Araştırma Makalesi
BibTex RIS Kaynak Göster

Olur-Tortum Bölgesindeki Oltu Taşının (Turbostratik Karbon) Kökeni: Karbonlu Doğal Bir Kompozit Malzeme, Erzurum, Türkiye / The Origin of Oltu Stone (Turbostratic Carbon) from the Olur-Tortum Area: A Natural Composite Carbonaceous Material (Erzurum, Türkiye)

Yıl 2025, Cilt: 68 Sayı: 4, 1 - 24
https://doi.org/10.25288/tjb.1491493

Öz

Bu çalışma, Türkiye'nin en önemli turbostratik karbonlu malzemesi olan Oltu-taşının jeolojik, mikroyapısal, oksijen izotopik ve termogravimetrik incelemelerine odaklanmaktadır.
Bu çalışmada elde edilen veriler, karbonlu Oltu taşı malzemesinin (özgül ağırlığı 1,317) karakehribar gibi fosilleşmiş ağaçtan türetilmiş organik bir malzeme olmadığını göstermektedir. Daha ziyade, Üst Jura-Alt Kretase denizel çökellerinin diyajenezi sırasında yukarı doğru sızan magmatik karbondioksitin indirgenmesi sonucu oluşan ve flişlerle arakatkılı olan amorf karbon ile kristalize grafit (turbostratik karbon olarak adlandırılır) arasında bir karbonlu fazdan oluşmaktadır. Hem Oltu taşının (δ18O = +37,2 ‰ ila +40,8 ‰) hem de onu çevreleyen flişlerin (δ18O = +10,3 ‰ ila +12,3 ‰) oksijen izotop analizleri (SMOW) (EA-IRMS kullanılarak), nodüllerin diyajenez sırasında yaklaşık 50 ℃ sıcaklıkta oluştuğunu, ancak taneleri önemli ölçüde daha yüksek bir sıcaklıkta, belki de 100 ℃'nin üzerinde oluşan kayalardan gelen flişlerle ile çevrelendiğini göstermektedir.
Oltu-taşının başlıca endüstriyel kullanımı, elmas kaplamada kullanılan bir malzeme olmasıdır, çünkü malzemedeki sp3 bağları elmas kristalleri için çekirdeklenme alanları sağlayabilir ve turbostratik karbon üzerine elmas biriktirmenin erken aşamasında çekirdeklenme oranını artırabilir.

