Derleme
BibTex RIS Kaynak Göster

Yağ asidi kompozisyon değişikliklerinin kalp damar hastalıkları açısından önemi

Yıl 2020, Cilt: 11 Sayı: 4, 323 - 333, 30.09.2020
https://doi.org/10.18663/tjcl.687043

Öz

Bu derlemede ilk olarak; yağ asitlerinin yapısı, adlandırması, sınıflandırması ve fizyolojik etkileri gibi bilgiler verilmiş, sonrasında yağ asitleri ile kalp-damar hastalıkları arasındaki ilişkiyi araştıran çalışmalar irdelenmiştir. Yağ asitleri, yağların ve hücre zarının yapısına katılan, vücut için enerji kaynağı görevi üstlenmelerinin yanı sıra birçok metabolik yolakta yer alan, önemli fizyolojik işlevlere sahip biyolojik bileşiklerdir. Bu bileşikler diyetle alınabildiği gibi bir kısmı da vücutta öncül maddelerden sentezlenebilmektedir. Kültür, din, coğrafya, iklim gibi faktörlere göre besin tüketim şeklinin değişkenlik göstermesi ve yağ asidi metabolizmalarında görev alan enzimlerin aktiviteleri yağ asidi kompozisyonunu etkilemektedir. Yağ asitlerinin biyolojik etkileri, yağ asidi türüne göre farklılık gösterir. Bu nedenle, yağ asidi profilindeki değişiklikler, sağlık-hastalık durumu için değerli hale gelmekte ve yağ asidi kompozisyonu ile hastalıklar arasında ilişki kurulmaktadır. Bu kompozisyonun belirlenmesinde yağ dokusu, eritrosit hücre zarı, plazma ve serum gibi biyolojik örnekler kullanılmaktadır. Yağ asidi ölçüm işlemleri genellikle gaz kromatografisi yöntemiyle gerçekleştirilir. Ölçülen değerler kullanılarak oluşturulan indekslerle yağ asidi metabolizmasında görev alan enzimlerin aktiviteleri hesaplanır. Mevcut veriler, yağ asidi kompozisyonundaki değişikliklerin, özellikle kalp damar hastalıkları olmak üzere birçok kronik hastalık patolojisi ile ilişkili olduğunu ve biyobelirteç olarak kullanılma potansiyeli taşıdığını işaret etmektedir. Ancak, bu ilişki tam olarak aydınlatılamamıştır. Bu nedenle, güncel teknolojik yöntemlerden faydalanılarak özellikle tüm yağ asidi profilinin araştırıldığı yeni çalışmalar önemini korumaktadır.

Destekleyen Kurum

Makale için destek alınmadı.

