Effects of Mineral Additive Substitution on the Fresh State and Time-Dependent Hardened State Properties of Calcium Alumina Cement Mortars
Yıl 2023,
Cilt: 34 Sayı: 3, 139 - 162, 01.05.2023
Faruk Eren
,
Muhammer Keskinateş
,
Burak Felekoğlu
,
Kamile Tosun Felekoğlu
Öz
Calcium aluminate cements (CAC) are a candidate alternative binder to provide the requirements of a repair material such as accelerated hardening, good adhesion, compatibility with existing concrete, dimensional stability and corrosion resistance. The absence of water-soluble hydrated lime among the hydration products can also be accepted as an important advantage. However, the transformation reactions that may occur in the phase structure of the CAC depending on the ambient conditions over time may cause a loss of strength in the concrete produced with this cement. In this study, it is aimed to provide solutions to the problems arising from the conversion reactions in the hydration process of CAC, to improve the fresh state properties and to stabilize the strength development in the long term. Consequently, the effects of using CAC blended with different mineral additives (SiO2 and CaSO4) on the mortar consistency, setting time and rheological properties were investigated. In the hardened state, abrasion resistance and time-dependent compressive and flexural strength developments were determined. As a result of the experimental studies, it was concluded that the CAC mortars containing 16% SiO2 and 50% CaSO4 additives can provide improved properties in their fresh state, and they also demonstrate an improvement in strength after 400 days by obtaining stable products during the hydration process without any time-related strength loss.
Kaynakça
- N. Y. Mostafa, Z. I. Zaki, and O. H. Abd Elkader, “Chemical activation of calcium aluminate cement composites cured at elevated temperature,” Cem. Concr. Compos., vol. 34, no. 10, pp. 1187–1193, 2012, doi: 10.1016/j.cemconcomp.2012.08.002.
- A. Macias, A. Kindness, and F. P. Glasser, “Corrosion behaviour of steel in high alumina cement mortar cured at 5, 25 and 55°C: Chemical and physical factors,” J. Mater. Sci., vol. 31, no. 9, pp. 2279–2289, 1996, doi: 10.1007/BF01152936.
- H. M. Son, S. Park, H. Y. Kim, J. H. Seo, and H. K. Lee, “Effect of CaSO4 on hydration and phase conversion of calcium aluminate cement,” Constr. Build. Mater., vol. 224, pp. 40–47, 2019, doi: 10.1016/j.conbuildmat.2019.07.004.
- S. Moehmel, W. Gessner, T. A. Bier, and C. Parr, “The influence of microsilica on the course of hydration of monocalcium aluminate,” in In International conference on calcium aluminate cements, 2001, pp. 319–330.
- J. D. Birchall, A. J. Howard, and K. Kendall, “Flexural strength and porosity of cements,” Nature, vol. 289, no. 5796, pp. 388–390, 1981, doi: 10.1038/289388a0.
- K. L. Scrivener and A. Capmas, Calcium Aluminate Cements BT - Lea’s Chemistry of Cement and Concrete (Fourth Edition). 2003.
- K. L. Scrivener, J. L. Cabiron, and R. Letourneux, “High-performance concretes from calcium aluminate cements,” Cem. Concr. Res., vol. 29, no. 8, pp. 1215–1223, 1999, doi: 10.1016/S0008-8846(99)00103-9.
- H. F. Taylor, Cement chemistry. London: Thomas Telford, 1997.
- J. Matusinovic, T., Vrbos, N., and Sipusic, “Rapid setting and hardening calcium aluminate cement materials,” Zement-Kalk-Gips İnternational, vol. 58, no. 5, pp. 72–79, 2005.
- E. Sakai, T. Sugiyama, T. Saito, and M. Daimon, “Mechanical properties and micro-structures of calcium aluminate based ultra high strength cement,” Cem. Concr. Res., vol. 40, no. 6, pp. 966–970, 2010, doi: 10.1016/j.cemconres.2010.01.001.
- H. Fryda, K. L. Scrivener, G. Chanvillard, and C. Feron, “Relevance of laboratory tests to field applications of calcium aluminate cement concretes,” in In International conference on calcium aluminate cements, 2001, pp. 227–246.
- L. G. Andión, P. Garcés, F. Cases, C. García-Andreu, and J. L. Vazquez, “Metallic corrosion of steels embedded in calcium aluminate cement mortars,” Cem. Concr. Res., vol. 31, no. 9, pp. 1263–1269, 2001, doi: 10.1016/S0008-8846(01)00572-5.
- H. Lamour, V. H. R., Monteiro, P. J. M., Scrivener, K. L., and Fryda, “Mechanical properties of calcium aluminate cement concretes,” in In International conference on calcium aluminate cements, 2001, pp. 199–213.