Kaynakça

  • Bansal, R. C. & Donnet, J. B. (1993). Carbon Black (2nd ed.). In Donnet, J. B., Bansal, R.C. & Wang, M. J. (Eds.). Marcel Dekker, New York, 206–211.
  • Bertrand, P. & Weng, L.T. (1999). Carbon black surface characterization by TOF-SIMS and XPS. Rubber Chemistry & Technology, 72(2), 384-398.
  • Bilgin, Ö., Kalkan, E. & Dilmaç, M.K. (2011). Equipments used for production and processing of Oltu-stone. The proceedings of 3rd Mining Machinery Symposium, May 05-06, İzmir, Turkey, (in Turkish).
  • Brown, I. D. & Altermatt, D. (1985). Bond valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica B, 41, 244-247.
  • Clague, A. D. H., Donnet, J. B., Wang, T. K. & Peng, J. C. M. (1999). A comparison of diesel engine soot with carbon black. Carbon, 37, 1553–1565.
  • Çiftçi, E., Coşkun, S. & Yalçınalp, B. (2002). Oltu-stone-mineralogical and physical properties. 55th Geological Congress of Turkey, Ankara, March 11–15. Proceedings Book of Abstracts (pp. 34-35).
  • Çiftçi, E., Yalçın, M. G., Yalçınalp, B., Kolaylı, H. (2004). Mineralogical and physical characterization of the Oltu-stone, a gemstone occurring around Oltu (Erzurum-Eastern Turkey). International Congress on Applied Mineralogy (ICAM 2004), Águas de Lindoia, Proceedings Book of Abstracts, (pp. 537-539). Brazil, September 19–22.
  • Donnet, J. B. (1994). Fifty years of research and progress on carbon black. Carbon, 32, 1305-1314.
  • Franklin, R. E. (1950). Influence of the bonding electrons on the scattering of X-rays by carbon. Nature, 165, 4185-4193.
  • Gruber, T. C., Zerda, T. W. & Gerspacher, M. (1993). Three-dimensional morphology of carbon black aggregates. Carbon, 31, 1209-1216.
  • Gruber, T. C., Zerda, T. W. & Gerspacher, M. (1994). Raman studies of heat-treated carbon blacks. Carbon, 32, 1377-1384.
  • Hatipoğlu, M., Ajo, D., Kibici, Y. & Passeri, D. (2012). Natural carbon black (Oltu-stone) from Turkey; a micro-Raman study. Neues Jahrbuch für Mineralogie-Abhandlungen, 189(1), 97-101.
  • Hatipoğlu, M., Cesaro, S. N. & Ajo, D. (2014). Comparative Fourier transform infrared investigation of Oltu-stone (natural carbon black) and jet. Spectroscopy Letters, 47, 161-167.
  • Hauptman, N., Vesel, A., Ivanovski, V. & Gunde, M. K. (2012). Electrical conductivity of Carbon Black pigments. Dyes and Pigments, 95, 1-7.
  • Herrera-Alonso, M., Abdala, A.A., McAllister, M.J., Aksay, I.A. & Prud’homme, R. K., (2007). Intercalation and stitching of graphite oxide with diaminoalkanes. Langmuir, 23, 10644-10649.
  • Hjelm, R.P., Wampler, W. & Gerspacher, M. (2000). The structure of carbon black and its associations in elastomer composites: a study using neutron scattering. Kautschuk Gummi Kunststoffe, 53, 592-599.
  • Hunter, F. J., Mc Donnell, J. G., Pollard, A. M., Morris, C. R. & Rowlands, C. C. (1993). The Scientific identification of archaeological jet-like artefacts. Archaeometry, 35(1), 68-69.
  • Jawhari, T., Roid, A. & Casado, J. (1995). Raman spectroscopic characterization of some commercially available carbon black materials. Carbon, 33, 1561-1565.
  • Kalkan, E., Bilici, Ö. & Kolaylı, H. (2012). Evaluation of Turkish black amber: A case study of Oltu (Erzurum), NE Turkey. International Journal of Physical Sciences, 7, 2387-2397.
  • Karayiğit, A. I., Kerey, İ. E., Bozkuş, C. (2002). Depositional environments of Oligo/Miocene coal-bearing strata and coal quality from the Oltu-Balkaya basin, northeastern Turkey. Energy Sources, 24, 653-665.
  • Karayiğit, A. I. (2007). Origin and properties of Oltu gemstone coal. Energy Sources Part A, 29, 1279-1284.
  • Kınacı, E. H. (2013). Mineralogical and gemmological investigation and genesis of Oltu stone (Carbon Black) [Unpublished Master’s Thesis]. Dokuz Eylül University Graduate School of Natural and Applied Sciences.
  • Koçyigit, A., Öztürk, A., İnan, S. & Gürsoy, H. (1985). Tectonomorphology and mechanistic interpretation of the Karasu Basin (Erzurum). Bulletin of Earth Sciences, 2, 3-15.
  • Kolodny, Y. & Epstein, S. (1976). Stable isotope geochemistry of deep-sea cherts. Geochimica et Cosmochimica Acta, 40, 1195–1209.
  • Konak, N. ve Hakyemez, Y. (2008). 1/100.000 ölçekli Türkiye jeoloji haritaları Kars-G47 ve Kars-G48 Paftaları. MTA Report No: 104, (in Turkish).
  • Lahaye, J. & Prado, G. (1981). Particulate Carbon Formation during Combustion. In Siegla, D. C. & Smith G.W. (Eds.). New York, Plenum Press, 35.
  • Li, Z. Q., Lu, C. J., Xia, Z. P., Zhou, Y. & Luo, Z. (2007). X-ray diffraction patterns of graphite and turbostratic carbon. Carbon, 45, 1686-1695.
  • Lin, J. H. (2002). Identification of the surface characteristics of carbon blacks by pyrolysis GC-MASS. Carbon, 40, 183-191.
  • Probst, N. & Grivei, E. (2002). Structure and electrical properties of carbon black. Carbon, 40, 201-205.
  • RRUFF. (2013). Database of Raman spectroscopy, X-ray diffraction and chemistry of minerals via http://rruff.info/.
  • Smith, G. D. & Clark, R. J. H. (2004). Raman microscopy in archaeological science. Journal of Archaeological Science, 31, 1137-1160.
  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape. Turkey as a case study. In Strike-Slip Deformation, Basin Formation and Sedimentation. SEMP Special Publications. 37, 227-264.
  • Toprak, S. (2013). Petrographical properties of a semi-precious coaly stone, Oltu stone, from eastern Turkey. International Journal of Coal Geology, 120, 95-101.
  • Tuinstra, F. & Koenig, J. L. (1970). Raman spectrum of graphite. Journal of Chemical Physics, 53, 1126-1132.
  • Ungar, T., Gubicza, J., Ribarik, G., Pantea, C. & Waldek Zerda, T. (2002). Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon, 40, 929-937.
  • Ungar, T., Gubicza, J., Tichy, G., Pantea, C. & Zerda, T. W. (2005). Size and shape of crystallites and internal stresses in carbon blacks. Composites: Part A, 36, 431-436.
  • Wang, M. J. & Wolff, S. (1993). Carbon Black (2nd ed.). In Donnet, J. B., Bansal, R. C. & Wang, M. J. (Eds.), Marcel Dekker, New York, 229–246.
  • Wang, A., Han, J., Guo, L., Yu, J., Zeng, P. (1994). Database of standard Raman spectra of minerals and related inorganic crystals. Applied Spectroscopy, 48, 959-968.
  • Yu, Z-. M., Rogelet, T. & Flodström, S., A. (1993). Diamond growth on turbostratic carbon by hot filament chemical vapor deposition. Journal of Applied Physics, 74, 7235-7240.
  • Zengin, Y. (1956). Oltu-taşı yatakları. Bulletin of MTA (Turkey), 48, 148-149.
  • Zerda, T. W., Xu, W., Zerda, A., Zhao, Y. & Von Dreele, R. B. (2000). High pressure Raman and neutron scattering study on structure of carbon black particles. Carbon, 38(3), 355-361.

