Araştırma Makalesi
BibTex RIS Kaynak Göster

Havza önceliklendirmesi bakımından Ermenek Çayı Havzası ve Gökçay Havzasının karşılaştırmalı morfometrik analizi

Yıl 2022, , 1 - 10, 29.03.2022
https://doi.org/10.18182/tjf.1024569

Öz

Araştırmada Ermenek Çayı havzası (EÇH) ve Gökçay havzasının (GH) morfometrik analiz parametreleri, doğal kaynak yönetimi bakımından havzaların önceliklendirilmesine katkı sağlamak amacıyla karşılaştırmalı olarak değerlendirilmiştir. Çalışmada çizgisel, alansal ve rölyef morfometrilerini kapsayan toplam 23 parametre dikkate alınmıştır. Araştırmanın veri altyapısı, 12.5 m çözünürlüğe sahip ALOS PALSAR (Advanced Land Observing Satellite-1, Phased Array type L-band Synthetic Aperture Radar Mission) uydu görüntülerinden elde edilen sayısal yükseklik modeli (SYM) kullanılarak oluşturulmuştur. Analizlerde kullanılan akarsu dizinlerinin belirlenmesinde, Strahler yöntemi dikkate alınmış ve ölçümler ArcMap 10.4.1 programı aracılığıyla yapılmıştır. Parametre hesaplarına dayanan sonuçlara göre, EÇH’nin GH’ye oranla; geçirimsiz (Rb, RL, Fs, If, Re, Rn), dairesel (Lum, lo, T, Ff, Rc, Kg), eğim değeri yüksek (H, Rh, Rhp, Rn), jeomorfolojik olarak yaşlılık evresine daha yakın (Hc, Hi) bunlarla birlikte, dolaylı olarak taşkın hassasiyeti ve erozyon duyarlılığı yüksek bir havza olduğu tespit edilmiştir. Elde edilen verilere göre, EÇH’nin toprak ve akarsu kaynaklarındaki bu muhtemel sorunları nedeniyle, doğal kaynak yönetimi bakımından GH’ye göre daha öncelikli olduğu anlaşılmıştır.

Kaynakça

  • Ahmed, F., Srinivasa Rao, K., 2016. Hypsometric analysis of the Tuirini drainage basin: A Geographic Information System approach. International Journal of Geomatics and Geosciences, 6: 1685-1695.
  • Ajaykumar, B.N., Gopinath, G., 2018. Geospatial techniques for the analysis of hypsometric parameters of a humid tropical river basin, south western Ghats, India. Carpathian Journal of Earth and Environmental Sciences, 13: 465-476.
  • Al-Assadi, K.H.F., 2020. Analyzing the morphometric characteristics of Wadi Mezal basin using geographical information systems. Groundwater for Sustainable Development, 11: 1-7. DOI: 10.1016/j.gsd.2020.100436.
  • Aldharab, H.S., Ali, S.A., Ghareb, J.I.S.A., 2019. Analysis of basin geometry in Ataq region, part of Shabwah Yemen: Using remote sensing and geographic information system techniques. Bulletin of Pure and Applied Sciences, 38: 1-15. DOI: 10.5958/2320-3234.2019.00001.5.
  • Amiri, M., Pourghasemi, H.R., Arabameri, A., Vazirzadeh, A., Yousefi, H., Kafaei, S., 2019. Prioritization of Flood Inundation of Maharloo Watershed in Iran Using Morphometric Parameters Analysis and TOPSIS MCDM Model. In: Spatial Modeling in GIS and R for Earth and Environmental Sciences (Ed: Pourghasemi, H.R., Gokceoglu, C.), Elsevier Inc., pp. 371-390. DOI: 10.1016/b978-0-12-815226-3.00016-8.
  • Atalay, İ., 2010. Uygulamalı Klimatoloji. Meta Basım Matbaacılık Hizmetleri, İzmir.