- L. Scheinherrová and A. Trník, “Hydration of calcium aluminate cement determined by thermal analysis,” in AIP Conference Proceedings, 2017, doi: 10.1063/1.4994514.
- M. D. M. Alonso, M. Palacios, and F. Puertas, “Effect of polycarboxylate-ether admixtures on calcium aluminate cement pastes. Part 2: Hydration studies,” Ind. Eng. Chem. Res., vol. 52, no. 49, pp. 17330–1734, 2013, doi: 10.1021/ie401616f.
- Ş. Alpaslan and K. Tosun-Felekoğlu, “Polikarboksilat Bazlı Süperakışkanlaştırıcıların Kalsiyum Alüminat Çimentosunun Kıvam Koruma Performansı Üzerine Karşılaştırmalı Bir Çalışma,” Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilim. Derg., pp. 140–154, 2019.
- G. Türedi, Ö. Kasap Keskin, and S. B. Keskin, “Self-compacting mortar production by using calcium aluminate cement,” Mugla J. Sci. Technol., vol. 6, no. 2, pp. 18–27, 2020, doi: 10.22531/muglajsci.686144.
- O. Akhlaghi, Y. Z. Menceloglu, and O. Akbulut, “Poly(carboxylate ether)-based superplasticizer achieves workability retention in calcium aluminate cement,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017, doi: 10.1038/srep41743.
- H. M. Son, S. M. Park, J. G. Jang, and H. K. Lee, “Effect of nano-silica on hydration and conversion of calcium aluminate cement,” Constr. Build. Mater., vol. 169, pp. 819–825, 2018, doi: 10.1016/j.conbuildmat.2018.03.011.
- J. Ding, Y. Fu, and J. J. Beaudoin, “Strätlingite formation in high alumina cement - silica fume systems: Significance of sodium ions,” Cem. Concr. Res., vol. 25, no. 6, pp. 1311–1319, 1995, doi: 10.1016/0008-8846(95)00124-U.
- H. J. Yang, K. Y. Ann, and M. S. Jung, “Development of strength for calcium aluminate cement mortars blended with GGBS,” Adv. Mater. Sci. Eng., 2019, doi: 10.1155/2019/9896012.
- B. Majumdar, A. J., Edmonds, R. N., ve Singh, “Hydration of calcium aluminates in presence of granulated blast furnace slag,” in Calcium Aluminate Cements, 1990, pp. 259–271.
- Ö. Kirca, I. Özgür Yaman, and M. Tokyay, “Compressive strength development of calcium aluminate cement-GGBFS blends,” Cem. Concr. Compos., vol. 35, no. 1, pp. 163–170, 2013, doi: 10.1016/j.cemconcomp.2012.08.016.
- J. F. Zapata, H. A. Colorado, and M. A. Gomez, “Effect of high temperature and additions of silica on the microstructure and properties of calcium aluminate cement pastes,” J. Sustain. Cem. Mater., vol. 9, no. 6, pp. 323–349, 2020, doi: 10.1080/21650373.2020.1737593.
- M. Heikal, M. S. Morsy, and M. M. Radwan, “Electrical conductivity and phase composition of calcium aluminate cement containing air-cooled and water-cooled slag at 20, 40 and 60 °c,” Cem. Concr. Res., vol. 35, no. 7, pp. 1438–1446, 2005, doi: 10.1016/j.cemconres.2004.09.027.
- M. Heikal and M. M. Radwan, “Physico-chemical properties and microstructure of some blended systems,” Silic. Ind., vol. 71, no. 9, pp. 161–166, 2006.
- A. J. Majumdar, R. N. Edmonds, and B. Singh, “Hydration of Secar 71 aluminous cement in presence of granulated blast furnace slag,” Cem. Concr. Res., vol. 20, no. 1, pp. 7–14, 1990, doi: 10.1016/0008-8846(90)90111-A.
- A. J. Majumdar, B. Singh, and R. N. Edmonds, “Hydration of mixtures of ‘Ciment Fondu’ aluminous cement and granulated blast furnace slag,” Cem. Concr. Res., vol. 20, no. 2, pp. 197–208, 1990, doi: 10.1016/0008-8846(90)90072-6.
- M. Heikal, M. M. Radwan, and M. S. Morsy, “Influence of curing temperature on the physicomechanical, characteristics of calcium aluminate cement with air-cooled slag or water-cooled slag,” Ceram. - Silikaty, vol. 48, no. 4, pp. 185–196, 2004.
- N. Y. Mostafa and P. W. Brown, “Heat of hydration of high reactive pozzolans in blended cements: Isothermal conduction calorimetry,” Thermochim. Acta, vol. 435, no. 12, pp. 162–167, 2005, doi: 10.1016/j.tca.2005.05.014.
- A. J. Majumdar and B. Singh, “Properties of some blended high-alumina cements,” Cem. Concr. Res., vol. 22, no. 6, pp. 1101–1114, 1992, doi: 10.1016/0008-8846(92)90040-3.
- M. Collepardi, S. Monosi, and P. Piccioli, “The influence of pozzolanic materials on the mechanical stability of aluminous cement,” Cem. Concr. Res., vol. 25, no. 5, pp. 961–968, 1995, doi: 10.1016/0008-8846(95)00091-P.
- C. Gosselin, E. Gallucci, and K. Scrivener, “Influence of self heating and Li2SO4 addition on the microstructural development of calcium aluminate cement,” Cem. Concr. Res., vol. 40, no. 10, pp. 1555–1570, 2010, doi: 10.1016/j.cemconres.2010.06.012.
- D. Torréns-Martín, L. Fernández-Carrasco, and M. T. Blanco-Varela, “Conduction calorimetric studies of ternary binders based on Portland cement, calcium aluminate cement and calcium sulphate,” J. Therm. Anal. Calorim., vol. 114, no. 2, pp. 799–807, 2013, doi: 10.1007/s10973-013-3003-9.
- I. Santacruz et al., “Structure of stratlingite and effect of hydration methodology on microstructure,” Adv. Cem. Res., vol. 28, no. 1, pp. 13–22, 2016, doi: 10.1680/adcr.14.00104.
- L. Xu, P. Wang, and G. Zhang, “Formation of ettringite in Portland cement/calcium aluminate cement/calcium sulfate ternary system hydrates at lower temperatures,” Constr. Build. Mater., vol. 31, pp. 347–352, 2012, doi: 10.1016/j.conbuildmat.2011.12.078.
- F. Song, Z. Yu, F. Yang, Y. Liu, and Y. Lu, “Strätlingite and calcium hemicarboaluminate hydrate in belite-calcium sulphoaluminate cement,” Ceram. - Silikaty, vol. 58, pp. 269–274, 2014.
- J. F. Georgin and E. Prud’Homme, “Hydration modelling of an ettringite-based binder,” Cem. Concr. Res., vol. 76, pp. 51–61, 2015, doi: 10.1016/j.cemconres.2015.05.009.
- M. P. Adams, R. D. Lute, E. G. Moffatt, and J. H. Ideker, “Evaluation of a procedure for determining the converted strength of calcium aluminate cement concrete,” J. Test. Eval., vol. 46, no. 4, pp. 1659–1672, 2018, doi: 10.1520/JTE20160277.
- ASTM, “ASTM C1437 - Standard test method for flow of hydraulic cement mortar,” 2013.
- “TS EN 196-3 : Çimento deney yöntemleri - Bölüm 3: Priz süreleri ve genleşme tayini,” Ankara, 2017.
- B. Felekoğlu, “Yüksek performanslı mikro beton tasarımı,” Dokuz eylül üniversitesi, 2009.
- M. Westerholm, B. Lagerblad, and E. Forssberg, “Rheological properties of micromortars containing fines from manufactured aggregates,” Mater. Struct. Constr., vol. 40, no. 6, pp. 615–625, 2007, doi: 10.1617/s11527-006-9173-1.
- M. Keskinateş and B. Felekoğlu, “The influence of mineral additive type and water/binder ratio on matrix phase rheology and multiple cracking potential of HTPP-ECC,” Constr. Build. Mater., vol. 173, pp. 508–519, 2018, doi: 10.1016/j.conbuildmat.2018.04.038.
- TS EN14157, “TS EN 14157. Doğal taşlar - Deney yöntemleri - Aşınma direncinin tayini,” Ankara, 2017.
- F. Eren, “Kalsiyum alüminat çimentolu harçların reolojik davranışlarının ve uzun dönemli dayanım-dayanıklılık özelliklerinin incelenmesi,” Dokuz Eylül Üniversitesi, 2022.
- C. Atiş, “Yüksek oranda uçucu kül kullanımı ile üretilen betonun aşınma direnci,” Tek. Dergi, vol. 11, no. 4, pp. 2217–2230, 2000.
- C. Atiş, “Uçucu kül içeren beton için aşınma-boşluk oranı-dayanım modeli,” Tek. Dergi, vol. 14, no. 4, pp. 3035–3040, 2003.
- M. Keskinateş, “Çoklu çatlak davranışı gösteren farklı polimerik lifli çimento esaslı kompozitlerin mikromekanik tabanlı tasarımları ve kıyaslanması,” Dokuz Eylül Üniversitesi, 2022.
- G. Land and D. Stephan, “The influence of nano-silica on the hydration of ordinary Portland cement,” J. Mater. Sci., vol. 47, no. 2, pp. 1011–1017, 2012, doi: 10.1007/s10853-011-5881-1.
- J. H. Ideker, “Early-Age Behavior of Calcium Aluminate Cement Systems,” The University of Texas at Austin, 2008.
- H. Kim, H. M. Son, and H. K. Lee, “Review on recent advances in securing the long-term durability of calcium aluminate cement (cac)-based systems,” Functional Composites and Structures. 2021, doi: 10.1088/2631-6331/ac1913.
- J. Skalny, I. Jawed, and H. F. W. Taylor, “Studies on hydration of cement-recent developments,” World Cem Technol, vol. 9, no. 6, pp. 183–6, 1978.
- J. Bizzozero and K. L. Scrivener, “Limestone reaction in calcium aluminate cement-calcium sulfate systems,” Cem. Concr. Res., vol. 76, pp. 159–169, 2015, doi: 10.1016/j.cemconres.2015.05.019.
- F. Eren, M. Keskinateş, B. Felekoğlu, and K. Tosun-Felekoğlu, “The role of Pre-Heating and mineral additive modification on Long-Term strength development of calcium aluminate cement mortars,” Constr. Build. Mater., vol. 340, no. 127720, 2022.
- M. Rößler and I. Odler, “Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes I. Effect of porosity,” Cem. Concr. Res., vol. 15, no. 2, pp. 320–330, 1985, doi: 10.1016/0008-8846(85)90044-4.
- N. Ukrainczyk, T. Matusinovic, S. Kurajica, B. Zimmermann, and J. Sipusic, “Dehydration of a layered double hydroxide-C2AH8,” Thermochim. Acta, vol. 464, no. 1–2, pp. 7–15, 2007, doi: 10.1016/j.tca.2007.07.022.
- J. Ding, Y. Fu, and J. J. Beaudoin, “Study of hydration mechanisms in the high alumina cement - Sodium silicate system,” Cem. Concr. Res., vol. 26, no. 5, pp. 799–804, 1996, doi: 10.1016/S0008-8846(96)85017-4.
- C. D. Atiş, “High Volume Fly Ash Abrasion Resistant Concrete,” J. Mater. Civ. Eng., vol. 14, no. 3, pp. 274–277, 2002, doi: 10.1061/(asce)0899-1561(2002)14:3(274).
- G. K. Febin et al., “Strength and durability properties of quarry dust powder incorporated concrete blocks,” Constr. Build. Mater., vol. 228, no. 116793, 2019, doi: 10.1016/j.conbuildmat.2019.116793.
- “TS 699: Doğal yapı taşları - İnceleme ve laboratuvar deney yöntemleri,” Ankara, 2009.
- “TS 2824 EN 1338/AC: Zemin döşemesi için beton kaplama blokları - Gerekli şartlar ve deney metotları,” Ankara, 2009.
- “TS EN 1338/AC: Zemin döşemesi için beton kaplama blokları - Gerekli şartlar ve deney metotları,” Ankara, 2006.
- O. Karahan, C. D. Atiş, and K. Arı, “Metakaolin ve silis dumanı içeren harçların aşınma direncinin karşılaştırılması,” Kayseri, 2011.
- C. D. Atiş, O. Karahan, and K. Arı, “Alkali ile aktifleştirilmiş cüruf harcının aşınma direncinin araştırılması,” Kayseri, 2010.
- B. Felekoǧlu, S. Türkel, and Y. Altuntaş, “Effects of steel fiber reinforcement on surface wear resistance of self-compacting repair mortars,” Cem. Concr. Compos., vol. 25, no. 9, pp. 391–396, 2007, doi: 10.1016/j.cemconcomp.2006.12.010.
- A. Kandemir, “Kendiliğinden yerleşen betonun kalıcılık özelliklerinin incelenmesi,” Dokuz Eylül Üniversitesi, 2005.
- O. Karpuz and M. V. Akpınar, “İnce Agrega Türünün Kaplama Betonunun Asınma Direncine Etkisi,” Yapı Teknol. Elektron. Derg., vol. 5, no. 2, pp. 1–8, 2009.
- D. Mindess, S., Young, F. J., & Darwin, Concrete 2nd Editio. 2003.
- Ş. E. Güldür, “Mikronize kalsit katkısının beton özelliklerine etkisinin araştırılması,” Niğde Üniversitesi, 2013.
- A. Mardani-Aghabaglou, H. Hosseinnezhad, O. C. Boyacı, Ö. Arıöz, İ. Ö. Yaman, and K. Ramyar, “Abrasion resistance and transport properties of road concrete,” in 12th International Symposium on Concrete Roads, 2014, pp. 23–26.
Mineral Katkı İkamesinin Kalsiyum Alümina Çimentolu Harçların Taze Hal ve Zamana Bağlı Sertleşmiş Hal Özelliklerine Etkileri
Yıl 2023,
Cilt: 34 Sayı: 3, 139 - 162, 01.05.2023
Faruk Eren
,
Muhammer Keskinateş
,
Burak Felekoğlu
,
Kamile Tosun Felekoğlu
Öz
Kalsiyum alüminat çimentoları (KAÇ) bir onarım malzemesinden beklenen; hızlı sertleşme, iyi yapışma, mevcut betonla uyumluluk, boyutsal kararlılık ve korozyon direnci gibi özellikleri sağlamaya aday bir alternatif bağlayıcıdır. Hidratasyon ürünleri arasında suda çözünür kireç olmaması da önemli bir avantaj olarak görülebilir. Ancak KAÇ’ın zaman içerisinde ortam koşullarına bağlı olarak faz yapısında meydana gelebilen dönüşüm reaksiyonları, bu çimento ile üretilen betonlarda dayanım kaybına neden olabilmektedir. Bu çalışmada KAÇ’ın hidratasyon sürecindeki dönüşüm reaksiyonlarından kaynaklanan problemlere çözüm sunmak, taze hal özelliklerini geliştirmek ve uzun dönemde dayanım gelişimini kararlı hale getirmek amaçlanmıştır. Buna bağlı olarak, farklı mineral katkı kaynaklarının (SiO2 ve CaSO4), KAÇ ile birlikte kullanımının harç kıvamı, priz süresi ve reolojik özelliklere etkileri incelenmiştir. Sertleşmiş halde aşınma dayanıklılığı ve zamana bağlı basınç ve eğilme dayanımı gelişimleri belirlenmiştir. Deneysel çalışmalar sonucunda, %16 SiO2 katkılı ve %50 CaSO4 katkılı KAÇ içeren harçların, taze hal özelliklerinde kullanım alanlarına uygun gelişmiş özellikler kazandırabildiği ve hidratasyon sürecinde kararlı ürünler elde ederek zamana bağlı bir mukavemet kaybına uğramadan, 400 günlük periyot sonunda dayanım gelişimi gösterdiği sonucuna ulaşılmıştır.
Kaynakça
- N. Y. Mostafa, Z. I. Zaki, and O. H. Abd Elkader, “Chemical activation of calcium aluminate cement composites cured at elevated temperature,” Cem. Concr. Compos., vol. 34, no. 10, pp. 1187–1193, 2012, doi: 10.1016/j.cemconcomp.2012.08.002.
- A. Macias, A. Kindness, and F. P. Glasser, “Corrosion behaviour of steel in high alumina cement mortar cured at 5, 25 and 55°C: Chemical and physical factors,” J. Mater. Sci., vol. 31, no. 9, pp. 2279–2289, 1996, doi: 10.1007/BF01152936.
- H. M. Son, S. Park, H. Y. Kim, J. H. Seo, and H. K. Lee, “Effect of CaSO4 on hydration and phase conversion of calcium aluminate cement,” Constr. Build. Mater., vol. 224, pp. 40–47, 2019, doi: 10.1016/j.conbuildmat.2019.07.004.
- S. Moehmel, W. Gessner, T. A. Bier, and C. Parr, “The influence of microsilica on the course of hydration of monocalcium aluminate,” in In International conference on calcium aluminate cements, 2001, pp. 319–330.
- J. D. Birchall, A. J. Howard, and K. Kendall, “Flexural strength and porosity of cements,” Nature, vol. 289, no. 5796, pp. 388–390, 1981, doi: 10.1038/289388a0.
- K. L. Scrivener and A. Capmas, Calcium Aluminate Cements BT - Lea’s Chemistry of Cement and Concrete (Fourth Edition). 2003.
- K. L. Scrivener, J. L. Cabiron, and R. Letourneux, “High-performance concretes from calcium aluminate cements,” Cem. Concr. Res., vol. 29, no. 8, pp. 1215–1223, 1999, doi: 10.1016/S0008-8846(99)00103-9.
- H. F. Taylor, Cement chemistry. London: Thomas Telford, 1997.
- J. Matusinovic, T., Vrbos, N., and Sipusic, “Rapid setting and hardening calcium aluminate cement materials,” Zement-Kalk-Gips İnternational, vol. 58, no. 5, pp. 72–79, 2005.
- E. Sakai, T. Sugiyama, T. Saito, and M. Daimon, “Mechanical properties and micro-structures of calcium aluminate based ultra high strength cement,” Cem. Concr. Res., vol. 40, no. 6, pp. 966–970, 2010, doi: 10.1016/j.cemconres.2010.01.001.
- H. Fryda, K. L. Scrivener, G. Chanvillard, and C. Feron, “Relevance of laboratory tests to field applications of calcium aluminate cement concretes,” in In International conference on calcium aluminate cements, 2001, pp. 227–246.
- L. G. Andión, P. Garcés, F. Cases, C. García-Andreu, and J. L. Vazquez, “Metallic corrosion of steels embedded in calcium aluminate cement mortars,” Cem. Concr. Res., vol. 31, no. 9, pp. 1263–1269, 2001, doi: 10.1016/S0008-8846(01)00572-5.