Kaynakça

  • 1. Burdge GC, Calder PC. Introduction to fatty acids and lipids. World Rev Nutr Diet 2015; 112: 1-16.
  • 2. Tvrzicka E, Kremmyda LS, Stankova B, Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease--a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011; 155(2): 117-30.
  • 3. Papamandjaris AA, MacDougall DE, Jones PJ. Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci 1998; 62(14): 1203-15.
  • 4. Konukoğlu D. Omega-3 ve omega-6 yağ asitlerinin özellikleri, etkileri ve kardiyovasküler hastalıklar ile ilişkiler. Türkiye Aile Hekimliği Dergisi 2008; 12(3): 121-129.
  • 5. Gurr MI, Harwood JL, Frayn KN. Lipid biochemistry. Vol. 409. 2002: Springer.
  • 6. Sardesai VM. The essential fatty acids. Nutr Clin Pract 1992; 7(4): 179-86.
  • 7. Flores G, Blanch GP, Del Castillo MLR. Effect of postharvest methyl jasmonate treatment on fatty acid composition and phenolic acid content in olive fruits during storage. J Sci Food Agric 2017; 97(9): 2767-2772.
  • 8. Becker W, Eriksson A, Haglund M, Wretling S. Contents of total fat, fatty acids, starch, sugars and dietary fibre in Swedish market basket diets. Br J Nutr 2015; 113(9): 1453-65.
  • 9. Navarro-Prado S, Schmidt-RioValle J, Montero-Alonso MA, Fernandez-Aparicio A, Gonzalez-Jimenez E. Unhealthy Lifestyle and Nutritional Habits Are Risk Factors for Cardiovascular Diseases Regardless of Professed Religion in University Students. Int J Environ Res Public Health 2018; 15(12).
  • 10. Elorinne AL, Alfthan G, Erlund I, et al. Food and Nutrient Intake and Nutritional Status of Finnish Vegans and Non-Vegetarians. PLoS One 2016; 11(2): e0148235.
  • 11. Dias Fda S, Passos ME, do Carmo M, Lopes ML, Valente Mesquita VL. Fatty acid profile of biscuits and salty snacks consumed by Brazilian college students. Food Chem 2015; 171: 351-5.
  • 12. Chaouachi A, Chamari K, Roky R, et al. Lipid profiles of judo athletes during Ramadan. Int J Sports Med 2008; 29(4): 282-8.
  • 13. Sarri KO, Linardakis MK, Bervanaki FN, Tzanakis NE, Kafatos AG. Greek Orthodox fasting rituals: a hidden characteristic of the Mediterranean diet of Crete. Br J Nutr 2004; 92(2): 277-84.
  • 14. Hamilton JA, Johnson RA, Corkey B, Kamp F. Fatty acid transport: the diffusion mechanism in model and biological membranes. J Mol Neurosci 2001; 16(2-3): 99-108; discussion 151-7.
  • 15. Calder PC. Fatty acids and inflammation: the cutting edge between food and pharma. European journal of pharmacology 2011; 668: S50-S58.
  • 16. Brenna JT, Salem N, Sinclair AJ, Cunnane SC. α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins, Leukotrienes and Essential Fatty Acids 2009; 80(2): 85-91.
  • 17. Carta G, Murru E, Banni S, Manca C. Palmitic acid: Physiological role, metabolism and nutritional implications. Frontiers in physiology 2017; 8: 902.
  • 18. Nakamura MT, Nara TY. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr 2004; 24: 345-76.
  • 19. Solinas G, Borén J, Dulloo AG. De novo lipogenesis in metabolic homeostasis: More friend than foe? Molecular metabolism 2015; 4(5): 367-377.
  • 20. Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 2009; 297(1): E28-37.
  • 21. Cho HP, Nakamura MT, Clarke SD. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J Biol Chem 1999; 274(1): 471-7.
  • 22. Rodriguez A, Sarda P, Nessmann C, Boulot P, Leger CL, Descomps B. Delta6- and delta5-desaturase activities in the human fetal liver: kinetic aspects. J Lipid Res 1998; 39(9): 1825-32.
  • 23. Abe Y, Okada T, Iguchi H, et al. Association of changes in body fatness and fatty acid composition of plasma phospholipids during early puberty in Japanese children. J Atheroscler Thromb 2012; 19(12): 1102-9.
  • 24. Sjögren P, Sierra-Johnson J, Gertow K, et al. Fatty acid desaturases in human adipose tissue: relationships between gene expression, desaturation indexes and insulin resistance. Diabetologia 2008; 51(2): 328-335.
  • 25. Maruyama C, Yoneyama M, Suyama N, et al. Differences in serum phospholipid fatty acid compositions and estimated desaturase activities between Japanese men with and without metabolic syndrome. Journal of atherosclerosis and thrombosis 2008: 0812050007-0812050007.
  • 26. Saito E, Okada T, Abe Y, et al. Docosahexaenoic acid content in plasma phospholipids and desaturase indices in obese children. Journal of atherosclerosis and thrombosis 2011: 1102040344-1102040344.
  • 27. Ramirez M, Amate L, Gil A. Absorption and distribution of dietary fatty acids from different sources. Early Hum Dev 2001; 65 Suppl: S95-s101.
  • 28. Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2014; 53: 124-44.
  • 29. Schonfeld P, Reiser G. Brain energy metabolism spurns fatty acids as fuel due to their inherent mitotoxicity and potential capacity to unleash neurodegeneration. Neurochem Int 2017; 109: 68-77.
  • 30. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 2008; 9(2): 112-24.
  • 31. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 2000; 79(1): 328-39.
  • 32. Vasquez V, Krieg M, Lockhead D, Goodman MB. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. Cell Rep 2014; 6(1): 70-80.
  • 33. De Craene J-O, Bertazzi DL, Bär S, Friant S. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways. International journal of molecular sciences 2017; 18(3): 634.
  • 34. Hedo JA, Collier E, Watkinson A. Myristyl and palmityl acylation of the insulin receptor. J Biol Chem 1987; 262(3): 954-7.
  • 35. Olson EN, Towler DA, Glaser L. Specificity of fatty acid acylation of cellular proteins. J Biol Chem 1985; 260(6): 3784-90.
  • 36. Samuelsson B. Prostaglandins, thromboxanes, and leukotrienes: formation and biological roles. Harvey lectures 1979; 75: 1-40.
  • 37. Pegorier JP, Le May C, Girard J. Control of gene expression by fatty acids. J Nutr 2004; 134(9): 2444s-2449s.
  • 38. Katan MB, Deslypere JP, Penders M, van Staveren WA. Biological markers of dietary intake, with emphasis on fatty acids. Annals of nutrition and metabolism 1991; 35(5): 249-252.
  • 39. Farquhar JW, Ahrens EH. Effects of dietary fats on human erythrocyte fatty acid patterns. The Journal of clinical investigation 1963; 42(5): 675-685.
  • 40. Fielding BA. Omega-3 index as a prognosis tool in cardiovascular disease. Curr Opin Clin Nutr Metab Care 2017; 20(5): 360-365.
  • 41. LeWitt PA, Li J, Lu M, Guo L, Auinger P. Metabolomic biomarkers as strong correlates of Parkinson disease progression. Neurology 2017; 88(9): 862-869.
  • 42. Kabagambe EK, Ezeamama AE, Guwatudde D, Campos H, Fawzi W. Plasma n-6 Fatty Acid Levels Are Associated With CD4 Cell Counts, Hospitalization, and Mortality in HIV-Infected Patients. J Acquir Immune Defic Syndr 2016; 73(5): 598-605.
  • 43. Kim SW, Jhon M, Kim JM, et al. Relationship between Erythrocyte Fatty Acid Composition and Psychopathology in the Vienna Omega-3 Study. PLoS One 2016; 11(3): e0151417.
  • 44. Cottet V, Vaysse C, Scherrer ML, et al. Fatty acid composition of adipose tissue and colorectal cancer: a case-control study. Am J Clin Nutr 2015; 101(1): 192-201.
  • 45. Malik VS, Chiuve SE, Campos H, et al. Circulating Very-Long-Chain Saturated Fatty Acids and Incident Coronary Heart Disease in US Men and Women. Circulation 2015; 132(4): 260-8.