  • Atalay, İ., Altunbaş, S., Khan, A.A., Coşkun, M., 2018. The Mountain Ecology of the Taurus Mountains and Its Effects on Nomadism. International Geography Symposium on the 30th Anniversary of TUCAUM, 3-6 October, Ankara, Turkey, pp. 623-640.
  • Atalay, İ., 2018. Uygulamalı Hidrografya. Meta Basım Matbaacılık Hizmetleri, İzmir.
  • Atalay, İ., Altunbaş, S., Coşkun M., Siler, M., 2020. Taşların Ekolojisi ile Topografyanın Toprak Oluşumu, Tarım ve Ormancılık Açısından Önemi. Meta Basım Matbaacılık Hizmetleri, İzmir.
  • Babu, K.J., Sreekumar, S., Aslam, A., 2016. Implication of drainage basin parameters of a tropical river basin of South India. Applied Water Science, 6: 67–75. Springer Berlin Heidelberg. DOI: 10.1007/s13201-014-0212-8.
  • Banerjee, A., Singh, P., Pratap, K., 2017. Morphometric evaluation of Swarnrekha watershed, Madhya Pradesh, India: An integrated GIS-based approach. Applied Water Science, 7: 1807-1815. DOI:10.1007/s13201-015-0354-3.
  • Barrow, C., 1998. River basin development planning and management: A critical review. World Development, 26: 171-186.
  • Bendjoudi, H., Hubert, P., 2002. Le coefficient de compacité de Gravelius: Analyse critique d’un indice de forme des bassins versants. Hydrological Sciences Journal, 47: 921-930. DOI: 10.1080/02626660209493000.
  • Biswas, A., Das Majumdar, D., Banerjee, S., 2014. Morphometry governs the dynamics of a drainage basin: Analysis and implications. Hindawi Publishing Corporation Geography Journal, 27 (3): 1-14. DOI: 10.1155/2014/927176.
  • Biswas, S., Sudhakar, S., Desai, V.R., 1999. Prioritisation of subwatersheds based on morphometric analysis of drainage basin: A remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing, 27: 155-166. DOI: 10.1007/BF02991569.
  • Chandrashekar, H., Lokesh, K.V., Sameena, M., Roopa, J., Ranganna, G., 2015. GIS –based morphometric analysis of two reservoir catchments of Arkavati River, Ramanagaram District, Karnataka. Aquatic Procedia, 4: 1345–1353. DOI: 10.1016/j.aqpro.2015.02.175.
  • Coşkun, M., Coşkun, S., 2019. Yer Kabuğu’nu Oluşturan Maddeler: Mineraller, Kayaçlar ve Topraklar. Yer Bilimi (Ed., Doğanay, S., Alım, M.), Pegem Akademi Yayınları, Ankara, s: 194-243.
  • Dubey, S.K., Sharma, D., Mundetia, N., 2015. Morphometric analysis of the Banas river basin using the geographical information system, Rajasthan, India. Hydrology, 3: 47–54. DOI: 10.11648/j.hyd.20150305.11.
  • Erdede, B., Öztürk, D., 2016. Kızılırmak havzasının taşkın potansi̇yeli̇ni̇n çi̇zgi̇sel, alansal ve rölyef morfometri̇k indi̇sler kullanılarak değerlendi̇ri̇lmesi̇. 6. Uzaktan Algılama-CBS Sempozyumu (Uzal-CBS 2016), 5-7 Ekim, Adana, s.392-399.
  • Faniran, A., 1968. The index of drainage intensity- A provisional new drainage factor. Australian Journal of Science, 31: 328-330.
  • Garipağaoğlu, N., 2012. Havza planlamalarında coğrafyanın rolü ve Türkiye’de havza planlamacılığı. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 16 (2): 303-336.
  • Gosavi, V.E., Kumar Thakur, P., Kumar, K. 2018. Study of drainage system and its hydrological implications using geo-spatial techniques: A morphometric analysis in Mohal Khad watershed of Kullu district, Himachal Pradesh, India. International Journal of Advanced Research, 6: 456-463. DOI: 10.21474/ijar01/8158.