The Origin of Oltu Stone (Turbostratic Carbon) from the Olur-Tortum Area: A Natural Composite Carbonaceous Material (Erzurum, Türkiye)

Yıl 2025, Cilt: 68 Sayı: 4, 1 - 24
https://doi.org/10.25288/tjb.1491493

Öz

This study focuses on geological, microstructural, oxygen isotopic, and thermogravimetric investigations of Oltu stone, which is the most important turbostratic carbonaceous material in Turkey.
The results of our investigations indicate that the carbonaceous Oltu stone material (specific gravity of 1.317) is not an organic material, such as jet, derived from fossilized wood. Rather, it is composed of a carbonaceous phase intermediate between amorphous carbon and crystallized graphite (termed turbostratic carbon), that is intercalated with flysch and formed by the reduction of seeping magmatic carbon dioxide during the diagenesis of Upper Jurassic-Lower Cretaceous marine sediments. Oxygen isotope analyses (SMOW) (using EA-IRMS) of both Oltu stone (δ18O = +37.2‰to +40.8‰) and the enclosing flysches (δ18O = +10.3‰ to +12.3‰) suggest that the nodules formed during diagenesis at a temperature of around 50 ℃. However, they are enclosed in flysches whose grains are derived from rocks that formed at significantly higher temperatures, perhaps above 100 ℃.
The main industrial use of Oltu stone is as host material for diamond coating, as the sp3 bonds in the material can provide nucleation sites for diamond crystals and improve the nucleation rate at the early stage of diamond deposition on turbostratic carbon.