  • 46. Jackson KH, Harris WS. Blood Fatty Acid Profiles: New Biomarkers for Cardiometabolic Disease Risk. Curr Atheroscler Rep 2018; 20(5): 22.
  • 47. Wiese DM, Horst SN, Brown CT, et al. Serum Fatty Acids Are Correlated with Inflammatory Cytokines in Ulcerative Colitis. PLoS One 2016; 11(5): e0156387.
  • 48. Maciejewska D, Marlicz W, Ryterska K, Banaszczak M, Jamiol-Milc D, Stachowska E. Changes of the Fatty Acid Profile in Erythrocyte Membranes of Patients following 6-Month Dietary Intervention Aimed at the Regression of Nonalcoholic Fatty Liver Disease (NAFLD). Can J Gastroenterol Hepatol 2018; 2018: 5856201.
  • 49. Vessby B, Uusitupa M, Hermansen K, et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 2001; 44(3): 312-319.
  • 50. Goozee K, Chatterjee P, James I, et al. Alterations in erythrocyte fatty acid composition in preclinical Alzheimer’s disease. Scientific reports 2017; 7(1): 1-9.
  • 51. Roth GA, Johnson C, Abajobir A, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol 2017; 70(1): 1-25.
  • 52. Townsend N, Nichols M, Scarborough P, Rayner M. Cardiovascular disease in Europe--epidemiological update 2015. Eur Heart J 2015; 36(40): 2696-705.
  • 53. Makiguchi M, Kawaguchi H, Tamura M, Yasuda H. Effect of palmitic acid and fatty acid binding protein on ventricular fibrillation threshold in the perfused rat heart. Cardiovasc Drugs Ther 1991; 5(4): 753-61.
  • 54. Grekin RJ, Vollmer AP, Sider RS. Pressor effects of portal venous oleate infusion. A proposed mechanism for obesity hypertension. Hypertension 1995; 26(1): 193-8.
  • 55. Huang JM, Xian H, Bacaner M. Long-chain fatty acids activate calcium channels in ventricular myocytes. Proc Natl Acad Sci U S A 1992; 89(14): 6452-6.
  • 56. Carlsson M, Wessman Y, Almgren P, Groop L. High levels of nonesterified fatty acids are associated with increased familial risk of cardiovascular disease. Arterioscler Thromb Vasc Biol 2000; 20(6): 1588-94.
  • 57. Westphal S, Gekeler GH, Dierkes J, Wieland H, Luley C. A free fatty acid tolerance test identifies patients with coronary artery disease among individuals with a low conventional coronary risk profile. Heart Vessels 2002; 16(3): 79-85.
  • 58. Tripathy D, Mohanty P, Dhindsa S, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 2003; 52(12): 2882-7.
  • 59. de Jongh RT, Serne EH, Ijzerman RG, de Vries G, Stehouwer CD. Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes 2004; 53(11): 2873-82.
  • 60. Mathew M, Tay E, Cusi K. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects. Cardiovasc Diabetol 2010; 9: 9.
  • 61. Khawaja O, Bartz TM, Ix JH, et al. Plasma free fatty acids and risk of atrial fibrillation (from the Cardiovascular Health Study). Am J Cardiol 2012; 110(2): 212-6.
  • 62. Djousse L, Weir NL, Hanson NQ, Tsai MY, Gaziano JM. Plasma phospholipid concentration of cis-palmitoleic acid and risk of heart failure. Circ Heart Fail 2012; 5(6): 703-9.
  • 63. Ebbesson SE, Lopez-Alvarenga JC, Okin P, et al. Heart rate is associated with markers of fatty acid desaturation: the GOCADAN study. International journal of circumpolar health 2012; 71(1): 17343.
  • 64. Harris WS, Von Schacky C. The Omega-3 Index: a new risk factor for death from coronary heart disease? Prev Med 2004; 39(1): 212-20.
  • 65. Lee SM, An WS. Cardioprotective effects of omega -3 PUFAs in chronic kidney disease. Biomed Res Int 2013; 2013: 712949.
  • 66. Nozue T, Yamamoto S, Tohyama S, et al. Effects of serum n-3 to n-6 polyunsaturated fatty acids ratios on coronary atherosclerosis in statin-treated patients with coronary artery disease. Am J Cardiol 2013; 111(1): 6-11.
  • 67. Fan Y-Y, Ly LH, Barhoumi R, McMurray DN, Chapkin RS. Dietary docosahexaenoic acid suppresses T cell protein kinase Cθ lipid raft recruitment and IL-2 production. The Journal of Immunology 2004; 173(10): 6151-6160.
  • 68. Talukdar S, Bae EJ, Imamura T, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010; 142(5): 687-698.
  • 69. Chen J, Shearer GC, Chen Q, et al. Omega-3 fatty acids prevent pressure overload–induced cardiac fibrosis through activation of cyclic GMP/protein kinase G signaling in cardiac fibroblasts. Circulation 2011; 123(6): 584-593.
  • 70. O'Keefe JH, Jr., Abuissa H, Sastre A, Steinhaus DM, Harris WS. Effects of omega-3 fatty acids on resting heart rate, heart rate recovery after exercise, and heart rate variability in men with healed myocardial infarctions and depressed ejection fractions. Am J Cardiol 2006; 97(8): 1127-30.
  • 71. Kinsella JE, Lokesh B, Stone RA. Dietary n-3 polyunsaturated fatty acids and amelioration of cardiovascular disease: possible mechanisms. Am J Clin Nutr 1990; 52(1): 1-28.
  • 72. Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 2017; 45(5): 1105-1115.
  • 73. Covington M. Omega-3 fatty acids. American family physician 2004; 70(1): 133-140.
  • 74. Dönmez ME, Asova M. Prostaglandinlerin Kadın Reprodüktif Sistemi Üzerine Etkileri Ve Gebelikte Kullanılmaları. Turkiye Klinikleri Journal of Medical Sciences 1987; 7(1): 9-15.
  • 75. Tuncer M. Ateroskleroz ve endotele-bağımlı cevaplar. FABAD J. Pharm. Sci 1991; 16(239): 249.
  • 76. Jain AP, Aggarwal KK, Zhang PY. Omega-3 fatty acids and cardiovascular disease. Eur Rev Med Pharmacol Sci 2015; 19(3): 441-5.
  • 77. Eskimo diets and diseases [Editorial]. Lancet 1983; 1: 1139-41.
  • 78. Harris WS. Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. J Lipid Res 1989; 30(6): 785-807.
  • 79. Rimm EB, Appel LJ, Chiuve SE, et al. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation 2018; 138(1): e35-e47.
  • 80. Westphal C, Konkel A, Schunck W-H. CYP-eicosanoids—a new link between omega-3 fatty acids and cardiac disease? Prostaglandins & other lipid mediators 2011; 96(1-4): 99-108.
  • 81. Boudreau MD, Chanmugam PS, Hart SB, Lee SH, Hwang DH. Lack of dose response by dietary n-3 fatty acids at a constant ratio of n-3 to n-6 fatty acids in suppressing eicosanoid biosynthesis from arachidonic acid. Am J Clin Nutr 1991; 54(1): 111-7.
  • 82. Kamleh MA, McLeod O, Checa A, et al. Increased Levels of Circulating Fatty Acids Are Associated with Protective Effects against Future Cardiovascular Events in Nondiabetics. J Proteome Res 2018; 17(2): 870-878.
  • 83. Frohnert BI, Jacobs DR, Jr., Steinberger J, Moran A, Steffen LM, Sinaiko AR. Relation between serum free fatty acids and adiposity, insulin resistance, and cardiovascular risk factors from adolescence to adulthood. Diabetes 2013; 62(9): 3163-3169.
  • 84. Ouchi S, Miyazaki T, Shimada K, et al. Low Docosahexaenoic Acid, Dihomo-Gamma-Linolenic Acid, and Arachidonic Acid Levels Associated with Long-Term Mortality in Patients with Acute Decompensated Heart Failure in Different Nutritional Statuses. Nutrients 2017; 9(9).
  • 85. Pan A, Chen M, Chowdhury R, et al. alpha-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr 2012; 96(6): 1262-73.
  • 86. Sanders TA. Protective effects of dietary PUFA against chronic disease: evidence from epidemiological studies and intervention trials. Proc Nutr Soc 2014; 73(1): 73-9.
  • 87. Banini AE, Allen JC, Allen HG, Boyd LC, Lartey A. Fatty acids, diet, and body indices of type II diabetic American whites and blacks and Ghanaians. Nutrition 2003; 19(9): 722-6.

