Araştırma Makalesi
BibTex RIS Kaynak Göster

Protective role of Curcumin in distant tissue damage (heart, kidney and lung) induced bt liver ischemia-reperfusion in rats

Yıl 2025, Cilt: 16 Sayı: 4, 497 - 504, 01.01.2026
https://doi.org/10.18663/tjcl.1770047

Öz

Purpose: There are many different mechanisms in the pathogenesis of distant tissue injury, the generation of reactive oxygen species is the most frequently observed mechanism. Therefore, in this study, we investigated the protective role of curcumin on remote tissue (heart, kidney and lung) damage induced by experimentally induced liver ischemia reperfusion (I/R).
Materials and Methods: The study, 24 Wistar-Albino rats were used. Three groups(n=8) consisted on Sham, I/R, Curcumin. The rats were opened through a midline incision and the hepatic portal vein and hepatic artery leading to the liver were closed with a bulldog clamp. The I/R group was subjected to 45minutes of ischemia followed by 45minutes of reperfusion. Curcumin at a dose of 100mg/kg was given intraperitoneally to the treatment group. Rats were sacrificed after the experiment for biochemical examination. Reduced glutathione(GSH) and 8-isoprostagladinF2α(8-isoPGF2α) levels in liver, heart, kidney and lung tissue samples were measured to determine remote tissue damage, oxidative stress damage and protective effects of curcumin.
Results: GSH levels in liver, heart, kidney and lung tissues were significantly higher and 8-isoPGF2α levels were significantly lower in curcumin group (p<0.05).
Conclusion: Intraperitoneal administration of curcumin after liver I/R induction may protect against I/R injury by regulating the functions of both local and distant tissues.

Etik Beyan

All experimental procedures were carried out at the Kahramanmaras Sutcu Imam University Animal Laboratory following ethical guidelines approved by the Kahramanmaras Sutcu Imam University Experimental Animal Ethics Committee (Date: 30.01.2025, Decision number:02).