Kaynakça

  • Bansal, R. C. & Donnet, J. B. (1993). Carbon Black (2nd ed.). In Donnet, J. B., Bansal, R.C. & Wang, M. J. (Eds.). Marcel Dekker, New York, 206–211.
  • Bertrand, P. & Weng, L.T. (1999). Carbon black surface characterization by TOF-SIMS and XPS. Rubber Chemistry & Technology, 72(2), 384-398.
  • Bilgin, Ö., Kalkan, E. & Dilmaç, M.K. (2011). Equipments used for production and processing of Oltu-stone. The proceedings of 3rd Mining Machinery Symposium, May 05-06, İzmir, Turkey, (in Turkish).
  • Brown, I. D. & Altermatt, D. (1985). Bond valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica B, 41, 244-247.
  • Clague, A. D. H., Donnet, J. B., Wang, T. K. & Peng, J. C. M. (1999). A comparison of diesel engine soot with carbon black. Carbon, 37, 1553–1565.
  • Çiftçi, E., Coşkun, S. & Yalçınalp, B. (2002). Oltu-stone-mineralogical and physical properties. 55th Geological Congress of Turkey, Ankara, March 11–15. Proceedings Book of Abstracts (pp. 34-35).
  • Çiftçi, E., Yalçın, M. G., Yalçınalp, B., Kolaylı, H. (2004). Mineralogical and physical characterization of the Oltu-stone, a gemstone occurring around Oltu (Erzurum-Eastern Turkey). International Congress on Applied Mineralogy (ICAM 2004), Águas de Lindoia, Proceedings Book of Abstracts, (pp. 537-539). Brazil, September 19–22.
  • Donnet, J. B. (1994). Fifty years of research and progress on carbon black. Carbon, 32, 1305-1314.
  • Franklin, R. E. (1950). Influence of the bonding electrons on the scattering of X-rays by carbon. Nature, 165, 4185-4193.
  • Gruber, T. C., Zerda, T. W. & Gerspacher, M. (1993). Three-dimensional morphology of carbon black aggregates. Carbon, 31, 1209-1216.
  • Gruber, T. C., Zerda, T. W. & Gerspacher, M. (1994). Raman studies of heat-treated carbon blacks. Carbon, 32, 1377-1384.
  • Hatipoğlu, M., Ajo, D., Kibici, Y. & Passeri, D. (2012). Natural carbon black (Oltu-stone) from Turkey; a micro-Raman study. Neues Jahrbuch für Mineralogie-Abhandlungen, 189(1), 97-101.
  • Hatipoğlu, M., Cesaro, S. N. & Ajo, D. (2014). Comparative Fourier transform infrared investigation of Oltu-stone (natural carbon black) and jet. Spectroscopy Letters, 47, 161-167.
  • Hauptman, N., Vesel, A., Ivanovski, V. & Gunde, M. K. (2012). Electrical conductivity of Carbon Black pigments. Dyes and Pigments, 95, 1-7.
  • Herrera-Alonso, M., Abdala, A.A., McAllister, M.J., Aksay, I.A. & Prud’homme, R. K., (2007). Intercalation and stitching of graphite oxide with diaminoalkanes. Langmuir, 23, 10644-10649.
  • Hjelm, R.P., Wampler, W. & Gerspacher, M. (2000). The structure of carbon black and its associations in elastomer composites: a study using neutron scattering. Kautschuk Gummi Kunststoffe, 53, 592-599.
  • Hunter, F. J., Mc Donnell, J. G., Pollard, A. M., Morris, C. R. & Rowlands, C. C. (1993). The Scientific identification of archaeological jet-like artefacts. Archaeometry, 35(1), 68-69.
  • Jawhari, T., Roid, A. & Casado, J. (1995). Raman spectroscopic characterization of some commercially available carbon black materials. Carbon, 33, 1561-1565.
  • Kalkan, E., Bilici, Ö. & Kolaylı, H. (2012). Evaluation of Turkish black amber: A case study of Oltu (Erzurum), NE Turkey. International Journal of Physical Sciences, 7, 2387-2397.
