Unperlitized Obsidian Expansion: Hydration and Formation Characteristics
Yıl 2025,
Cilt: 68 Sayı: 3, 399 - 414, 31.08.2025
Lütfiye Akın
,
Erkan Aydar
Öz
Magma-water interaction is defined as one of the most important parameters determining the explosivity of volcanic eruptions. However, accurately quantifying the water content in volcanic products formed during syn-eruptive or post-eruptive processes remains a significant challenge. This study investigated the thermal expansion and decomposition behavior of obsidian sampled from the Nevşehir Acıgöl Maar, which was subjected to heat treatment without exhibiting perlitic texture development, in order to elucidate the underlying mechanisms and characteristics of the process. The physical and chemical changes that the banded obsidian experienced during its expansion were analyzed using various analytical methods. In this context, FT-IR analysis was used to observe modifications in water components. The mass loss in the sample was quantified using the TG-DTA method, while the textural changes occurring during the obsidian expansion experiment were determined through three-dimensional tomographic imaging technique. The results show that thermal decomposition of volcanic glass involves the release of volatiles and both primary and secondary water species across a range of temperatures. This study demonstrates experimentally that hydrous rhyolitic obsidian can generate vesicles that expand at varying rates, particularly in regions where water and volatiles are loosely bound within the glass structure.
Kaynakça
-
Angelopoulos, P. M., Manic, N., Jankovic, B. & Taxiarchou, M. (2022). Thermal decomposition of volcanic glass (rhyolite): Kinetic deconvolution of dehydration and dehydroxylation process. Thermochimica Acta, 707, Article 179082. https://doi.org/10.1016/j.tca.2021.179082
-
Angelopoulos, P. M., Manić, N., Tsakiridis, P., Taxiarchou, M. & Janković, B. (2020). Dehydration of rhyolite: activation energy, water speciation and morphological investigation. Journal of Thermal Analysis and Calorimetry, 142, 395–407. https://doi.org/10.1007/s10973-020-10105-2
-
Çubukçu, H. E. Aydar, E., Akın, L. & Şen, E. (2024). Temporal constraints on magmatic evolution of Acıgöl Bimodal Volcanic Field (Nevşehir, Türkiye). Geochemistry, 84(4), Article 126129. https://doi.org/10.1016/j.chemer.2024.126129
-
Davis, B. K. & McPhie, J. (1996). Spherulites, quench fractures and relict perlite in a Late Devonian rhyolite dyke, Queensland, Australia. Journal of Volcanology and Geothermal Research, 71, 1–11. https://doi.org/10.1016/0377-0273(95)00063-1
-
Denton, J. S., Tuffen, H., Gilbert, J. S. & Odling, N. (2009). The hydration and alteration of perlite and rhyolite. Journal of the Geological Society, 166(5), 895–904. https://doi.org/10.1144/0016-76492008-007
-
Denton, J. S., Tuffen, H. & Gilbert, J. S. (2012). Variations in hydration within perlitised rhyolitic lavas—evidence from Torfajökull, Iceland. Journal of Volcanology and Geothermal Research, 223, 64–73. https://doi.org/10.1016/j.jvolgeores.2012.02.005
-
Eichelberger, J. (1995). Silicic volcanism: ascent of viscous magmas from crustal reservoirs. Annual Review of Earth and Planetary Sciences, 23, 41–64.