Kaynakça

  • Guan LY, Fu PY, Li PD, Zhao H, Li WY, Li Q, et al. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide. World J Gastrointest Surg 2014; 6: 122–128.
  • Serracino-Inglott F, Habib NA, Mathie RT. Hepatic ischemia-reperfusion injury. Am J Surg 2021; 181: 160–166.
  • Zhang S, Feng Z, Gao W, Zhang Y, Jiang B, Liu Y, et al. Aucubin attenuates liver ischemia-reperfusion injury by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway, oxidative stress, and apoptosis. Front Pharmacol 2020; 11: 544124.
  • Cannistrà M, Ruggiero M, Zullo A, Serafini S, Grande R, Gaspari A, et al. Hepatic ischemia reperfusion injury: a systematic review of literature and the role of current drugs and biomarkers. Int J Surg 2016; 33: S57–S70.
  • Oguz A, Kapan M, Onder A, Firat U, Kilic M, Goksoy E, et al. The effects of kurkumin on the liver and remote organs after hepatic ischemia reperfusion injury formed with Pringle manoeuvre in rats. Eur Rev Med Pharmacol Sci 2013; 17: 457–466.
  • Wang L, Li N, Lin D, Xu Y, Huang H, Chen X, et al. Kurkumin protects against hepatic ischemia/reperfusion induced injury through inhibiting TLR4/NF-κB pathway. Oncotarget 2017; 8: 65414–20.
  • Yılmaz Savcun G, Özkan E, Dulundu E, Ayan AK, Yeğen C, Savaş B, et al. Antioxidant and anti-inflammatory effects of kurkumin against hepatorenal oxidative injury in an experimental sepsis model in rats. Ulus Travma Acil Cerr Derg 2013; 19: 507–15.
  • Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol 2014; 5: 196.
  • Vairetti M, Di Pasqua LG, Cagna M, Ferrigno A, Richelmi P, Perlini S, et al. Changes in glutathione content in liver diseases: an update. Antioxidants (Basel) 2021; 10: 364.
  • Çetin YS, Düzenli U, Berköz M, Uslu E, Karadeniz T, Çakır T, et al. An investigation of 8-hydroxy-2’-deoxyguanosine and 8-isoprostaglandin F2α levels in patients with larynx carcinoma. ENT Updates 2020; 10: 335–9.
  • Kant M, Akıs M, Çalan M, Kara M, Güngör N, Demirtaş A, et al. Elevated urinary levels of 8-oxo-2′-deoxyguanosine, (5′R)- and (5′S)-8,5′-cyclo-2′-deoxyadenosines, and 8-iso-prostaglandin F2α as potential biomarkers of oxidative stress in patients with prediabetes. DNA Repair 2016; 48: 1–7.
  • Rachısan AL, Hrusca A, Stefanescu A, Iliescu DG, Andreica V, Costache C, et al. Role of 8-iso-prostaglandin F2α in evolution of chronic liver diseases in children. J Environ Prot Ecol 2018; 19: 400–6.
  • Beutler E. Red cell metabolism: a manual of biochemical methods. 2nd ed. New York: Grune and Stratton Inc; 1984. pp. 68–70.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265–75.
  • Bavarsad K, Riahi MM, Saadat S, Izadi A, Ghaemi A, Ashrafi J, et al. Protective effects of kurkumin against ischemia-reperfusion injury in the liver. Pharmacol Res 2019; 141: 53–62.
  • Serteser M, Koken T, Kahraman A, Yilmaz K, Derya M, Uysal M, et al. Changes in hepatic TNF-α levels, antioxidant status, and oxidation products after renal ischemia/reperfusion injury in mice. J Surg Res 2002; 107: 234–40.
  • Zoubo H, Sunfeng X. Post-treatment kurkumin reduced ischemia–reperfusion-induced pulmonary injury via the Notch2/Hes-1 pathway. J Int Med Res 2019; 48: 1–11.
  • Fan Y, Chen H, Peng H, Li P, Zheng J, Xu B, et al. Molecular mechanisms of kurkumin renoprotection in experimental acute renal injury. Front Pharmacol 2017; 8: 912.
  • Yang L, Chen X, Bi Z, Zhang Y, Guo D, Li W, et al. Kurkumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation. Korean J Physiol Pharmacol 2021; 25: 413–23.
  • Zheng S, Yumei F, Chen A. De novo synthesis of glutathione is a prerequisite for kurkumin to inhibit HSC activation. Free Radic Biol Med 2007; 43: 444–53.
  • Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 2009; 30: 1–12.
  • Singh A, Lee KJ, Lee CY, Kim HY, Park YH, Jung HJ, et al. Relation between myocardial glutathione content and extent of ischemia-reperfusion injury. Circulation 1989; 80: 1795–804.
  • Stein HJ, Oosthuizen MM, Hinder RA, Bergner EA, Klingman N, Eckstein MJ, et al. Oxygen free radicals and glutathione in hepatic ischemia/reperfusion injury. J Surg Res 1991; 50: 398–402.
  • Kim YS, Park HJ, Joo SY, Kang JH, Oh SH, Bae JW, et al. The protective effect of kurkumin on myocardial ischemia-reperfusion injury. Korean Circ J 2008; 38: 353–9.
  • Ren Y, Lin S, Liu W, Wu J, Wang L, Zhang Z, et al. Hepatic remote ischemic preconditioning (RIPC) protects heart damages induced by ischemia reperfusion injury in mice. Front Physiol 2021; 12: 713564.
  • Noorbakhsh MF, Arab HA, Kazerani HR. Liver ischemia preconditions the heart against ischemia-reperfusion arrhythmias. Iran J Basic Med Sci 2015; 18: 80–8.
  • Ferrari R, Ceconi C, Curello C, Cargnoni A, Pasini E, Albertini A, et al. Oxygen-mediated myocardial damage during ischemia and reperfusion: role of the cellular defenses against oxygen toxicity. J Mol Cell Cardiol 1985; 17: 937–45.
  • Nazam Ansari M, Bhandari U, Pillai KK. Protective role of kurkumin in myocardial oxidative damage induced by isoproterenol in rats. Hum Exp Toxicol 2007; 26: 933–8.
  • Cui X, Lin L, Sun X, Wang Y, Zhao H, Chen J, et al. Kurkumin protects against renal ischemia/reperfusion injury by regulating oxidative stress and inflammatory response. Evid Based Complement Alternat Med 2021; 2021: 8490772.
  • Erturk N, Elbe H, Dogan Z, Taslidere E, Yıldırım S, Turkoz Y, et al. Kurkumin prevents renal oxidative stress and tissue damage induced by renal ischemia/reperfusion in rats. Int Surg J 2018; 5: 3192–7.
  • Wu NC, Wang JJ. Kurkumin attenuates liver warm ischemia and reperfusion-induced combined restrictive and obstructive lung disease by reducing matrix metalloprotease 9 activity. Transplant Proc 2014; 46: 1135–8.
  • Sun J, Yang D, Li S, Wang C, Wang D, Zhao Y, et al. Effects of kurkumin or dexamethasone on lung ischaemia–reperfusion injury in rats. Eur Respir J 2009; 33: 398–404.
  • Bringhentti E, Borges SC, Neves CQ, Silva DO, Almeida RO, Freitas LM, et al. Remote organs respond differently to kurkumin treatment after intestinal ischemia/reperfusion injury. Res Soc Dev 2020; 9: e1519119660.
  • Sommer SP, Sommer S, Sinha B, Stöckigt F, Epple S, Kübler W, et al. Glutathione preconditioning ameliorates mitochondria dysfunction during warm pulmonary ischemia-reperfusion injury. Eur J Cardiothorac Surg 2012; 41: 140–8.
  • Marczylo TH, Steward WP, Gescher AJ. Rapid analysis of kurkumin and kurkumin metabolites in rat biomatrices using a novel ultraperformance liquid chromatography (UPLC) method. J Agric Food Chem 2009; 57: 797–803.
  • Neganova M, Liu J, Aleksandrova Y, Zekiy AO, Mikhaleva LM, Wen H, et al. Therapeutic influence on important targets associated with chronic inflammation and oxidative stress in cancer treatment. Cancers 2021; 13: 6062.
  • Pan DS, Yan M, Hassan M, Zhang L, Ma Y, Liu B, et al. Plasma 8-iso-prostaglandin F2α, a possible prognostic marker in aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2017; 469: 166–70.
  • Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y, et al. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord 2012; 50: 264–74.
  • Szymańska B, Sawicka E, Matuszewski M, Polom W, Matuszewska A, Skowron B, et al. The dependence between urinary levels of angiogenesis factors, 8-iso-prostaglandin F2α, γ-synuclein, and interleukin-13 in patients with bladder cancer: a pilot study. J Oncol 2020; 2020: 4848752.
  • Elesber AA, Best PJ, Lennon RJ, Rihal CS, Holmes DR, Lerman A, et al. Plasma 8-iso-prostaglandin F2α, a marker of oxidative stress, is increased in patients with acute myocardial infarction. Free Radic Res 2006; 40: 385–91.
  • Xue M, Liu M, Zhu X, Zhang Y, Wang Z, Gao L, et al. Effective components of Panax quinquefolius and Corydalis tuber protect myocardium through attenuating oxidative stress and endoplasmic reticulum stress. Evid Based Complement Alternat Med 2013; 2013: 482318.
  • Lim PS, Chang YM, Thien LM, Tien CL, Leu ML, Wang C, et al. 8-iso-prostaglandin F2α as a useful clinical biomarker of oxidative stress in ESRD patients. Blood Purif 2002; 20: 537–42.
  • Cort A, Ozdemir E, Timur M, Ozturk OH, Inan M, Aslan M, et al. Effects of kurkumin on bleomycin-induced oxidative stress in malignant testicular germ cell tumors. Mol Med Rep 2012; 6: 860–6.
  • Calaf GM, Echiburú-Chau C, Roy D, Urzúa U, Aguayo F, Villegas J, et al. Protective role of kurkumin in oxidative stress of breast cells. Oncol Rep 2011; 26: 1029–35.

Sıçanlarda karaciğer iskemisi-reperfüzyonunun neden olduğu uzak doku hasarında (kalp, böbrek ve akciğer) Kurkuminin koruyucu rolü

Yıl 2025, Cilt: 16 Sayı: 4, 497 - 504, 01.01.2026
https://doi.org/10.18663/tjcl.1770047

Öz

Amaç: Uzak doku hasarının patogenezinde birçok farklı mekanizma vardır ve reaktif oksijen türlerinin oluşumu en sık gözlenen mekanizmadır. Bu nedenle, bu çalışmada, deneysel olarak indüklenen karaciğer iskemi reperfüzyonu (I/R) tarafından indüklenen uzak doku (kalp, böbrek ve akciğer) hasarı üzerinde kurkuminin koruyucu rolünü araştırdık. Materyal ve Metod: Çalışmada 24 Wistar-Albino sıçan kullanıldı. Üç grup (n=8) Sham, I/R ve Kurkumin'den oluşuyordu. Üç grup (n=8) Sham, I/R ve Curcumin'den oluşmuştur. Sıçanlar orta hat kesisi ile açılmış ve karaciğere giden hepatik portal ven ve hepatik arter bulldog klemp ile kapatılmıştır. I/R grubu 45 dakika iskemiye ve ardından 45 dakika reperfüzyona tabi tutulmuştur. Tedavi grubuna 100 mg/kg dozunda kurkumin intraperitoneal olarak verildi. Deneyden sonra sıçanlar biyokimyasal inceleme için öldürüldü. Karaciğer, kalp, böbrek ve akciğer doku örneklerinde indirgenmiş glutatyon (GSH) ve 8-izoprostagladinF2α (8-isoPGF2α) düzeyleri ölçülerek uzak doku hasarı, oksidatif stres hasarı ve kurkuminin koruyucu etkileri belirlendi.
Bulgular: Karaciğer, kalp, böbrek ve akciğer dokularındaki GSH düzeyleri kurkumin grubunda anlamlı olarak daha yüksek, 8-isoPGF2α düzeyleri ise anlamlı olarak daha düşüktü (p<0,05).
Sonuç: Karaciğer I/R indüksiyonundan sonra intraperitoneal kurkumin uygulaması, hem lokal hem de uzak dokuların işlevlerini düzenleyerek I/R hasarına karşı koruma sağlayabilir.

Etik Beyan

Tüm deney prosedürleri, Kahramanmaraş Sütçü İmam Üniversitesi Deney Hayvanları Etik Kurulu tarafından onaylanan etik kurallara uygun olarak Kahramanmaraş Sütçü İmam Üniversitesi Hayvan Laboratuvarı'nda gerçekleştirilmiştir (Tarih: 30.01.2025, Karar numarası: 02).

Kaynakça

  • Guan LY, Fu PY, Li PD, Zhao H, Li WY, Li Q, et al. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide. World J Gastrointest Surg 2014; 6: 122–128.
  • Serracino-Inglott F, Habib NA, Mathie RT. Hepatic ischemia-reperfusion injury. Am J Surg 2021; 181: 160–166.
  • Zhang S, Feng Z, Gao W, Zhang Y, Jiang B, Liu Y, et al. Aucubin attenuates liver ischemia-reperfusion injury by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway, oxidative stress, and apoptosis. Front Pharmacol 2020; 11: 544124.
  • Cannistrà M, Ruggiero M, Zullo A, Serafini S, Grande R, Gaspari A, et al. Hepatic ischemia reperfusion injury: a systematic review of literature and the role of current drugs and biomarkers. Int J Surg 2016; 33: S57–S70.
  • Oguz A, Kapan M, Onder A, Firat U, Kilic M, Goksoy E, et al. The effects of kurkumin on the liver and remote organs after hepatic ischemia reperfusion injury formed with Pringle manoeuvre in rats. Eur Rev Med Pharmacol Sci 2013; 17: 457–466.
  • Wang L, Li N, Lin D, Xu Y, Huang H, Chen X, et al. Kurkumin protects against hepatic ischemia/reperfusion induced injury through inhibiting TLR4/NF-κB pathway. Oncotarget 2017; 8: 65414–20.
  • Yılmaz Savcun G, Özkan E, Dulundu E, Ayan AK, Yeğen C, Savaş B, et al. Antioxidant and anti-inflammatory effects of kurkumin against hepatorenal oxidative injury in an experimental sepsis model in rats. Ulus Travma Acil Cerr Derg 2013; 19: 507–15.
  • Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol 2014; 5: 196.
  • Vairetti M, Di Pasqua LG, Cagna M, Ferrigno A, Richelmi P, Perlini S, et al. Changes in glutathione content in liver diseases: an update. Antioxidants (Basel) 2021; 10: 364.
  • Çetin YS, Düzenli U, Berköz M, Uslu E, Karadeniz T, Çakır T, et al. An investigation of 8-hydroxy-2’-deoxyguanosine and 8-isoprostaglandin F2α levels in patients with larynx carcinoma. ENT Updates 2020; 10: 335–9.
  • Kant M, Akıs M, Çalan M, Kara M, Güngör N, Demirtaş A, et al. Elevated urinary levels of 8-oxo-2′-deoxyguanosine, (5′R)- and (5′S)-8,5′-cyclo-2′-deoxyadenosines, and 8-iso-prostaglandin F2α as potential biomarkers of oxidative stress in patients with prediabetes. DNA Repair 2016; 48: 1–7.
  • Rachısan AL, Hrusca A, Stefanescu A, Iliescu DG, Andreica V, Costache C, et al. Role of 8-iso-prostaglandin F2α in evolution of chronic liver diseases in children. J Environ Prot Ecol 2018; 19: 400–6.
  • Beutler E. Red cell metabolism: a manual of biochemical methods. 2nd ed. New York: Grune and Stratton Inc; 1984. pp. 68–70.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265–75.
  • Bavarsad K, Riahi MM, Saadat S, Izadi A, Ghaemi A, Ashrafi J, et al. Protective effects of kurkumin against ischemia-reperfusion injury in the liver. Pharmacol Res 2019; 141: 53–62.
  • Serteser M, Koken T, Kahraman A, Yilmaz K, Derya M, Uysal M, et al. Changes in hepatic TNF-α levels, antioxidant status, and oxidation products after renal ischemia/reperfusion injury in mice. J Surg Res 2002; 107: 234–40.
  • Zoubo H, Sunfeng X. Post-treatment kurkumin reduced ischemia–reperfusion-induced pulmonary injury via the Notch2/Hes-1 pathway. J Int Med Res 2019; 48: 1–11.
  • Fan Y, Chen H, Peng H, Li P, Zheng J, Xu B, et al. Molecular mechanisms of kurkumin renoprotection in experimental acute renal injury. Front Pharmacol 2017; 8: 912.
  • Yang L, Chen X, Bi Z, Zhang Y, Guo D, Li W, et al. Kurkumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation. Korean J Physiol Pharmacol 2021; 25: 413–23.
  • Zheng S, Yumei F, Chen A. De novo synthesis of glutathione is a prerequisite for kurkumin to inhibit HSC activation. Free Radic Biol Med 2007; 43: 444–53.
  • Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 2009; 30: 1–12.
  • Singh A, Lee KJ, Lee CY, Kim HY, Park YH, Jung HJ, et al. Relation between myocardial glutathione content and extent of ischemia-reperfusion injury. Circulation 1989; 80: 1795–804.
  • Stein HJ, Oosthuizen MM, Hinder RA, Bergner EA, Klingman N, Eckstein MJ, et al. Oxygen free radicals and glutathione in hepatic ischemia/reperfusion injury. J Surg Res 1991; 50: 398–402.
  • Kim YS, Park HJ, Joo SY, Kang JH, Oh SH, Bae JW, et al. The protective effect of kurkumin on myocardial ischemia-reperfusion injury. Korean Circ J 2008; 38: 353–9.
  • Ren Y, Lin S, Liu W, Wu J, Wang L, Zhang Z, et al. Hepatic remote ischemic preconditioning (RIPC) protects heart damages induced by ischemia reperfusion injury in mice. Front Physiol 2021; 12: 713564.
  • Noorbakhsh MF, Arab HA, Kazerani HR. Liver ischemia preconditions the heart against ischemia-reperfusion arrhythmias. Iran J Basic Med Sci 2015; 18: 80–8.
  • Ferrari R, Ceconi C, Curello C, Cargnoni A, Pasini E, Albertini A, et al. Oxygen-mediated myocardial damage during ischemia and reperfusion: role of the cellular defenses against oxygen toxicity. J Mol Cell Cardiol 1985; 17: 937–45.
  • Nazam Ansari M, Bhandari U, Pillai KK. Protective role of kurkumin in myocardial oxidative damage induced by isoproterenol in rats. Hum Exp Toxicol 2007; 26: 933–8.
  • Cui X, Lin L, Sun X, Wang Y, Zhao H, Chen J, et al. Kurkumin protects against renal ischemia/reperfusion injury by regulating oxidative stress and inflammatory response. Evid Based Complement Alternat Med 2021; 2021: 8490772.
  • Erturk N, Elbe H, Dogan Z, Taslidere E, Yıldırım S, Turkoz Y, et al. Kurkumin prevents renal oxidative stress and tissue damage induced by renal ischemia/reperfusion in rats. Int Surg J 2018; 5: 3192–7.
  • Wu NC, Wang JJ. Kurkumin attenuates liver warm ischemia and reperfusion-induced combined restrictive and obstructive lung disease by reducing matrix metalloprotease 9 activity. Transplant Proc 2014; 46: 1135–8.
  • Sun J, Yang D, Li S, Wang C, Wang D, Zhao Y, et al. Effects of kurkumin or dexamethasone on lung ischaemia–reperfusion injury in rats. Eur Respir J 2009; 33: 398–404.
  • Bringhentti E, Borges SC, Neves CQ, Silva DO, Almeida RO, Freitas LM, et al. Remote organs respond differently to kurkumin treatment after intestinal ischemia/reperfusion injury. Res Soc Dev 2020; 9: e1519119660.
  • Sommer SP, Sommer S, Sinha B, Stöckigt F, Epple S, Kübler W, et al. Glutathione preconditioning ameliorates mitochondria dysfunction during warm pulmonary ischemia-reperfusion injury. Eur J Cardiothorac Surg 2012; 41: 140–8.
  • Marczylo TH, Steward WP, Gescher AJ. Rapid analysis of kurkumin and kurkumin metabolites in rat biomatrices using a novel ultraperformance liquid chromatography (UPLC) method. J Agric Food Chem 2009; 57: 797–803.
  • Neganova M, Liu J, Aleksandrova Y, Zekiy AO, Mikhaleva LM, Wen H, et al. Therapeutic influence on important targets associated with chronic inflammation and oxidative stress in cancer treatment. Cancers 2021; 13: 6062.
  • Pan DS, Yan M, Hassan M, Zhang L, Ma Y, Liu B, et al. Plasma 8-iso-prostaglandin F2α, a possible prognostic marker in aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2017; 469: 166–70.
  • Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y, et al. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord 2012; 50: 264–74.
  • Szymańska B, Sawicka E, Matuszewski M, Polom W, Matuszewska A, Skowron B, et al. The dependence between urinary levels of angiogenesis factors, 8-iso-prostaglandin F2α, γ-synuclein, and interleukin-13 in patients with bladder cancer: a pilot study. J Oncol 2020; 2020: 4848752.
  • Elesber AA, Best PJ, Lennon RJ, Rihal CS, Holmes DR, Lerman A, et al. Plasma 8-iso-prostaglandin F2α, a marker of oxidative stress, is increased in patients with acute myocardial infarction. Free Radic Res 2006; 40: 385–91.
  • Xue M, Liu M, Zhu X, Zhang Y, Wang Z, Gao L, et al. Effective components of Panax quinquefolius and Corydalis tuber protect myocardium through attenuating oxidative stress and endoplasmic reticulum stress. Evid Based Complement Alternat Med 2013; 2013: 482318.
  • Lim PS, Chang YM, Thien LM, Tien CL, Leu ML, Wang C, et al. 8-iso-prostaglandin F2α as a useful clinical biomarker of oxidative stress in ESRD patients. Blood Purif 2002; 20: 537–42.
  • Cort A, Ozdemir E, Timur M, Ozturk OH, Inan M, Aslan M, et al. Effects of kurkumin on bleomycin-induced oxidative stress in malignant testicular germ cell tumors. Mol Med Rep 2012; 6: 860–6.
  • Calaf GM, Echiburú-Chau C, Roy D, Urzúa U, Aguayo F, Villegas J, et al. Protective role of kurkumin in oxidative stress of breast cells. Oncol Rep 2011; 26: 1029–35.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Kimya
Bölüm Araştırma Makalesi
Yazarlar

Ünal Öztürk 0000-0001-8461-5595

Figen Güzelgül 0000-0002-2796-9511

Işıl Yağmur 0000-0002-7009-4693

Ergul Belge Kurutas 0000-0002-6653-4801

Gönderilme Tarihi 21 Ağustos 2025
Kabul Tarihi 11 Kasım 2025
Yayımlanma Tarihi 1 Ocak 2026
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 4

Kaynak Göster

APA Öztürk, Ü., Güzelgül, F., Yağmur, I., Belge Kurutas, E. (2026). Sıçanlarda karaciğer iskemisi-reperfüzyonunun neden olduğu uzak doku hasarında (kalp, böbrek ve akciğer) Kurkuminin koruyucu rolü. Turkish Journal of Clinics and Laboratory, 16(4), 497-504. https://doi.org/10.18663/tjcl.1770047
AMA Öztürk Ü, Güzelgül F, Yağmur I, Belge Kurutas E. Sıçanlarda karaciğer iskemisi-reperfüzyonunun neden olduğu uzak doku hasarında (kalp, böbrek ve akciğer) Kurkuminin koruyucu rolü. TJCL. Ocak 2026;16(4):497-504. doi:10.18663/tjcl.1770047
Chicago Öztürk, Ünal, Figen Güzelgül, Işıl Yağmur, ve Ergul Belge Kurutas. “Sıçanlarda karaciğer iskemisi-reperfüzyonunun neden olduğu uzak doku hasarında (kalp, böbrek ve akciğer) Kurkuminin koruyucu rolü”. Turkish Journal of Clinics and Laboratory 16, sy. 4 (Ocak 2026): 497-504. https://doi.org/10.18663/tjcl.1770047.
EndNote Öztürk Ü, Güzelgül F, Yağmur I, Belge Kurutas E (01 Ocak 2026) Sıçanlarda karaciğer iskemisi-reperfüzyonunun neden olduğu uzak doku hasarında (kalp, böbrek ve akciğer) Kurkuminin koruyucu rolü. Turkish Journal of Clinics and Laboratory 16 4 497–504.
IEEE Ü. Öztürk, F. Güzelgül, I. Yağmur, ve E. Belge Kurutas, “Sıçanlarda karaciğer iskemisi-reperfüzyonunun neden olduğu uzak doku hasarında (kalp, böbrek ve akciğer) Kurkuminin koruyucu rolü”, TJCL, c. 16, sy. 4, ss. 497–504, 2026, doi: 10.18663/tjcl.1770047.
ISNAD Öztürk, Ünal vd. “Sıçanlarda karaciğer iskemisi-reperfüzyonunun neden olduğu uzak doku hasarında (kalp, böbrek ve akciğer) Kurkuminin koruyucu rolü”. Turkish Journal of Clinics and Laboratory 16/4 (Ocak2026), 497-504. https://doi.org/10.18663/tjcl.1770047.
JAMA Öztürk Ü, Güzelgül F, Yağmur I, Belge Kurutas E. Sıçanlarda karaciğer iskemisi-reperfüzyonunun neden olduğu uzak doku hasarında (kalp, böbrek ve akciğer) Kurkuminin koruyucu rolü. TJCL. 2026;16:497–504.
MLA Öztürk, Ünal vd. “Sıçanlarda karaciğer iskemisi-reperfüzyonunun neden olduğu uzak doku hasarında (kalp, böbrek ve akciğer) Kurkuminin koruyucu rolü”. Turkish Journal of Clinics and Laboratory, c. 16, sy. 4, 2026, ss. 497-04, doi:10.18663/tjcl.1770047.
Vancouver Öztürk Ü, Güzelgül F, Yağmur I, Belge Kurutas E. Sıçanlarda karaciğer iskemisi-reperfüzyonunun neden olduğu uzak doku hasarında (kalp, böbrek ve akciğer) Kurkuminin koruyucu rolü. TJCL. 2026;16(4):497-504.


e-ISSN: 2149-8296

The content of this site is intended for health care professionals. All the published articles are distributed under the terms of

Creative Commons Attribution Licence,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.