The Importance of Fatty Acid Composition Changes in Terms of Cardiovascular Diseases

Yıl 2020, Cilt: 11 Sayı: 4, 323 - 333, 30.09.2020
https://doi.org/10.18663/tjcl.687043

Öz

In this review, information such as the structure, nomenclature, classification and physiological effects of fatty acids have been given initially, and then studies investigating the association between fatty acids and cardiovascular diseases have been examined. Fatty acids that are involved in the structure of lipids and cell membranes and take part in many metabolic pathways as well as being an energy source for the body are biological compounds that have important physiological activities. These compounds can be taken by diet or some of them can be synthesized from the precursors in the body. Enzyme activities involved in fatty acid metabolism and variation of food consumption according to factors such as culture, religion, geography and climate affect the fatty acid profile. The biological activities of fatty acids differ according to the type of fatty acids. For this reason, changes in the fatty acid profile become important for the health-disease situation and the association between fatty acid composition and the diseases is established. Biological samples such as adipose tissue, erythrocyte cell membrane, plasma and serum are used in order to determine this composition. Fatty acid measurement processes are generally carried out by gas chromatography. The activities of enzymes involved in fatty acid metabolism can be estimated by the indexes obtained from the measured values. Current data indicate that changes in the fatty acid composition are associated with many diseases, especially cardiovascular diseases, and have the potential to be used as biomarkers. However, this association has not been fully clarified. Therefore, new studies that research especially the entire fatty acid profile by taking advantage of current technological methods remain important.

Kaynakça

  • 1. Burdge GC, Calder PC. Introduction to fatty acids and lipids. World Rev Nutr Diet 2015; 112: 1-16.
  • 2. Tvrzicka E, Kremmyda LS, Stankova B, Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease--a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011; 155(2): 117-30.
  • 3. Papamandjaris AA, MacDougall DE, Jones PJ. Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci 1998; 62(14): 1203-15.
  • 4. Konukoğlu D. Omega-3 ve omega-6 yağ asitlerinin özellikleri, etkileri ve kardiyovasküler hastalıklar ile ilişkiler. Türkiye Aile Hekimliği Dergisi 2008; 12(3): 121-129.
  • 5. Gurr MI, Harwood JL, Frayn KN. Lipid biochemistry. Vol. 409. 2002: Springer.
  • 6. Sardesai VM. The essential fatty acids. Nutr Clin Pract 1992; 7(4): 179-86.
  • 7. Flores G, Blanch GP, Del Castillo MLR. Effect of postharvest methyl jasmonate treatment on fatty acid composition and phenolic acid content in olive fruits during storage. J Sci Food Agric 2017; 97(9): 2767-2772.
  • 8. Becker W, Eriksson A, Haglund M, Wretling S. Contents of total fat, fatty acids, starch, sugars and dietary fibre in Swedish market basket diets. Br J Nutr 2015; 113(9): 1453-65.
  • 9. Navarro-Prado S, Schmidt-RioValle J, Montero-Alonso MA, Fernandez-Aparicio A, Gonzalez-Jimenez E. Unhealthy Lifestyle and Nutritional Habits Are Risk Factors for Cardiovascular Diseases Regardless of Professed Religion in University Students. Int J Environ Res Public Health 2018; 15(12).
  • 10. Elorinne AL, Alfthan G, Erlund I, et al. Food and Nutrient Intake and Nutritional Status of Finnish Vegans and Non-Vegetarians. PLoS One 2016; 11(2): e0148235.
  • 11. Dias Fda S, Passos ME, do Carmo M, Lopes ML, Valente Mesquita VL. Fatty acid profile of biscuits and salty snacks consumed by Brazilian college students. Food Chem 2015; 171: 351-5.
  • 12. Chaouachi A, Chamari K, Roky R, et al. Lipid profiles of judo athletes during Ramadan. Int J Sports Med 2008; 29(4): 282-8.
  • 13. Sarri KO, Linardakis MK, Bervanaki FN, Tzanakis NE, Kafatos AG. Greek Orthodox fasting rituals: a hidden characteristic of the Mediterranean diet of Crete. Br J Nutr 2004; 92(2): 277-84.
  • 14. Hamilton JA, Johnson RA, Corkey B, Kamp F. Fatty acid transport: the diffusion mechanism in model and biological membranes. J Mol Neurosci 2001; 16(2-3): 99-108; discussion 151-7.
  • 15. Calder PC. Fatty acids and inflammation: the cutting edge between food and pharma. European journal of pharmacology 2011; 668: S50-S58.
  • 16. Brenna JT, Salem N, Sinclair AJ, Cunnane SC. α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins, Leukotrienes and Essential Fatty Acids 2009; 80(2): 85-91.
  • 17. Carta G, Murru E, Banni S, Manca C. Palmitic acid: Physiological role, metabolism and nutritional implications. Frontiers in physiology 2017; 8: 902.
  • 18. Nakamura MT, Nara TY. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr 2004; 24: 345-76.
  • 19. Solinas G, Borén J, Dulloo AG. De novo lipogenesis in metabolic homeostasis: More friend than foe? Molecular metabolism 2015; 4(5): 367-377.
  • 20. Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 2009; 297(1): E28-37.
  • 21. Cho HP, Nakamura MT, Clarke SD. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J Biol Chem 1999; 274(1): 471-7.
  • 22. Rodriguez A, Sarda P, Nessmann C, Boulot P, Leger CL, Descomps B. Delta6- and delta5-desaturase activities in the human fetal liver: kinetic aspects. J Lipid Res 1998; 39(9): 1825-32.
  • 23. Abe Y, Okada T, Iguchi H, et al. Association of changes in body fatness and fatty acid composition of plasma phospholipids during early puberty in Japanese children. J Atheroscler Thromb 2012; 19(12): 1102-9.
  • 24. Sjögren P, Sierra-Johnson J, Gertow K, et al. Fatty acid desaturases in human adipose tissue: relationships between gene expression, desaturation indexes and insulin resistance. Diabetologia 2008; 51(2): 328-335.
  • 25. Maruyama C, Yoneyama M, Suyama N, et al. Differences in serum phospholipid fatty acid compositions and estimated desaturase activities between Japanese men with and without metabolic syndrome. Journal of atherosclerosis and thrombosis 2008: 0812050007-0812050007.
  • 26. Saito E, Okada T, Abe Y, et al. Docosahexaenoic acid content in plasma phospholipids and desaturase indices in obese children. Journal of atherosclerosis and thrombosis 2011: 1102040344-1102040344.
  • 27. Ramirez M, Amate L, Gil A. Absorption and distribution of dietary fatty acids from different sources. Early Hum Dev 2001; 65 Suppl: S95-s101.
  • 28. Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2014; 53: 124-44.
  • 29. Schonfeld P, Reiser G. Brain energy metabolism spurns fatty acids as fuel due to their inherent mitotoxicity and potential capacity to unleash neurodegeneration. Neurochem Int 2017; 109: 68-77.