- H. Lamour, V. H. R., Monteiro, P. J. M., Scrivener, K. L., and Fryda, “Mechanical properties of calcium aluminate cement concretes,” in In International conference on calcium aluminate cements, 2001, pp. 199–213.
- L. Scheinherrová and A. Trník, “Hydration of calcium aluminate cement determined by thermal analysis,” in AIP Conference Proceedings, 2017, doi: 10.1063/1.4994514.
- M. D. M. Alonso, M. Palacios, and F. Puertas, “Effect of polycarboxylate-ether admixtures on calcium aluminate cement pastes. Part 2: Hydration studies,” Ind. Eng. Chem. Res., vol. 52, no. 49, pp. 17330–1734, 2013, doi: 10.1021/ie401616f.
- Ş. Alpaslan and K. Tosun-Felekoğlu, “Polikarboksilat Bazlı Süperakışkanlaştırıcıların Kalsiyum Alüminat Çimentosunun Kıvam Koruma Performansı Üzerine Karşılaştırmalı Bir Çalışma,” Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilim. Derg., pp. 140–154, 2019.
- G. Türedi, Ö. Kasap Keskin, and S. B. Keskin, “Self-compacting mortar production by using calcium aluminate cement,” Mugla J. Sci. Technol., vol. 6, no. 2, pp. 18–27, 2020, doi: 10.22531/muglajsci.686144.
- O. Akhlaghi, Y. Z. Menceloglu, and O. Akbulut, “Poly(carboxylate ether)-based superplasticizer achieves workability retention in calcium aluminate cement,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017, doi: 10.1038/srep41743.
- H. M. Son, S. M. Park, J. G. Jang, and H. K. Lee, “Effect of nano-silica on hydration and conversion of calcium aluminate cement,” Constr. Build. Mater., vol. 169, pp. 819–825, 2018, doi: 10.1016/j.conbuildmat.2018.03.011.
- J. Ding, Y. Fu, and J. J. Beaudoin, “Strätlingite formation in high alumina cement - silica fume systems: Significance of sodium ions,” Cem. Concr. Res., vol. 25, no. 6, pp. 1311–1319, 1995, doi: 10.1016/0008-8846(95)00124-U.
- H. J. Yang, K. Y. Ann, and M. S. Jung, “Development of strength for calcium aluminate cement mortars blended with GGBS,” Adv. Mater. Sci. Eng., 2019, doi: 10.1155/2019/9896012.
- B. Majumdar, A. J., Edmonds, R. N., ve Singh, “Hydration of calcium aluminates in presence of granulated blast furnace slag,” in Calcium Aluminate Cements, 1990, pp. 259–271.
- Ö. Kirca, I. Özgür Yaman, and M. Tokyay, “Compressive strength development of calcium aluminate cement-GGBFS blends,” Cem. Concr. Compos., vol. 35, no. 1, pp. 163–170, 2013, doi: 10.1016/j.cemconcomp.2012.08.016.
- J. F. Zapata, H. A. Colorado, and M. A. Gomez, “Effect of high temperature and additions of silica on the microstructure and properties of calcium aluminate cement pastes,” J. Sustain. Cem. Mater., vol. 9, no. 6, pp. 323–349, 2020, doi: 10.1080/21650373.2020.1737593.
- M. Heikal, M. S. Morsy, and M. M. Radwan, “Electrical conductivity and phase composition of calcium aluminate cement containing air-cooled and water-cooled slag at 20, 40 and 60 °c,” Cem. Concr. Res., vol. 35, no. 7, pp. 1438–1446, 2005, doi: 10.1016/j.cemconres.2004.09.027.
- M. Heikal and M. M. Radwan, “Physico-chemical properties and microstructure of some blended systems,” Silic. Ind., vol. 71, no. 9, pp. 161–166, 2006.
- A. J. Majumdar, R. N. Edmonds, and B. Singh, “Hydration of Secar 71 aluminous cement in presence of granulated blast furnace slag,” Cem. Concr. Res., vol. 20, no. 1, pp. 7–14, 1990, doi: 10.1016/0008-8846(90)90111-A.
- A. J. Majumdar, B. Singh, and R. N. Edmonds, “Hydration of mixtures of ‘Ciment Fondu’ aluminous cement and granulated blast furnace slag,” Cem. Concr. Res., vol. 20, no. 2, pp. 197–208, 1990, doi: 10.1016/0008-8846(90)90072-6.
- M. Heikal, M. M. Radwan, and M. S. Morsy, “Influence of curing temperature on the physicomechanical, characteristics of calcium aluminate cement with air-cooled slag or water-cooled slag,” Ceram. - Silikaty, vol. 48, no. 4, pp. 185–196, 2004.