  • Gökgöz, T., Ulugtekin, N., Basaraner, M., Gulgen, F., Dogru, A.O., Bilgi, S., Yucel, M.A., Cetinkaya, S., 2006. Watershed delineation from grid DEMs in GIS: Effects of drainage lines and resolution. Proceedings of the 10th International Specialised Conference on Diffuse Pollution and Sustainable Basin Management, 18-22 September, İstanbul, Turkey, pp. 1-8.
  • Gravelius, H., 1914. Grundriß der gesamten Gewässerkunde Band 1: Flufikunde. Goschen, Berlin, Germany.
  • Gray, D.M., 1961. Interrelationships of watershed characteristics. Journal of Geophysical Research, 66: 1215-1223. DOI: 10.1029/jz066i004p01215.
  • Grigg, N.S., 1999. Integrated water resources managemenet: Who should lead? Who should pay? Journal of The American Water Resources Association, 35: 527-534.
  • Horton, R.E., 1932. Drainage-basin characteristics. American Geophysical Union of Transactions, 13: 350–361. DOI: 10.1029/tr013i001p00350.
  • Horton, R.E., 1945. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, 56: 275-370.
  • Ishak, N.A., Ahamad, M.S.S., Abujayyab, S.K.M., Ab Ghani, A., 2016. Effects of DEMs from different sources in deriving stream networks threshold values. Engineering Challenges for Sustainable Future. 3rd International Conference on Civil, offshore and Environmental Engineering, 15-17 August, Malaysia, pp. 361-364.
  • Keller, E.A., Pinter, N., 2002. Active Tectonics Earthquakes, Uplift and Landscape. Prentice Hall, New Jersey.
  • Kummu, M., Guillaume, J.H.A., de Moel, H., Eisner, S., Flörke, M., Porkka, M., Siebert, S., Veldkamp, T.I.E., Ward, P.J., 2016. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Scientific Reports, 6: 1-16. DOI: 10.1038/srep38495.
  • Luo, W., Harlin, J.M., 2003. A theoretical travel time based on watershed hypsometry. Journal of the American Water Resources Association, 39: 785-792. DOI: 10.1111/j.1752-1688.2003.tb04405.x.
  • Malik, A., Kumar, A., Kandpal, H., 2019. Morphometric analysis and prioritization of sub-watersheds in a hilly watershed using weighted sum approach. Arabian Journal of Geosciences, 12: 1-12. DOI: 10.1007/s12517-019-4310-7.
  • Melton, M.A., 1957. An analysis of the relations among elements of climate, Surface properties and geomorphology. Columbia University. Technical Report, NR 389042.
  • Miller, V.C., 1953. Quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Varginia and Tennessee. Columbia University, Department of Geology, ONR, Geography Branch, Technical Report, NR 389042, New York.
  • Muminjanov, H., Karagöz, A., 2018. Biodiversity of Turkey: Contribution of Genetic Resources to Sustainable Agriculture and Food Systems. Food and Agriculture Organization of the United Nations.
  • Ogarekpe, N., Obio, E., Tenebe, I., Emenike, P., Nnaji, C., 2020. A dataset for the flood vulnerability assessment of the upper Cross River basin using morphometric analysis. Data in Brief, 30: 1-9. DOI: 10.1016/j.dib.2020.105344.
  • Omernik, J.M., Bailey, R.G., 1997. Distinguishing between watersheds and ecoregions. JAWRA Journal of the American Water Resources Association, 33: 935-949. DOI: 10.1111/j.1752-1688.1973.tb01754.x.
  • Ozulu, I.M., Gökgöz, T., 2018. Examining the stream threshold approaches used in hydrologic analysis. ISPRS International Journal of Geo-Information, 7: 1-12. DOI: 10.3390/ijgi7060201.