-
Ellerbrock, R., Stein, M. & Schaller, J. (2022). Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Scientific Reports, 12, Article 11708. https://doi.org/10.1038/s41598-022-15882-4
-
Friedman, I., Smith, R. L. & Long, W. D. (1966). Hydration of natural glass and formation of perlite. Geological Society of America Bulletin, 77(3), 323–328. https://doi.org/10.1130/0016-7606(1966)77[323:HONGAF]2.0.CO;2
-
Friedman, I., Long, W. & Smith, R. L. (1963). Viscosity and water content of rhyolite glass. Journal of Geophysical Research, 68(24), 6523–6535. https://doi.org/10.1029/JZ068i024p06523
-
Friedman, I. & Long, W. (1984). Volcanic glasses, their origins and alteration processes. Journal of Non-Crystalline Solids, 67(1–3), 127–133. https://doi.org/10.1016/0022-3093(84)90144-3
-
Gardner, J. E. (2007). Heterogeneous bubble nucleation in highly viscous silicate melts during instantaneous decompression from high pressure. Chemical Geology, 236(1–2), 1–12. https://doi.org/10.1016/j.chemgeo.2006.08.006
-
Gardner, J.E., Hilton, M. & Carroll, M.R. (2000). Bubble growth in highly viscous silicate melts during continuous decompression from high pressure. Geochimica et Cosmochimica Acta, 64(8), 1473–1483. https://doi.org/10.1016/S0016-7037(99)00436-6
-
Giachetti, T. & Gonnermann, H.M. (2013). Water in volcanic pyroclast: Rehydration or incomplete degassing? Earth and Planetary Science Letters, 369–370, 317–332. https://doi.org/10.1016/j.epsl.2013.03.041
-
Giachetti, T., Gonnermann, H. M., Gardner, J. E., Shea, T. & Gouldstone, A. (2015). Discriminating secondary from magmatic water in rhyolitic matrix-glass of volcanic pyroclasts using thermogravimetric analysis. Geochimica et Cosmochimica Acta, 148, 457–476. https://doi.org/10.1016/j.gca.2014.10.017
-
Giachetti, T., Hudak, M. R., Shea, T., Bindeman, I. N. & Hoxsie, E. C. (2020). D/H ratios and H2O contents record degassing and rehydration history of rhyolitic magma and pyroclasts. Earth and Planetary Science Letters, 530, Article 115909. https://doi.org/10.1016/j.epsl.2019.115909
-
Gonnermann, H. M. & Manga, M. (2007). The fluid mechanics inside a volcano. Annual Reviews of Fluid Mechanics, 39(1), 321–356. https://doi.org/10.1146/annurev.fluid.39.050905.110207
-
Hudak, M. R., Bindeman, I. N., Loewen, M. W. & Giachetti, T. (2021). Syn-eruptive hydration of volcanic ash records pyroclast-water interaction in explosive eruptions. Geophysical Research Letters, 48, Article e2021GL094141. https://doi.org/10.1029/2021GL094141
-
Hudak, M. R., Bindeman, I. N, Watkins, J. M. & Lowenstern, J. B. (2022). Hydrogen isotope behavior during rhyolite glass hydration under hydrothermal conditions. Geochimica et Cosmochimica Acta, 337, 33–48. https://doi.org/10.1016/j.gca.2022.09.032
-
Kaufhold, S., Reese, A., Schwiebacher, W., Dohrmann, R., Grathoff, G. H., Warr, L. N., Halisch, M., Müller, C., Schwarz-Schampera, U. & Ufer, K. (2014). Porosity and distribution of water in perlite from the island of Milos, Greece. SpringerPlus, 3, 598. https://doi.org/10.1186/2193-1801-3-598
-
Lacy, E. (1959). Hydrated Glasses. Nature, 183, 178–179. https://doi.org/10.1038/183178b0
-
Lenhardt, K.R., Breitzke, H., Buntkowsky, G., Reimhult, E., Willinger, M. & Rennert, T. (2021). Synthesis of short-range ordered aluminosilicates at ambient conditions. Scientific Reports, 11, Article 4207. https://doi.org/10.1038/s41598-021-83643-w
-
Lexa, J., Varga, P., Uhlik, P., Koděra, P., Biroň, A. & Rajnoha, M. (2021). Perlite deposits of the Central Slovakia Volcanic Field (Western Carpathians): Geology and properties. Geologica Carpathica, 72, 253–281. https://doi.org/10.31577/GeolCarp.72.3.5
-
Lofgren, G. (1971). Experimentally Produced Devitrification Textures in Natural Rhyolitic Glass. Geological Society of America Bulletin, 82, 111–124.
McIntosh, I. M., Llewellin, E. W., Humphreys, M. C. S., Nichols, A. R. L., Burgisser, A., Schipper, C. I. & Larsen, J. F. (2014). Distribution of dissolved water in magmatic glass records growth and resorption of bubbles. Earth and Planetary Science Letters, 401, 1–11. https://doi.org/10.1016/j.epsl.2014.05.037
-
Meier, V., Breitkreuz, C., Groß, D. & Ohser, J. (2023). Re‑evaluation of perlitic textures and fracture behavior in silica‑rich volcanic rocks. Bulletin of Volcanology, 85, 50. https://doi.org/10.1007/s00445-023-01659-8
-
Pandya, N., Muenow, D. W. & Sharma, S. K. (1992). The effect of bulk composition on the speciation of water in submarine volcanic glasses. Geochimica et Cosmochimica Acta, 56(5), 1875–1883. https://doi.org/10.1016/0016-7037(92)90317-C
-
Ross, C. S. & Smith, R. L. (1955). Water and other volatiles in volcanic glasses. American Mineralogist, 40(11–12), 1071–1089.