  • 30. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 2008; 9(2): 112-24.
  • 31. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 2000; 79(1): 328-39.
  • 32. Vasquez V, Krieg M, Lockhead D, Goodman MB. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. Cell Rep 2014; 6(1): 70-80.
  • 33. De Craene J-O, Bertazzi DL, Bär S, Friant S. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways. International journal of molecular sciences 2017; 18(3): 634.
  • 34. Hedo JA, Collier E, Watkinson A. Myristyl and palmityl acylation of the insulin receptor. J Biol Chem 1987; 262(3): 954-7.
  • 35. Olson EN, Towler DA, Glaser L. Specificity of fatty acid acylation of cellular proteins. J Biol Chem 1985; 260(6): 3784-90.
  • 36. Samuelsson B. Prostaglandins, thromboxanes, and leukotrienes: formation and biological roles. Harvey lectures 1979; 75: 1-40.
  • 37. Pegorier JP, Le May C, Girard J. Control of gene expression by fatty acids. J Nutr 2004; 134(9): 2444s-2449s.
  • 38. Katan MB, Deslypere JP, Penders M, van Staveren WA. Biological markers of dietary intake, with emphasis on fatty acids. Annals of nutrition and metabolism 1991; 35(5): 249-252.
  • 39. Farquhar JW, Ahrens EH. Effects of dietary fats on human erythrocyte fatty acid patterns. The Journal of clinical investigation 1963; 42(5): 675-685.
  • 40. Fielding BA. Omega-3 index as a prognosis tool in cardiovascular disease. Curr Opin Clin Nutr Metab Care 2017; 20(5): 360-365.
  • 41. LeWitt PA, Li J, Lu M, Guo L, Auinger P. Metabolomic biomarkers as strong correlates of Parkinson disease progression. Neurology 2017; 88(9): 862-869.
  • 42. Kabagambe EK, Ezeamama AE, Guwatudde D, Campos H, Fawzi W. Plasma n-6 Fatty Acid Levels Are Associated With CD4 Cell Counts, Hospitalization, and Mortality in HIV-Infected Patients. J Acquir Immune Defic Syndr 2016; 73(5): 598-605.
  • 43. Kim SW, Jhon M, Kim JM, et al. Relationship between Erythrocyte Fatty Acid Composition and Psychopathology in the Vienna Omega-3 Study. PLoS One 2016; 11(3): e0151417.
  • 44. Cottet V, Vaysse C, Scherrer ML, et al. Fatty acid composition of adipose tissue and colorectal cancer: a case-control study. Am J Clin Nutr 2015; 101(1): 192-201.
  • 45. Malik VS, Chiuve SE, Campos H, et al. Circulating Very-Long-Chain Saturated Fatty Acids and Incident Coronary Heart Disease in US Men and Women. Circulation 2015; 132(4): 260-8.
  • 46. Jackson KH, Harris WS. Blood Fatty Acid Profiles: New Biomarkers for Cardiometabolic Disease Risk. Curr Atheroscler Rep 2018; 20(5): 22.
  • 47. Wiese DM, Horst SN, Brown CT, et al. Serum Fatty Acids Are Correlated with Inflammatory Cytokines in Ulcerative Colitis. PLoS One 2016; 11(5): e0156387.
  • 48. Maciejewska D, Marlicz W, Ryterska K, Banaszczak M, Jamiol-Milc D, Stachowska E. Changes of the Fatty Acid Profile in Erythrocyte Membranes of Patients following 6-Month Dietary Intervention Aimed at the Regression of Nonalcoholic Fatty Liver Disease (NAFLD). Can J Gastroenterol Hepatol 2018; 2018: 5856201.
  • 49. Vessby B, Uusitupa M, Hermansen K, et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 2001; 44(3): 312-319.
  • 50. Goozee K, Chatterjee P, James I, et al. Alterations in erythrocyte fatty acid composition in preclinical Alzheimer’s disease. Scientific reports 2017; 7(1): 1-9.
  • 51. Roth GA, Johnson C, Abajobir A, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol 2017; 70(1): 1-25.
  • 52. Townsend N, Nichols M, Scarborough P, Rayner M. Cardiovascular disease in Europe--epidemiological update 2015. Eur Heart J 2015; 36(40): 2696-705.
  • 53. Makiguchi M, Kawaguchi H, Tamura M, Yasuda H. Effect of palmitic acid and fatty acid binding protein on ventricular fibrillation threshold in the perfused rat heart. Cardiovasc Drugs Ther 1991; 5(4): 753-61.
  • 54. Grekin RJ, Vollmer AP, Sider RS. Pressor effects of portal venous oleate infusion. A proposed mechanism for obesity hypertension. Hypertension 1995; 26(1): 193-8.
  • 55. Huang JM, Xian H, Bacaner M. Long-chain fatty acids activate calcium channels in ventricular myocytes. Proc Natl Acad Sci U S A 1992; 89(14): 6452-6.
  • 56. Carlsson M, Wessman Y, Almgren P, Groop L. High levels of nonesterified fatty acids are associated with increased familial risk of cardiovascular disease. Arterioscler Thromb Vasc Biol 2000; 20(6): 1588-94.
  • 57. Westphal S, Gekeler GH, Dierkes J, Wieland H, Luley C. A free fatty acid tolerance test identifies patients with coronary artery disease among individuals with a low conventional coronary risk profile. Heart Vessels 2002; 16(3): 79-85.
  • 58. Tripathy D, Mohanty P, Dhindsa S, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 2003; 52(12): 2882-7.
  • 59. de Jongh RT, Serne EH, Ijzerman RG, de Vries G, Stehouwer CD. Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes 2004; 53(11): 2873-82.