  • Karayiğit, A. I., Kerey, İ. E., Bozkuş, C. (2002). Depositional environments of Oligo/Miocene coal-bearing strata and coal quality from the Oltu-Balkaya basin, northeastern Turkey. Energy Sources, 24, 653-665.
  • Karayiğit, A. I. (2007). Origin and properties of Oltu gemstone coal. Energy Sources Part A, 29, 1279-1284.
  • Kınacı, E. H. (2013). Mineralogical and gemmological investigation and genesis of Oltu stone (Carbon Black) [Unpublished Master’s Thesis]. Dokuz Eylül University Graduate School of Natural and Applied Sciences.
  • Koçyigit, A., Öztürk, A., İnan, S. & Gürsoy, H. (1985). Tectonomorphology and mechanistic interpretation of the Karasu Basin (Erzurum). Bulletin of Earth Sciences, 2, 3-15.
  • Kolodny, Y. & Epstein, S. (1976). Stable isotope geochemistry of deep-sea cherts. Geochimica et Cosmochimica Acta, 40, 1195–1209.
  • Konak, N. ve Hakyemez, Y. (2008). 1/100.000 ölçekli Türkiye jeoloji haritaları Kars-G47 ve Kars-G48 Paftaları. MTA Report No: 104, (in Turkish).
  • Lahaye, J. & Prado, G. (1981). Particulate Carbon Formation during Combustion. In Siegla, D. C. & Smith G.W. (Eds.). New York, Plenum Press, 35.
  • Li, Z. Q., Lu, C. J., Xia, Z. P., Zhou, Y. & Luo, Z. (2007). X-ray diffraction patterns of graphite and turbostratic carbon. Carbon, 45, 1686-1695.
  • Lin, J. H. (2002). Identification of the surface characteristics of carbon blacks by pyrolysis GC-MASS. Carbon, 40, 183-191.
  • Probst, N. & Grivei, E. (2002). Structure and electrical properties of carbon black. Carbon, 40, 201-205.
  • RRUFF. (2013). Database of Raman spectroscopy, X-ray diffraction and chemistry of minerals via http://rruff.info/.
  • Smith, G. D. & Clark, R. J. H. (2004). Raman microscopy in archaeological science. Journal of Archaeological Science, 31, 1137-1160.
  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape. Turkey as a case study. In Strike-Slip Deformation, Basin Formation and Sedimentation. SEMP Special Publications. 37, 227-264.
  • Toprak, S. (2013). Petrographical properties of a semi-precious coaly stone, Oltu stone, from eastern Turkey. International Journal of Coal Geology, 120, 95-101.
  • Tuinstra, F. & Koenig, J. L. (1970). Raman spectrum of graphite. Journal of Chemical Physics, 53, 1126-1132.
  • Ungar, T., Gubicza, J., Ribarik, G., Pantea, C. & Waldek Zerda, T. (2002). Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon, 40, 929-937.
  • Ungar, T., Gubicza, J., Tichy, G., Pantea, C. & Zerda, T. W. (2005). Size and shape of crystallites and internal stresses in carbon blacks. Composites: Part A, 36, 431-436.
  • Wang, M. J. & Wolff, S. (1993). Carbon Black (2nd ed.). In Donnet, J. B., Bansal, R. C. & Wang, M. J. (Eds.), Marcel Dekker, New York, 229–246.
  • Wang, A., Han, J., Guo, L., Yu, J., Zeng, P. (1994). Database of standard Raman spectra of minerals and related inorganic crystals. Applied Spectroscopy, 48, 959-968.
  • Yu, Z-. M., Rogelet, T. & Flodström, S., A. (1993). Diamond growth on turbostratic carbon by hot filament chemical vapor deposition. Journal of Applied Physics, 74, 7235-7240.
  • Zengin, Y. (1956). Oltu-taşı yatakları. Bulletin of MTA (Turkey), 48, 148-149.
  • Zerda, T. W., Xu, W., Zerda, A., Zhao, Y. & Von Dreele, R. B. (2000). High pressure Raman and neutron scattering study on structure of carbon black particles. Carbon, 38(3), 355-361.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Genel Jeoloji
Bölüm Makaleler - Articles
Yazarlar

Cahit Helvacı 0000-0002-8659-1141

Murat Hatipoğlu 0000-0002-4345-9052

Daniele Passeri 0000-0001-8189-1359

Neşat Konak 0009-0005-2874-9974

Eyyüp Hikmet Kınacı 0000-0002-0267-7387

Erken Görünüm Tarihi 26 Kasım 2024
Yayımlanma Tarihi
Gönderilme Tarihi 29 Mayıs 2024
Kabul Tarihi 12 Temmuz 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 68 Sayı: 4

Kaynak Göster

APA Helvacı, C., Hatipoğlu, M., Passeri, D., Konak, N., vd. (2024). The Origin of Oltu Stone (Turbostratic Carbon) from the Olur-Tortum Area: A Natural Composite Carbonaceous Material (Erzurum, Türkiye). Türkiye Jeoloji Bülteni, 68(4), 1-24. https://doi.org/10.25288/tjb.1491493
AMA Helvacı C, Hatipoğlu M, Passeri D, Konak N, Kınacı EH. The Origin of Oltu Stone (Turbostratic Carbon) from the Olur-Tortum Area: A Natural Composite Carbonaceous Material (Erzurum, Türkiye). Türkiye Jeol. Bült. Kasım 2024;68(4):1-24. doi:10.25288/tjb.1491493
Chicago Helvacı, Cahit, Murat Hatipoğlu, Daniele Passeri, Neşat Konak, ve Eyyüp Hikmet Kınacı. “The Origin of Oltu Stone (Turbostratic Carbon) from the Olur-Tortum Area: A Natural Composite Carbonaceous Material (Erzurum, Türkiye)”. Türkiye Jeoloji Bülteni 68, sy. 4 (Kasım 2024): 1-24. https://doi.org/10.25288/tjb.1491493.
EndNote Helvacı C, Hatipoğlu M, Passeri D, Konak N, Kınacı EH (01 Kasım 2024) The Origin of Oltu Stone (Turbostratic Carbon) from the Olur-Tortum Area: A Natural Composite Carbonaceous Material (Erzurum, Türkiye). Türkiye Jeoloji Bülteni 68 4 1–24.
IEEE C. Helvacı, M. Hatipoğlu, D. Passeri, N. Konak, ve E. H. Kınacı, “The Origin of Oltu Stone (Turbostratic Carbon) from the Olur-Tortum Area: A Natural Composite Carbonaceous Material (Erzurum, Türkiye)”, Türkiye Jeol. Bült., c. 68, sy. 4, ss. 1–24, 2024, doi: 10.25288/tjb.1491493.
ISNAD Helvacı, Cahit vd. “The Origin of Oltu Stone (Turbostratic Carbon) from the Olur-Tortum Area: A Natural Composite Carbonaceous Material (Erzurum, Türkiye)”. Türkiye Jeoloji Bülteni 68/4 (Kasım 2024), 1-24. https://doi.org/10.25288/tjb.1491493.
JAMA Helvacı C, Hatipoğlu M, Passeri D, Konak N, Kınacı EH. The Origin of Oltu Stone (Turbostratic Carbon) from the Olur-Tortum Area: A Natural Composite Carbonaceous Material (Erzurum, Türkiye). Türkiye Jeol. Bült. 2024;68:1–24.
MLA Helvacı, Cahit vd. “The Origin of Oltu Stone (Turbostratic Carbon) from the Olur-Tortum Area: A Natural Composite Carbonaceous Material (Erzurum, Türkiye)”. Türkiye Jeoloji Bülteni, c. 68, sy. 4, 2024, ss. 1-24, doi:10.25288/tjb.1491493.
Vancouver Helvacı C, Hatipoğlu M, Passeri D, Konak N, Kınacı EH. The Origin of Oltu Stone (Turbostratic Carbon) from the Olur-Tortum Area: A Natural Composite Carbonaceous Material (Erzurum, Türkiye). Türkiye Jeol. Bült. 2024;68(4):1-24.

Yazım Kuralları / Instructions for Authorshttp://www.jmo.org.tr/yayinlar/tjb_yazim_kurallari.php

Etik Bildirimi ve Telif Hakkı Devir Formu / Ethical Statement and Copyrighy Form https://www.jmo.org.tr/yayinlar/tjb_telif_etik_formlar.php