-
Schmitt, A. K., Danišík, M., Evans, N. J., Siebel, W., Kiemele, E., Aydin, F. & Harvey, J. C. (2011). Acigöl rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and zircon growth rates. Contributions to Mineralogy and Petrology, 162, 1215–1231. https://doi.org/10.1007/s00410-011-0648-x
-
Seligman, A.N., Bindeman, I.N., Watkins, J.M. & Ross, A.M. (2016). Water in volcanic glass: From volcanic degassing to secondary hydration. Geochimica et Cosmochimica Acta, 191, 216–238. https://doi.org/10.1016/j.gca.2016.07.010
-
Silver, L. A., Ihinger, P. D. & Stolper, E. (1990). The influence of bulk composition on the speciation of water in silicate glasses. Contributions to Mineralogy and Petrology, 104, 142–162. https://doi.org/10.1007/BF00306439
-
Sparks, R. S. J. (2003). Dynamics of magma degassing. Geological Society, London, Special Publications, 213, 5–22.
-
Stolper, E. (1982). The speciation of water in silicate melts. Geochimica et Cosmochimica Acta, 46(12), 2609–2620.
-
Zhang, Y. (1999). H2O in rhyolitic glasses and melts: measurement, speciation, solubility, and diffusion. Reviews of Geophysics, 37, 493–516.
-
Zhang, Y. & Behrens, H. (2000). H2O diffusion in rhyolitic melts and glasses. Chemical Geology, 169(1–2), 243–262. https://doi.org/10.1016/S0009-2541(99)00231-4
Perlitleşmemiş Obsidiyen Genleşmesi: Hidrasyon ve Oluşum Özellikleri / Unperlitized Obsidian Expansion: Hydration and Formation Characteristics
Yıl 2025,
Cilt: 68 Sayı: 3, 399 - 414, 31.08.2025
Lütfiye Akın
,
Erkan Aydar
Öz
Magma ile su etkileşimi, volkanik patlamalarda patlamanın şiddetini belirleyen en önemli parametrelerden biri olarak tanımlanmaktadır. Bununla birlikte, patlama ile oluşan volkanik ürünlerde rastlanılan su içeriğinin volkanizma sırasında veya sonrasında gelişip gelişmediğinin belirlenmesinde çeşitli kısıtlamalar bulunmaktadır. Bu çalışma, Nevşehir Acıgöl Maar’ından örneklenen obsidiyenin, perlitik doku sahibi olmadan ısıl işlem ile genleşmesinin nedeni ve özellikleri ile termal ayrışma özelliklerinin belirlenmesi amacıyla gerçekleştirilmiştir. Bantlı obsidiyenin genleştirilmesi sırasında geçirmiş olduğu fiziksel ve kimyasal değişimler, çeşitli analitik yöntemler ile incelenmiştir. Bu kapsamda, su bileşenlerinde meydana gelen değişimler FT-IR analizi ile gözlemlenmiştir. Örnekte gerçekleşen kütle kaybının değeri TG-DTA yöntemi ile ölçülmüş olup genleştirme deneyi sonucunda oluşan üründe genleşmeye bağlı meydana gelen dokusal değişimler üç boyutlu tomografik görüntüleme tekniği ile belirlenmiştir. Sonuç olarak bir volkan camının termal olarak ayrışması, uçucu gazlar ile birincil ve ikincil su türlerinin farklı sıcaklıklarda çeşitli süreçler sonucunda salınması ile meydana gelmektedir. Bu çalışma ile su içeren riyolitik bileşime sahip obsidiyenin, su ve uçucu bileşenlerin kimyasal olarak gevşek bir şekilde bağlandığı yerlerde çeşitli oranlarda genişleyen gözenekler oluşturabildiği deneysel olarak gösterilmiştir.