  • 60. Mathew M, Tay E, Cusi K. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects. Cardiovasc Diabetol 2010; 9: 9.
  • 61. Khawaja O, Bartz TM, Ix JH, et al. Plasma free fatty acids and risk of atrial fibrillation (from the Cardiovascular Health Study). Am J Cardiol 2012; 110(2): 212-6.
  • 62. Djousse L, Weir NL, Hanson NQ, Tsai MY, Gaziano JM. Plasma phospholipid concentration of cis-palmitoleic acid and risk of heart failure. Circ Heart Fail 2012; 5(6): 703-9.
  • 63. Ebbesson SE, Lopez-Alvarenga JC, Okin P, et al. Heart rate is associated with markers of fatty acid desaturation: the GOCADAN study. International journal of circumpolar health 2012; 71(1): 17343.
  • 64. Harris WS, Von Schacky C. The Omega-3 Index: a new risk factor for death from coronary heart disease? Prev Med 2004; 39(1): 212-20.
  • 65. Lee SM, An WS. Cardioprotective effects of omega -3 PUFAs in chronic kidney disease. Biomed Res Int 2013; 2013: 712949.
  • 66. Nozue T, Yamamoto S, Tohyama S, et al. Effects of serum n-3 to n-6 polyunsaturated fatty acids ratios on coronary atherosclerosis in statin-treated patients with coronary artery disease. Am J Cardiol 2013; 111(1): 6-11.
  • 67. Fan Y-Y, Ly LH, Barhoumi R, McMurray DN, Chapkin RS. Dietary docosahexaenoic acid suppresses T cell protein kinase Cθ lipid raft recruitment and IL-2 production. The Journal of Immunology 2004; 173(10): 6151-6160.
  • 68. Talukdar S, Bae EJ, Imamura T, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010; 142(5): 687-698.
  • 69. Chen J, Shearer GC, Chen Q, et al. Omega-3 fatty acids prevent pressure overload–induced cardiac fibrosis through activation of cyclic GMP/protein kinase G signaling in cardiac fibroblasts. Circulation 2011; 123(6): 584-593.
  • 70. O'Keefe JH, Jr., Abuissa H, Sastre A, Steinhaus DM, Harris WS. Effects of omega-3 fatty acids on resting heart rate, heart rate recovery after exercise, and heart rate variability in men with healed myocardial infarctions and depressed ejection fractions. Am J Cardiol 2006; 97(8): 1127-30.
  • 71. Kinsella JE, Lokesh B, Stone RA. Dietary n-3 polyunsaturated fatty acids and amelioration of cardiovascular disease: possible mechanisms. Am J Clin Nutr 1990; 52(1): 1-28.
  • 72. Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 2017; 45(5): 1105-1115.
  • 73. Covington M. Omega-3 fatty acids. American family physician 2004; 70(1): 133-140.
  • 74. Dönmez ME, Asova M. Prostaglandinlerin Kadın Reprodüktif Sistemi Üzerine Etkileri Ve Gebelikte Kullanılmaları. Turkiye Klinikleri Journal of Medical Sciences 1987; 7(1): 9-15.
  • 75. Tuncer M. Ateroskleroz ve endotele-bağımlı cevaplar. FABAD J. Pharm. Sci 1991; 16(239): 249.
  • 76. Jain AP, Aggarwal KK, Zhang PY. Omega-3 fatty acids and cardiovascular disease. Eur Rev Med Pharmacol Sci 2015; 19(3): 441-5.
  • 77. Eskimo diets and diseases [Editorial]. Lancet 1983; 1: 1139-41.
  • 78. Harris WS. Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. J Lipid Res 1989; 30(6): 785-807.
  • 79. Rimm EB, Appel LJ, Chiuve SE, et al. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation 2018; 138(1): e35-e47.
  • 80. Westphal C, Konkel A, Schunck W-H. CYP-eicosanoids—a new link between omega-3 fatty acids and cardiac disease? Prostaglandins & other lipid mediators 2011; 96(1-4): 99-108.
  • 81. Boudreau MD, Chanmugam PS, Hart SB, Lee SH, Hwang DH. Lack of dose response by dietary n-3 fatty acids at a constant ratio of n-3 to n-6 fatty acids in suppressing eicosanoid biosynthesis from arachidonic acid. Am J Clin Nutr 1991; 54(1): 111-7.
  • 82. Kamleh MA, McLeod O, Checa A, et al. Increased Levels of Circulating Fatty Acids Are Associated with Protective Effects against Future Cardiovascular Events in Nondiabetics. J Proteome Res 2018; 17(2): 870-878.
  • 83. Frohnert BI, Jacobs DR, Jr., Steinberger J, Moran A, Steffen LM, Sinaiko AR. Relation between serum free fatty acids and adiposity, insulin resistance, and cardiovascular risk factors from adolescence to adulthood. Diabetes 2013; 62(9): 3163-3169.
  • 84. Ouchi S, Miyazaki T, Shimada K, et al. Low Docosahexaenoic Acid, Dihomo-Gamma-Linolenic Acid, and Arachidonic Acid Levels Associated with Long-Term Mortality in Patients with Acute Decompensated Heart Failure in Different Nutritional Statuses. Nutrients 2017; 9(9).
  • 85. Pan A, Chen M, Chowdhury R, et al. alpha-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr 2012; 96(6): 1262-73.
  • 86. Sanders TA. Protective effects of dietary PUFA against chronic disease: evidence from epidemiological studies and intervention trials. Proc Nutr Soc 2014; 73(1): 73-9.
  • 87. Banini AE, Allen JC, Allen HG, Boyd LC, Lartey A. Fatty acids, diet, and body indices of type II diabetic American whites and blacks and Ghanaians. Nutrition 2003; 19(9): 722-6.
Toplam 87 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

