cvetkoska A., …& Zhang X.S. (2017). The environmental and evolutionary history of Lake Ohrid (FYROM/Albania): Interim results from the SCOPSCO deep drilling project. Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017
  • Wu, T., Cheng, A., Lin, H., Zhang, H. & Jie, Y. (2023). Climatic Fluctuation of Marine Isotope Stage 9: A Case Study in the Southern Margin of the Chinese Loess Plateau. Journal of Earth Science, 34, 2556-1566. https://doi.org/10.1007/s12583-022-1610-8
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Genel Jeoloji
Bölüm Makaleler - Articles
Yazarlar

Ezher Tagliasacchi 0000-0002-1774-5012

Mine Sezgül Kayseri Özer 0000-0003-2712-2457

Raif Kandemir 0000-0002-0344-9159

Proje Numarası 115Y493
Erken Görünüm Tarihi 29 Nisan 2024
Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 4 Kasım 2023
Kabul Tarihi 4 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Tagliasacchi, E., Kayseri Özer, M. S., & Kandemir, R. (2024). Anadolu’nun MIS 9 Karasal Karbonat Kayıtları ve Paleoiklimsel Çıkarımlar: Örtülü/Sarıkavak (Afyon), Karahallı (Uşak) ve Bahçecik (Gümüşhane). Türkiye Jeoloji Bülteni, 67(3), 319-338. https://doi.org/10.25288/tjb.1386017
AMA Tagliasacchi E, Kayseri Özer MS, Kandemir R. Anadolu’nun MIS 9 Karasal Karbonat Kayıtları ve Paleoiklimsel Çıkarımlar: Örtülü/Sarıkavak (Afyon), Karahallı (Uşak) ve Bahçecik (Gümüşhane). Türkiye Jeol. Bült. Ağustos 2024;67(3):319-338. doi:10.25288/tjb.1386017
Chicago Tagliasacchi, Ezher, Mine Sezgül Kayseri Özer, ve Raif Kandemir. “Anadolu’nun MIS 9 Karasal Karbonat Kayıtları Ve Paleoiklimsel Çıkarımlar: Örtülü/Sarıkavak (Afyon), Karahallı (Uşak) Ve Bahçecik (Gümüşhane)”. Türkiye Jeoloji Bülteni 67, sy. 3 (Ağustos 2024): 319-38. https://doi.org/10.25288/tjb.1386017.
EndNote Tagliasacchi E, Kayseri Özer MS, Kandemir R (01 Ağustos 2024) Anadolu’nun MIS 9 Karasal Karbonat Kayıtları ve Paleoiklimsel Çıkarımlar: Örtülü/Sarıkavak (Afyon), Karahallı (Uşak) ve Bahçecik (Gümüşhane). Türkiye Jeoloji Bülteni 67 3 319–338.
IEEE E. Tagliasacchi, M. S. Kayseri Özer, ve R. Kandemir, “Anadolu’nun MIS 9 Karasal Karbonat Kayıtları ve Paleoiklimsel Çıkarımlar: Örtülü/Sarıkavak (Afyon), Karahallı (Uşak) ve Bahçecik (Gümüşhane)”, Türkiye Jeol. Bült., c. 67, sy. 3, ss. 319–338, 2024, doi: 10.25288/tjb.1386017.
ISNAD Tagliasacchi, Ezher vd. “Anadolu’nun MIS 9 Karasal Karbonat Kayıtları Ve Paleoiklimsel Çıkarımlar: Örtülü/Sarıkavak (Afyon), Karahallı (Uşak) Ve Bahçecik (Gümüşhane)”. Türkiye Jeoloji Bülteni 67/3 (Ağustos 2024), 319-338. https://doi.org/10.25288/tjb.1386017.
JAMA Tagliasacchi E, Kayseri Özer MS, Kandemir R. Anadolu’nun MIS 9 Karasal Karbonat Kayıtları ve Paleoiklimsel Çıkarımlar: Örtülü/Sarıkavak (Afyon), Karahallı (Uşak) ve Bahçecik (Gümüşhane). Türkiye Jeol. Bült. 2024;67:319–338.
MLA Tagliasacchi, Ezher vd. “Anadolu’nun MIS 9 Karasal Karbonat Kayıtları Ve Paleoiklimsel Çıkarımlar: Örtülü/Sarıkavak (Afyon), Karahallı (Uşak) Ve Bahçecik (Gümüşhane)”. Türkiye Jeoloji Bülteni, c. 67, sy. 3, 2024, ss. 319-38, doi:10.25288/tjb.1386017.
Vancouver Tagliasacchi E, Kayseri Özer MS, Kandemir R. Anadolu’nun MIS 9 Karasal Karbonat Kayıtları ve Paleoiklimsel Çıkarımlar: Örtülü/Sarıkavak (Afyon), Karahallı (Uşak) ve Bahçecik (Gümüşhane). Türkiye Jeol. Bült. 2024;67(3):319-38.

Yazım Kuralları / Instructions for Authorshttp://www.jmo.org.tr/yayinlar/tjb_yazim_kurallari.php

Etik Bildirimi ve Telif Hakkı Devir Formu / Ethical Statement and Copyrighy Form https://www.jmo.org.tr/yayinlar/tjb_telif_etik_formlar.php