Kaynakça
-
Angelopoulos, P. M., Manic, N., Jankovic, B. & Taxiarchou, M. (2022). Thermal decomposition of volcanic glass (rhyolite): Kinetic deconvolution of dehydration and dehydroxylation process. Thermochimica Acta, 707, Article 179082. https://doi.org/10.1016/j.tca.2021.179082
-
Angelopoulos, P. M., Manić, N., Tsakiridis, P., Taxiarchou, M. & Janković, B. (2020). Dehydration of rhyolite: activation energy, water speciation and morphological investigation. Journal of Thermal Analysis and Calorimetry, 142, 395–407. https://doi.org/10.1007/s10973-020-10105-2
-
Çubukçu, H. E. Aydar, E., Akın, L. & Şen, E. (2024). Temporal constraints on magmatic evolution of Acıgöl Bimodal Volcanic Field (Nevşehir, Türkiye). Geochemistry, 84(4), Article 126129. https://doi.org/10.1016/j.chemer.2024.126129
-
Davis, B. K. & McPhie, J. (1996). Spherulites, quench fractures and relict perlite in a Late Devonian rhyolite dyke, Queensland, Australia. Journal of Volcanology and Geothermal Research, 71, 1–11. https://doi.org/10.1016/0377-0273(95)00063-1
-
Denton, J. S., Tuffen, H., Gilbert, J. S. & Odling, N. (2009). The hydration and alteration of perlite and rhyolite. Journal of the Geological Society, 166(5), 895–904. https://doi.org/10.1144/0016-76492008-007
-
Denton, J. S., Tuffen, H. & Gilbert, J. S. (2012). Variations in hydration within perlitised rhyolitic lavas—evidence from Torfajökull, Iceland. Journal of Volcanology and Geothermal Research, 223, 64–73. https://doi.org/10.1016/j.jvolgeores.2012.02.005
-
Eichelberger, J. (1995). Silicic volcanism: ascent of viscous magmas from crustal reservoirs. Annual Review of Earth and Planetary Sciences, 23, 41–64.
-
Ellerbrock, R., Stein, M. & Schaller, J. (2022). Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Scientific Reports, 12, Article 11708. https://doi.org/10.1038/s41598-022-15882-4
-
Friedman, I., Smith, R. L. & Long, W. D. (1966). Hydration of natural glass and formation of perlite. Geological Society of America Bulletin, 77(3), 323–328. https://doi.org/10.1130/0016-7606(1966)77[323:HONGAF]2.0.CO;2
-
Friedman, I., Long, W. & Smith, R. L. (1963). Viscosity and water content of rhyolite glass. Journal of Geophysical Research, 68(24), 6523–6535. https://doi.org/10.1029/JZ068i024p06523
-
Friedman, I. & Long, W. (1984). Volcanic glasses, their origins and alteration processes. Journal of Non-Crystalline Solids, 67(1–3), 127–133. https://doi.org/10.1016/0022-3093(84)90144-3
-
Gardner, J. E. (2007). Heterogeneous bubble nucleation in highly viscous silicate melts during instantaneous decompression from high pressure. Chemical Geology, 236(1–2), 1–12. https://doi.org/10.1016/j.chemgeo.2006.08.006
-
Gardner, J.E., Hilton, M. & Carroll, M.R. (2000). Bubble growth in highly viscous silicate melts during continuous decompression from high pressure. Geochimica et Cosmochimica Acta, 64(8), 1473–1483. https://doi.org/10.1016/S0016-7037(99)00436-6
-
Giachetti, T. & Gonnermann, H.M. (2013). Water in volcanic pyroclast: Rehydration or incomplete degassing? Earth and Planetary Science Letters, 369–370, 317–332. https://doi.org/10.1016/j.epsl.2013.03.041
-
Giachetti, T., Gonnermann, H. M., Gardner, J. E., Shea, T. & Gouldstone, A. (2015). Discriminating secondary from magmatic water in rhyolitic matrix-glass of volcanic pyroclasts using thermogravimetric analysis. Geochimica et Cosmochimica Acta, 148, 457–476. https://doi.org/10.1016/j.gca.2014.10.017
-
Giachetti, T., Hudak, M. R., Shea, T., Bindeman, I. N. & Hoxsie, E. C. (2020). D/H ratios and H2O contents record degassing and rehydration history of rhyolitic magma and pyroclasts. Earth and Planetary Science Letters, 530, Article 115909. https://doi.org/10.1016/j.epsl.2019.115909
-
Gonnermann, H. M. & Manga, M. (2007). The fluid mechanics inside a volcano. Annual Reviews of Fluid Mechanics, 39(1), 321–356. https://doi.org/10.1146/annurev.fluid.39.050905.110207
-
Hudak, M. R., Bindeman, I. N., Loewen, M. W. & Giachetti, T. (2021). Syn-eruptive hydration of volcanic ash records pyroclast-water interaction in explosive eruptions. Geophysical Research Letters, 48, Article e2021GL094141. https://doi.org/10.1029/2021GL094141
-
Hudak, M. R., Bindeman, I. N, Watkins, J. M. & Lowenstern, J. B. (2022). Hydrogen isotope behavior during rhyolite glass hydration under hydrothermal conditions. Geochimica et Cosmochimica Acta, 337, 33–48. https://doi.org/10.1016/j.gca.2022.09.032
-
Kaufhold, S., Reese, A., Schwiebacher, W., Dohrmann, R., Grathoff, G. H., Warr, L. N., Halisch, M., Müller, C., Schwarz-Schampera, U. & Ufer, K. (2014). Porosity and distribution of water in perlite from the island of Milos, Greece. SpringerPlus, 3, 598. https://doi.org/10.1186/2193-1801-3-598
-
Lacy, E. (1959). Hydrated Glasses. Nature, 183, 178–179. https://doi.org/10.1038/183178b0
-
Lenhardt, K.R., Breitzke, H., Buntkowsky, G., Reimhult, E., Willinger, M. & Rennert, T. (2021). Synthesis of short-range ordered aluminosilicates at ambient conditions. Scientific Reports, 11, Article 4207. https://doi.org/10.1038/s41598-021-83643-w
-
Lexa, J., Varga, P., Uhlik, P., Koděra, P., Biroň, A. & Rajnoha, M. (2021). Perlite deposits of the Central Slovakia Volcanic Field (Western Carpathians): Geology and properties. Geologica Carpathica, 72, 253–281. https://doi.org/10.31577/GeolCarp.72.3.5
-
Lofgren, G. (1971). Experimentally Produced Devitrification Textures in Natural Rhyolitic Glass. Geological Society of America Bulletin, 82, 111–124.
McIntosh, I. M., Llewellin, E. W., Humphreys, M. C. S., Nichols, A. R. L., Burgisser, A., Schipper, C. I. & Larsen, J. F. (2014). Distribution of dissolved water in magmatic glass records growth and resorption of bubbles. Earth and Planetary Science Letters, 401, 1–11. https://doi.org/10.1016/j.epsl.2014.05.037
-
Meier, V., Breitkreuz, C., Groß, D. & Ohser, J. (2023). Re‑evaluation of perlitic textures and fracture behavior in silica‑rich volcanic rocks. Bulletin of Volcanology, 85, 50. https://doi.org/10.1007/s00445-023-01659-8
-
Pandya, N., Muenow, D. W. & Sharma, S. K. (1992). The effect of bulk composition on the speciation of water in submarine volcanic glasses. Geochimica et Cosmochimica Acta, 56(5), 1875–1883. https://doi.org/10.1016/0016-7037(92)90317-C
-
Ross, C. S. & Smith, R. L. (1955). Water and other volatiles in volcanic glasses. American Mineralogist, 40(11–12), 1071–1089.
-
Schmitt, A. K., Danišík, M., Evans, N. J., Siebel, W., Kiemele, E., Aydin, F. & Harvey, J. C. (2011). Acigöl rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and zircon growth rates. Contributions to Mineralogy and Petrology, 162, 1215–1231. https://doi.org/10.1007/s00410-011-0648-x
-
Seligman, A.N., Bindeman, I.N., Watkins, J.M. & Ross, A.M. (2016). Water in volcanic glass: From volcanic degassing to secondary hydration. Geochimica et Cosmochimica Acta, 191, 216–238. https://doi.org/10.1016/j.gca.2016.07.010
-
Silver, L. A., Ihinger, P. D. & Stolper, E. (1990). The influence of bulk composition on the speciation of water in silicate glasses. Contributions to Mineralogy and Petrology, 104, 142–162. https://doi.org/10.1007/BF00306439
-
Sparks, R. S. J. (2003). Dynamics of magma degassing. Geological Society, London, Special Publications, 213, 5–22.
-
Stolper, E. (1982). The speciation of water in silicate melts. Geochimica et Cosmochimica Acta, 46(12), 2609–2620.
-
Zhang, Y. (1999). H2O in rhyolitic glasses and melts: measurement, speciation, solubility, and diffusion. Reviews of Geophysics, 37, 493–516.
-
Zhang, Y. & Behrens, H. (2000). H2O diffusion in rhyolitic melts and glasses. Chemical Geology, 169(1–2), 243–262. https://doi.org/10.1016/S0009-2541(99)00231-4