İdris Ayhan Bu kişi benim 0000-0003-4625-7218

Saliha Ayşenur Çam Bu kişi benim 0000-0003-3326-8487

Fatma Uysal Bu kişi benim 0000-0002-3975-928X

Seyfullah Oktay Arslan 0000-0001-9328-9373

Yayımlanma Tarihi 30 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 11 Sayı: 4

Kaynak Göster

APA Ayhan, İ., Çam, S. A., Uysal, F., Arslan, S. O. (2020). Yağ asidi kompozisyon değişikliklerinin kalp damar hastalıkları açısından önemi. Turkish Journal of Clinics and Laboratory, 11(4), 323-333. https://doi.org/10.18663/tjcl.687043
AMA Ayhan İ, Çam SA, Uysal F, Arslan SO. Yağ asidi kompozisyon değişikliklerinin kalp damar hastalıkları açısından önemi. TJCL. Eylül 2020;11(4):323-333. doi:10.18663/tjcl.687043
Chicago Ayhan, İdris, Saliha Ayşenur Çam, Fatma Uysal, ve Seyfullah Oktay Arslan. “Yağ Asidi Kompozisyon değişikliklerinin Kalp Damar hastalıkları açısından önemi”. Turkish Journal of Clinics and Laboratory 11, sy. 4 (Eylül 2020): 323-33. https://doi.org/10.18663/tjcl.687043.
EndNote Ayhan İ, Çam SA, Uysal F, Arslan SO (01 Eylül 2020) Yağ asidi kompozisyon değişikliklerinin kalp damar hastalıkları açısından önemi. Turkish Journal of Clinics and Laboratory 11 4 323–333.
IEEE İ. Ayhan, S. A. Çam, F. Uysal, ve S. O. Arslan, “Yağ asidi kompozisyon değişikliklerinin kalp damar hastalıkları açısından önemi”, TJCL, c. 11, sy. 4, ss. 323–333, 2020, doi: 10.18663/tjcl.687043.
ISNAD Ayhan, İdris vd. “Yağ Asidi Kompozisyon değişikliklerinin Kalp Damar hastalıkları açısından önemi”. Turkish Journal of Clinics and Laboratory 11/4 (Eylül 2020), 323-333. https://doi.org/10.18663/tjcl.687043.
JAMA Ayhan İ, Çam SA, Uysal F, Arslan SO. Yağ asidi kompozisyon değişikliklerinin kalp damar hastalıkları açısından önemi. TJCL. 2020;11:323–333.
MLA Ayhan, İdris vd. “Yağ Asidi Kompozisyon değişikliklerinin Kalp Damar hastalıkları açısından önemi”. Turkish Journal of Clinics and Laboratory, c. 11, sy. 4, 2020, ss. 323-3, doi:10.18663/tjcl.687043.
Vancouver Ayhan İ, Çam SA, Uysal F, Arslan SO. Yağ asidi kompozisyon değişikliklerinin kalp damar hastalıkları açısından önemi. TJCL. 2020;11(4):323-3.


e-ISSN: 2149-8296

The content of this site is intended for health care professionals. All the published articles are distributed under the terms of

Creative Commons Attribution Licence,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.