- N. Y. Mostafa and P. W. Brown, “Heat of hydration of high reactive pozzolans in blended cements: Isothermal conduction calorimetry,” Thermochim. Acta, vol. 435, no. 12, pp. 162–167, 2005, doi: 10.1016/j.tca.2005.05.014.
- A. J. Majumdar and B. Singh, “Properties of some blended high-alumina cements,” Cem. Concr. Res., vol. 22, no. 6, pp. 1101–1114, 1992, doi: 10.1016/0008-8846(92)90040-3.
- M. Collepardi, S. Monosi, and P. Piccioli, “The influence of pozzolanic materials on the mechanical stability of aluminous cement,” Cem. Concr. Res., vol. 25, no. 5, pp. 961–968, 1995, doi: 10.1016/0008-8846(95)00091-P.
- C. Gosselin, E. Gallucci, and K. Scrivener, “Influence of self heating and Li2SO4 addition on the microstructural development of calcium aluminate cement,” Cem. Concr. Res., vol. 40, no. 10, pp. 1555–1570, 2010, doi: 10.1016/j.cemconres.2010.06.012.
- D. Torréns-Martín, L. Fernández-Carrasco, and M. T. Blanco-Varela, “Conduction calorimetric studies of ternary binders based on Portland cement, calcium aluminate cement and calcium sulphate,” J. Therm. Anal. Calorim., vol. 114, no. 2, pp. 799–807, 2013, doi: 10.1007/s10973-013-3003-9.
- I. Santacruz et al., “Structure of stratlingite and effect of hydration methodology on microstructure,” Adv. Cem. Res., vol. 28, no. 1, pp. 13–22, 2016, doi: 10.1680/adcr.14.00104.
- L. Xu, P. Wang, and G. Zhang, “Formation of ettringite in Portland cement/calcium aluminate cement/calcium sulfate ternary system hydrates at lower temperatures,” Constr. Build. Mater., vol. 31, pp. 347–352, 2012, doi: 10.1016/j.conbuildmat.2011.12.078.
- F. Song, Z. Yu, F. Yang, Y. Liu, and Y. Lu, “Strätlingite and calcium hemicarboaluminate hydrate in belite-calcium sulphoaluminate cement,” Ceram. - Silikaty, vol. 58, pp. 269–274, 2014.
- J. F. Georgin and E. Prud’Homme, “Hydration modelling of an ettringite-based binder,” Cem. Concr. Res., vol. 76, pp. 51–61, 2015, doi: 10.1016/j.cemconres.2015.05.009.
- M. P. Adams, R. D. Lute, E. G. Moffatt, and J. H. Ideker, “Evaluation of a procedure for determining the converted strength of calcium aluminate cement concrete,” J. Test. Eval., vol. 46, no. 4, pp. 1659–1672, 2018, doi: 10.1520/JTE20160277.
- ASTM, “ASTM C1437 - Standard test method for flow of hydraulic cement mortar,” 2013.
- “TS EN 196-3 : Çimento deney yöntemleri - Bölüm 3: Priz süreleri ve genleşme tayini,” Ankara, 2017.
- B. Felekoğlu, “Yüksek performanslı mikro beton tasarımı,” Dokuz eylül üniversitesi, 2009.
- M. Westerholm, B. Lagerblad, and E. Forssberg, “Rheological properties of micromortars containing fines from manufactured aggregates,” Mater. Struct. Constr., vol. 40, no. 6, pp. 615–625, 2007, doi: 10.1617/s11527-006-9173-1.
- M. Keskinateş and B. Felekoğlu, “The influence of mineral additive type and water/binder ratio on matrix phase rheology and multiple cracking potential of HTPP-ECC,” Constr. Build. Mater., vol. 173, pp. 508–519, 2018, doi: 10.1016/j.conbuildmat.2018.04.038.
- TS EN14157, “TS EN 14157. Doğal taşlar - Deney yöntemleri - Aşınma direncinin tayini,” Ankara, 2017.
- F. Eren, “Kalsiyum alüminat çimentolu harçların reolojik davranışlarının ve uzun dönemli dayanım-dayanıklılık özelliklerinin incelenmesi,” Dokuz Eylül Üniversitesi, 2022.
- C. Atiş, “Yüksek oranda uçucu kül kullanımı ile üretilen betonun aşınma direnci,” Tek. Dergi, vol. 11, no. 4, pp. 2217–2230, 2000.
- C. Atiş, “Uçucu kül içeren beton için aşınma-boşluk oranı-dayanım modeli,” Tek. Dergi, vol. 14, no. 4, pp. 3035–3040, 2003.
- M. Keskinateş, “Çoklu çatlak davranışı gösteren farklı polimerik lifli çimento esaslı kompozitlerin mikromekanik tabanlı tasarımları ve kıyaslanması,” Dokuz Eylül Üniversitesi, 2022.