  • Özdemir, H., 2011. Havza Morfometrisi ve Taşkınlar. Fiziki Coğrafya Araştırmaları: Sistematik ve Bölgesel (Ed., Ekinci, D.), Türk Coğrafya Kurumu Yayınları, İstanbul, s: 457-474.
  • Öztekinci, S.Y., Coşkun, M., 2021. Devrek Çayı Havzasının Vejetasyonu ve Hidrografyası. İKSAD Yayınevi, Ankara.
  • Parupalli, S., Padma Kumari, K., Ganapuram, S., 2019. Assessment and planning for integrated river basin management using remote sensing, SWAT model and morphometric analysis (case study: Kaddam river basin, India). Geocarto International, 34: 1332-1362. DOI: 10.1080/10106049.2018.1489420.
  • Poongodi, R., Venkateswaran, S., 2018. Prioritization of the micro-watersheds through morphometric analysis in the Vasishta Sub Basin of the Vellar River, Tamil Nadu using ASTER Digital Elevation Model (DEM) data. Data in Brief, 20: 1353-1359. DOI: 10.1016/j.dib.2018.08.197.
  • Rahmati, O., Samadi, M., Shahabi, H., Azareh, A., Rafiei-Sardooi, E., Alilou, H., Melesse, A.M., Pradhan, B., Chapi, K., Shirzadi, A., 2019. SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geoscience Frontiers, 10: 2167-2175. DOI: 10.1016/j.gsf.2019.03.009.
  • Rai, P.K., Chandel, R.S., Mishra, V.N., Singh, P., 2018. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data. Applied Water Science, 8: 1-16. DOI: 10.1007/s13201-018-0660-7.
  • Rai, P.K., Singh, P., Mishra, V.N., Singh, A., Sajan, B., Shahi, A.P., 2019. Geospatial approach for quantitative drainage morphometric analysis of varuna river basin, India. Journal of Landscape Ecology (Czech Republic), 12: 1-25. DOI: 10.2478/jlecol-2019-0007.
  • Rajasekhar, M., Raju, G.S., Raju, R.S., 2020. Morphometric analysis of the Jilledubanderu River Basin, Anantapur District, Andhra Pradesh, India, using geospatial technologies. Groundwater for Sustainable Development, 11: 1-30. DOI: 10.1016/j.gsd.2020.100434.
  • Rana, N., Singh, S., Sundriyal, Y.P., Rawat, G.S., Juyal, N. 2016. Interpreting the geomorphometric indices for neotectonic implications: An example of Alaknanda valley, Garhwal Himalaya, India. Journal of Earth System Science, 125: 841-854. DOI: 10.1007/s12040-016-0696-8.
  • Rosa, L., Chiarelli, D.D., Rulli, M.C., Dell’Angelo, J., D’Odorico, P., 2020. Global agricultural economic water scarcity. Science Advances, 6: 1-10. DOI: 10.1126/sciadv.aaz6031.
  • Reddy, G.P.O., Kumar, N., Sahu, N., Singh, S.K., 2017. Evaluation of automatic drainage extraction thresholds using ASTER GDEM and Cartosat-1 DEM: A case study from basaltic terrain of Central India. Egyptian Journal of Remote Sensing and Space Science, 21: 95-104. DOI: 10.1016/j.ejrs.2017.04.001.
  • Sassolas-Serrayet, T., Cattin, R., Ferry, M., 2018. The shape of watersheds. Nature Communications, 9: 1-8. Springer US. DOI: 10.1038/s41467-018-06210-4.
  • Schumm, S.A., 1956. Evolation of drainage system amd slopes in Badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67: 597-646. DOI: 10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2. Sharma, S., Mahajan, A.K., 2020. GIS-based sub-watershed prioritization through morphometric analysis in the outer Himalayan region of India. Applied Water Science, 10: 1-11. DOI: 10.1007/s13201-020-01243-x.
  • