Araştırma Makalesi
BibTex RIS Kaynak Göster

Antropojenik Kaynaklı Metal Kirliliğinin Çevresel Etkilerinin Azaltılmasında Uçucu Kül Kullanımı

Yıl 2020, Cilt: 63 Sayı: 1, 43 - 56, 31.01.2020
https://doi.org/10.25288/tjb.593416

Öz

Antropojenik etki ile oluşan asit maden drenajı (AMD) düşük pH, yüksek konsantrasyonda metal, sülfat, çözünmüş ve askıda katı madde içermektedir. Türkiye’nin kuzeybatısındaki Çan kömür havzasında bulunan Etili kömür madeninde 1980’li yıllardan günümüze AMD’nın neden olduğu çevresel sorunlar yaşanmaktadır. Madencilik faaliyetleri neticesinde kömür ocaklarının çevresinde oluşan tane boyutu ince ve yüksek sülfür içerikli pasalar geniş alana yayılmakta ve AMD oluşum süreçlerini hızlandırmaktadır. Bu çalışmada, Etili kömür madeninde oluşan AMD’nın nötralizasyonu ve çevresel etkilerinin azaltılmasında akışkan yataklı termik santral atığı olan uçucu külün etkisinin laboratuvar ölçeğinde belirlenmesi amaçlanmıştır. Kimyasal analiz sonuçları, çamur pH’ı ve asit-baz hesaplama testlerine göre Etili maden sahasındaki pasaların efektif olarak AMD üretimini önlemek için ağırlıkça en az %30 uçucu kül ile karışması gerektiği saptanmıştır. Belirlenen optimum karışım oranına göre hazırlanan liç testleri sonucunda liçin pH değerinin arttığı, elektriksel iletkenlik, metal (Al, Fe, Mn, Ni, Pb ve Zn) ve sülfat konsantrasyonunun azaldığı belirlenmiştir. 24 saatin sonunda karışım liçinin metal konsantrasyonu Yerüstü Su Kalitesi Yönetmeliği limit değerlerini sağlamış ve 720 saat boyunca liçin metal konsantrasyonunda artış olmamıştır. 720 saatin sonunda liçteki metal konsantrasyonun %72-97 arasında azaldığı tespit edilmiştir. Bu çalışma ile uçucu kül kullanılarak AMD’nın çevresel etkilerinin minimize edilebileceği saptanmıştır.

Destekleyen Kurum

Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FBA-2018-2649

Kaynakça

  • Akçil, A., Koldaş, S., 2006. Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production, 14, 1139–1145.
  • Balcı, N., Gül, S., Kılıç, M.M., Karagüler, N.G., Sarı, E., Sönmez, M.Ş., 2014. Balya (Balıkesir) Pb-Zn madeni atık sahasının biyojeokimyası ve asidik maden drenajı oluşumuna etkileri. Türkiye Jeoloji Bülteni, 57(3), 1–24.
  • Görhan, G., Kahraman, E., Başpınar, M.S., Demir, İ., 2009. Uçucu Kül bölüm II: Kimyasal, mineralojik ve morfolojik özellikler. Yapı Teknolojileri Elektronik Dergisi, 5(2), 33–42.
  • Hageman, P.L., Seal, R.R., Diehl, S.F., Piatak, N.M., Lowers, H.A., 2015. Evaluation of selected static methods used to estimate element mobility, acid-generating and acid-neutralizing potentials associated with geologically diverse mining wastes. Applied Geochemistry, 57, 125–139.
  • Jones, S.E., Çetin, B., 2017. Evaluation of waste materials for acid mine drainage remediation. Fuel, 188, 294–309.
  • Karadeniz, M., 2008. Sülfürlü Madenlerin Sorunu Asit Maden Drenajı ve Çözümü. TMMOB Maden Mühendisleri Odası Yayını, Oda Yayın No: 146, Ankara, 231 s.
  • Karadeniz, M., 2011. Balıkesir Balya kurşun-çinko madeni flotasyon artıklarının asit maden drenajı oluşum potansiyelinin derinlikle değişiminin araştırılması. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Doktora Tezi, 228 s.
  • Krauskopf, K.B., Bird, D.K., 1995. Introduction to Geochemistry, Third Edition. McGraw-Hill, New York, 647 s.
  • Lapakko, K., 1992. Recent literature on static predictive test. Proceedings of the Symposium on Emerging Process Technologies for a Cleaner Environment, Phoenix, AZ., 24-27 February 1992, S. Chander (ed.), Society for Mining, Metallurgy and Exploration, Inc., Littleton, 109–119.
  • Lottermoser, B.G., 2010. Mine wastes: Characterization, Treatment, and Environmental Impacts, Third Edition. Springer Heidelberg, Berlin, 410 s.
  • Okumuşoğlu, D., Gündüz, O., 2013. Hydrochemical status of an acidic mining lake in Can-Canakkale, Turkey. Water Environment Research, 85(7), 604–620.
  • Perez-Lopez, R., Nieto, J.M., Almodovar, G.R., 2007. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: Column experiments. Chemosphere, 67(8), 1637–1646.
  • Qureshi, A., Jia, Y., Maurice, C., Öhlander, B., 2016. Potential of fly ash for neutralisation of acid mine drainage. Environmental Science Pollution Research, 23(17), 17083–17094.
  • Qureshi, A., Maurice, C., Öhlander, B., 2019. Effects of the co-disposal of lignite fly ash and coal mine waste rocks on AMD and leachate quality. Environmental Science Pollution Research, 26(4), 4104–4115.
  • Sayılgan, E., Kürklü, K., 2018. Uçucu kül örneğinden demir ve alüminyum gideriminde Taguchi yaklaşımı. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(3), 133–142.
  • Smart, R., Skinner, W.M., Levay, G., Gerson, A.R., Thomas, J.E., Sobieraj, H., Schumann, R., Weisener, C.G., Weber, P.A., Miller, S.D., Stewart, W.A., 2002. ARD Test Handbook: Project P387A Prediction and Kinetic Control of Acid Mine Drainage. AMIRA International Ltd, Ian Wark Research Institute, Melbourne, 43 s.
  • Sobek, A.A., Schuller, W.A., Freeman, J.R., Smith, R.M., 1978. Field and Laboratory Methods Applicable to Overburdens and Minesoils. Environmental Protection Technology Series, United States Environmental Protection Agency EPA-600/2-78-054. Washington, 204 s., (yayımlanmış).
  • Stouraiti, C., Xenedis, A., Paspaliaris, I., 2002. Reduction of Pb, Zn and Cd availability from tailings and contaminated soils by the application of lignite fly ash. Water Air and Soil Pollution, 137, 247–265.
  • Şanlıyüksel Yücel, D., Baba, A., 2013. Geochemical characterization of acid mine lakes and their effect on the environment, NW of Turkey. Archives of Environmental Contamination and Toxicology, 64(3), 357–376.
  • Şanlıyüksel Yücel, D., Yücel, M.A., Baba, A., 2014. Change detection and visualization of acid mine lakes using time series satellite image data in geographic information systems (GIS): Can (Canakkale) County, NW Turkey. Environmental Earth Sciences, 72(11), 4311–4323.
  • Şanlıyüksel Yücel, D., Baba, A., 2016. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study. Environmental Monitoring and Assessment, 188(473), 1–16.
  • Şanlıyüksel Yücel, D., Balcı, N., Baba, A., 2016. Generation of acid mine lakes associated with abandoned coal mines in NW Turkey. Archives of Environmental Contamination and Toxicology, 70(4), 757–782.
  • Şanlıyüksel Yücel, D. 2017. Removal of heavy metals from aqueous solution using fly ash: Can Thermal Power Plant, NW Turkey as a case study. Karaelmas Science and Engineering Journal, 7(1), 291–298.
  • Şanlıyüksel Yücel, D., Yücel, M.A., 2017. Determining hydrochemical characteristics of mine lakes from abandoned coal mines and 3D modelling of them using unmanned aerial vehicle. Pamukkale University Journal of Engineering Sciences, 23(6), 780–791.
  • Şanlıyüksel Yücel, D., İleri, B., 2018. Evaluation of ultrasound-assisted modified fly ash for treatment of acid mine drainage. In: S.A. Akinyemi (ed.), Coal Fly Ash Beneficiation- Treatment of Acid Mine Drainage with Coal Fly Ash, InTech: Croatia, 53–77.
  • Şanlıyüksel Yücel, D., 2019. Characterization and comparison of mine wastes in Can Coal Basin, northwest Turkey: A case study. Environmental Earth Sciences, 78, 154.
  • Villeneuve, M., Bussière, B., Benzaazoua, M., Aubertin, M., Monroy, M., 2003. The influence of kinetic test type on geochemical response of low acid generating potential tailings. 10th International Conference on Tailings and Mine Waste: Tailings and Mine Wastes’03, Vail, Colorado, USA, 12-15 October 2003, A.A. Balkema Publishers, Rotterdam, 269–279.
  • Wang, J., Teng, X., Wang, H., Ban, H., 2004. Characterizing the metal adsorption capability of a Class F coal fly ash. Environmental Science & Technology, 38(24), 6710–6715.
  • Yehesis, M.B., Shang, J.Q., Yanful, E.K., 2009. Longterm evaluation of coal fly ash and mine tailings co-placement: A site-specific study. Journal of Environmental Management, 91(1), 237–244.
  • Yerüstü Su Kalitesi Yönetmeliği, 2015. Orman ve Su İşleri Bakanlığı, http://www.resmigazete.gov.tr/eskiler/2015/04/20150415-18.htm 17 Temmuz 2019.
  • Yolcubal, İ., Demiray, A.D., Çiftçi, E., Sangu E., 2016. Environmental impact of mining activities on surface water and sediment qualities around Murgul copper mine, Northeastern Turkey. Environmental Earth Sciences, 75, 1415.

Mitigation of Environmental Effects of Anthropogenic Metal Contamination Using Fly Ash

Yıl 2020, Cilt: 63 Sayı: 1, 43 - 56, 31.01.2020
https://doi.org/10.25288/tjb.593416

Öz

Acid mine drainage (AMD) generated by anthropogenic effects has low pH and contains high concentrations of metals, sulfate, dissolved and suspended solids. The Etili coal mine, located within the Çan Coal Basin, northwestern Turkey, has been facing environmental problems caused by AMD since the 1980s. As a result of mining activities, fine grain size mine waste with high sulfur content is distributed over large areas around the coal mines and accelerates the AMD formation process. In this study, the aim was to determine the effect of using the fluidized bed thermal power plant waste of fly ash to neutralize AMD and reduce environmental effects caused by mine wastes at the laboratory scale. Based on the results of chemical analysis, paste pH and acid-base accounting tests, it was identified that mine wastes need to be mixed with at least 30% fly ash by weight in order to prevent AMD production. The leach tests prepared according to the determined optimum mixing ratio showed that as the pH value of leachate increased, the electrical conductivity, metal (Al, Fe, Mn, Ni, Pb and Zn) and sulfate concentrations decreased. At the end of 24 h, the metal concentrations of the leachate fell below the permissible limits in the Turkish Water Pollution Control Regulation and there was no increase in metal concentrations of the leachate during 720 h. At the end of 720 h, reductions of 72-97% were identified for the metal concentrations in leachate. In this research, it was determined that the environmental effects of AMD could be minimized by using fly ash.

Proje Numarası

FBA-2018-2649

Kaynakça

  • Akçil, A., Koldaş, S., 2006. Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production, 14, 1139–1145.
  • Balcı, N., Gül, S., Kılıç, M.M., Karagüler, N.G., Sarı, E., Sönmez, M.Ş., 2014. Balya (Balıkesir) Pb-Zn madeni atık sahasının biyojeokimyası ve asidik maden drenajı oluşumuna etkileri. Türkiye Jeoloji Bülteni, 57(3), 1–24.
  • Görhan, G., Kahraman, E., Başpınar, M.S., Demir, İ., 2009. Uçucu Kül bölüm II: Kimyasal, mineralojik ve morfolojik özellikler. Yapı Teknolojileri Elektronik Dergisi, 5(2), 33–42.
  • Hageman, P.L., Seal, R.R., Diehl, S.F., Piatak, N.M., Lowers, H.A., 2015. Evaluation of selected static methods used to estimate element mobility, acid-generating and acid-neutralizing potentials associated with geologically diverse mining wastes. Applied Geochemistry, 57, 125–139.
  • Jones, S.E., Çetin, B., 2017. Evaluation of waste materials for acid mine drainage remediation. Fuel, 188, 294–309.
  • Karadeniz, M., 2008. Sülfürlü Madenlerin Sorunu Asit Maden Drenajı ve Çözümü. TMMOB Maden Mühendisleri Odası Yayını, Oda Yayın No: 146, Ankara, 231 s.
  • Karadeniz, M., 2011. Balıkesir Balya kurşun-çinko madeni flotasyon artıklarının asit maden drenajı oluşum potansiyelinin derinlikle değişiminin araştırılması. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Doktora Tezi, 228 s.
  • Krauskopf, K.B., Bird, D.K., 1995. Introduction to Geochemistry, Third Edition. McGraw-Hill, New York, 647 s.
  • Lapakko, K., 1992. Recent literature on static predictive test. Proceedings of the Symposium on Emerging Process Technologies for a Cleaner Environment, Phoenix, AZ., 24-27 February 1992, S. Chander (ed.), Society for Mining, Metallurgy and Exploration, Inc., Littleton, 109–119.
  • Lottermoser, B.G., 2010. Mine wastes: Characterization, Treatment, and Environmental Impacts, Third Edition. Springer Heidelberg, Berlin, 410 s.
  • Okumuşoğlu, D., Gündüz, O., 2013. Hydrochemical status of an acidic mining lake in Can-Canakkale, Turkey. Water Environment Research, 85(7), 604–620.
  • Perez-Lopez, R., Nieto, J.M., Almodovar, G.R., 2007. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: Column experiments. Chemosphere, 67(8), 1637–1646.
  • Qureshi, A., Jia, Y., Maurice, C., Öhlander, B., 2016. Potential of fly ash for neutralisation of acid mine drainage. Environmental Science Pollution Research, 23(17), 17083–17094.
  • Qureshi, A., Maurice, C., Öhlander, B., 2019. Effects of the co-disposal of lignite fly ash and coal mine waste rocks on AMD and leachate quality. Environmental Science Pollution Research, 26(4), 4104–4115.
  • Sayılgan, E., Kürklü, K., 2018. Uçucu kül örneğinden demir ve alüminyum gideriminde Taguchi yaklaşımı. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(3), 133–142.
  • Smart, R., Skinner, W.M., Levay, G., Gerson, A.R., Thomas, J.E., Sobieraj, H., Schumann, R., Weisener, C.G., Weber, P.A., Miller, S.D., Stewart, W.A., 2002. ARD Test Handbook: Project P387A Prediction and Kinetic Control of Acid Mine Drainage. AMIRA International Ltd, Ian Wark Research Institute, Melbourne, 43 s.
  • Sobek, A.A., Schuller, W.A., Freeman, J.R., Smith, R.M., 1978. Field and Laboratory Methods Applicable to Overburdens and Minesoils. Environmental Protection Technology Series, United States Environmental Protection Agency EPA-600/2-78-054. Washington, 204 s., (yayımlanmış).
  • Stouraiti, C., Xenedis, A., Paspaliaris, I., 2002. Reduction of Pb, Zn and Cd availability from tailings and contaminated soils by the application of lignite fly ash. Water Air and Soil Pollution, 137, 247–265.
  • Şanlıyüksel Yücel, D., Baba, A., 2013. Geochemical characterization of acid mine lakes and their effect on the environment, NW of Turkey. Archives of Environmental Contamination and Toxicology, 64(3), 357–376.
  • Şanlıyüksel Yücel, D., Yücel, M.A., Baba, A., 2014. Change detection and visualization of acid mine lakes using time series satellite image data in geographic information systems (GIS): Can (Canakkale) County, NW Turkey. Environmental Earth Sciences, 72(11), 4311–4323.
  • Şanlıyüksel Yücel, D., Baba, A., 2016. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study. Environmental Monitoring and Assessment, 188(473), 1–16.
  • Şanlıyüksel Yücel, D., Balcı, N., Baba, A., 2016. Generation of acid mine lakes associated with abandoned coal mines in NW Turkey. Archives of Environmental Contamination and Toxicology, 70(4), 757–782.
  • Şanlıyüksel Yücel, D. 2017. Removal of heavy metals from aqueous solution using fly ash: Can Thermal Power Plant, NW Turkey as a case study. Karaelmas Science and Engineering Journal, 7(1), 291–298.
  • Şanlıyüksel Yücel, D., Yücel, M.A., 2017. Determining hydrochemical characteristics of mine lakes from abandoned coal mines and 3D modelling of them using unmanned aerial vehicle. Pamukkale University Journal of Engineering Sciences, 23(6), 780–791.
  • Şanlıyüksel Yücel, D., İleri, B., 2018. Evaluation of ultrasound-assisted modified fly ash for treatment of acid mine drainage. In: S.A. Akinyemi (ed.), Coal Fly Ash Beneficiation- Treatment of Acid Mine Drainage with Coal Fly Ash, InTech: Croatia, 53–77.
  • Şanlıyüksel Yücel, D., 2019. Characterization and comparison of mine wastes in Can Coal Basin, northwest Turkey: A case study. Environmental Earth Sciences, 78, 154.
  • Villeneuve, M., Bussière, B., Benzaazoua, M., Aubertin, M., Monroy, M., 2003. The influence of kinetic test type on geochemical response of low acid generating potential tailings. 10th International Conference on Tailings and Mine Waste: Tailings and Mine Wastes’03, Vail, Colorado, USA, 12-15 October 2003, A.A. Balkema Publishers, Rotterdam, 269–279.
  • Wang, J., Teng, X., Wang, H., Ban, H., 2004. Characterizing the metal adsorption capability of a Class F coal fly ash. Environmental Science & Technology, 38(24), 6710–6715.
  • Yehesis, M.B., Shang, J.Q., Yanful, E.K., 2009. Longterm evaluation of coal fly ash and mine tailings co-placement: A site-specific study. Journal of Environmental Management, 91(1), 237–244.
  • Yerüstü Su Kalitesi Yönetmeliği, 2015. Orman ve Su İşleri Bakanlığı, http://www.resmigazete.gov.tr/eskiler/2015/04/20150415-18.htm 17 Temmuz 2019.
  • Yolcubal, İ., Demiray, A.D., Çiftçi, E., Sangu E., 2016. Environmental impact of mining activities on surface water and sediment qualities around Murgul copper mine, Northeastern Turkey. Environmental Earth Sciences, 75, 1415.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makaleler - Articles
Yazarlar

Deniz Şanlıyüksel Yücel 0000-0001-6546-5624

Burcu İleri 0000-0001-6609-9048

Proje Numarası FBA-2018-2649
Yayımlanma Tarihi 31 Ocak 2020
Gönderilme Tarihi 17 Temmuz 2019
Kabul Tarihi 12 Kasım 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 63 Sayı: 1

Kaynak Göster

APA Şanlıyüksel Yücel, D., & İleri, B. (2020). Antropojenik Kaynaklı Metal Kirliliğinin Çevresel Etkilerinin Azaltılmasında Uçucu Kül Kullanımı. Türkiye Jeoloji Bülteni, 63(1), 43-56. https://doi.org/10.25288/tjb.593416
AMA Şanlıyüksel Yücel D, İleri B. Antropojenik Kaynaklı Metal Kirliliğinin Çevresel Etkilerinin Azaltılmasında Uçucu Kül Kullanımı. Türkiye Jeol. Bült. Ocak 2020;63(1):43-56. doi:10.25288/tjb.593416
Chicago Şanlıyüksel Yücel, Deniz, ve Burcu İleri. “Antropojenik Kaynaklı Metal Kirliliğinin Çevresel Etkilerinin Azaltılmasında Uçucu Kül Kullanımı”. Türkiye Jeoloji Bülteni 63, sy. 1 (Ocak 2020): 43-56. https://doi.org/10.25288/tjb.593416.
EndNote Şanlıyüksel Yücel D, İleri B (01 Ocak 2020) Antropojenik Kaynaklı Metal Kirliliğinin Çevresel Etkilerinin Azaltılmasında Uçucu Kül Kullanımı. Türkiye Jeoloji Bülteni 63 1 43–56.
IEEE D. Şanlıyüksel Yücel ve B. İleri, “Antropojenik Kaynaklı Metal Kirliliğinin Çevresel Etkilerinin Azaltılmasında Uçucu Kül Kullanımı”, Türkiye Jeol. Bült., c. 63, sy. 1, ss. 43–56, 2020, doi: 10.25288/tjb.593416.
ISNAD Şanlıyüksel Yücel, Deniz - İleri, Burcu. “Antropojenik Kaynaklı Metal Kirliliğinin Çevresel Etkilerinin Azaltılmasında Uçucu Kül Kullanımı”. Türkiye Jeoloji Bülteni 63/1 (Ocak 2020), 43-56. https://doi.org/10.25288/tjb.593416.
JAMA Şanlıyüksel Yücel D, İleri B. Antropojenik Kaynaklı Metal Kirliliğinin Çevresel Etkilerinin Azaltılmasında Uçucu Kül Kullanımı. Türkiye Jeol. Bült. 2020;63:43–56.
MLA Şanlıyüksel Yücel, Deniz ve Burcu İleri. “Antropojenik Kaynaklı Metal Kirliliğinin Çevresel Etkilerinin Azaltılmasında Uçucu Kül Kullanımı”. Türkiye Jeoloji Bülteni, c. 63, sy. 1, 2020, ss. 43-56, doi:10.25288/tjb.593416.
Vancouver Şanlıyüksel Yücel D, İleri B. Antropojenik Kaynaklı Metal Kirliliğinin Çevresel Etkilerinin Azaltılmasında Uçucu Kül Kullanımı. Türkiye Jeol. Bült. 2020;63(1):43-56.

Yazım Kuralları / Instructions for Authorshttp://www.jmo.org.tr/yayinlar/tjb_yazim_kurallari.php

Etik Bildirimi ve Telif Hakkı Devir Formu / Ethical Statement and Copyrighy Form https://www.jmo.org.tr/yayinlar/tjb_telif_etik_formlar.php