- G. Land and D. Stephan, “The influence of nano-silica on the hydration of ordinary Portland cement,” J. Mater. Sci., vol. 47, no. 2, pp. 1011–1017, 2012, doi: 10.1007/s10853-011-5881-1.
- J. H. Ideker, “Early-Age Behavior of Calcium Aluminate Cement Systems,” The University of Texas at Austin, 2008.
- H. Kim, H. M. Son, and H. K. Lee, “Review on recent advances in securing the long-term durability of calcium aluminate cement (cac)-based systems,” Functional Composites and Structures. 2021, doi: 10.1088/2631-6331/ac1913.
- J. Skalny, I. Jawed, and H. F. W. Taylor, “Studies on hydration of cement-recent developments,” World Cem Technol, vol. 9, no. 6, pp. 183–6, 1978.
- J. Bizzozero and K. L. Scrivener, “Limestone reaction in calcium aluminate cement-calcium sulfate systems,” Cem. Concr. Res., vol. 76, pp. 159–169, 2015, doi: 10.1016/j.cemconres.2015.05.019.
- F. Eren, M. Keskinateş, B. Felekoğlu, and K. Tosun-Felekoğlu, “The role of Pre-Heating and mineral additive modification on Long-Term strength development of calcium aluminate cement mortars,” Constr. Build. Mater., vol. 340, no. 127720, 2022.
- M. Rößler and I. Odler, “Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes I. Effect of porosity,” Cem. Concr. Res., vol. 15, no. 2, pp. 320–330, 1985, doi: 10.1016/0008-8846(85)90044-4.
- N. Ukrainczyk, T. Matusinovic, S. Kurajica, B. Zimmermann, and J. Sipusic, “Dehydration of a layered double hydroxide-C2AH8,” Thermochim. Acta, vol. 464, no. 1–2, pp. 7–15, 2007, doi: 10.1016/j.tca.2007.07.022.
- J. Ding, Y. Fu, and J. J. Beaudoin, “Study of hydration mechanisms in the high alumina cement - Sodium silicate system,” Cem. Concr. Res., vol. 26, no. 5, pp. 799–804, 1996, doi: 10.1016/S0008-8846(96)85017-4.
- C. D. Atiş, “High Volume Fly Ash Abrasion Resistant Concrete,” J. Mater. Civ. Eng., vol. 14, no. 3, pp. 274–277, 2002, doi: 10.1061/(asce)0899-1561(2002)14:3(274).
- G. K. Febin et al., “Strength and durability properties of quarry dust powder incorporated concrete blocks,” Constr. Build. Mater., vol. 228, no. 116793, 2019, doi: 10.1016/j.conbuildmat.2019.116793.
- “TS 699: Doğal yapı taşları - İnceleme ve laboratuvar deney yöntemleri,” Ankara, 2009.
- “TS 2824 EN 1338/AC: Zemin döşemesi için beton kaplama blokları - Gerekli şartlar ve deney metotları,” Ankara, 2009.
- “TS EN 1338/AC: Zemin döşemesi için beton kaplama blokları - Gerekli şartlar ve deney metotları,” Ankara, 2006.
- O. Karahan, C. D. Atiş, and K. Arı, “Metakaolin ve silis dumanı içeren harçların aşınma direncinin karşılaştırılması,” Kayseri, 2011.
- C. D. Atiş, O. Karahan, and K. Arı, “Alkali ile aktifleştirilmiş cüruf harcının aşınma direncinin araştırılması,” Kayseri, 2010.
- B. Felekoǧlu, S. Türkel, and Y. Altuntaş, “Effects of steel fiber reinforcement on surface wear resistance of self-compacting repair mortars,” Cem. Concr. Compos., vol. 25, no. 9, pp. 391–396, 2007, doi: 10.1016/j.cemconcomp.2006.12.010.
- A. Kandemir, “Kendiliğinden yerleşen betonun kalıcılık özelliklerinin incelenmesi,” Dokuz Eylül Üniversitesi, 2005.
- O. Karpuz and M. V. Akpınar, “İnce Agrega Türünün Kaplama Betonunun Asınma Direncine Etkisi,” Yapı Teknol. Elektron. Derg., vol. 5, no. 2, pp. 1–8, 2009.
- D. Mindess, S., Young, F. J., & Darwin, Concrete 2nd Editio. 2003.
- Ş. E. Güldür, “Mikronize kalsit katkısının beton özelliklerine etkisinin araştırılması,” Niğde Üniversitesi, 2013.
- A. Mardani-Aghabaglou, H. Hosseinnezhad, O. C. Boyacı, Ö. Arıöz, İ. Ö. Yaman, and K. Ramyar, “Abrasion resistance and transport properties of road concrete,” in 12th International Symposium on Concrete Roads, 2014, pp. 23–26.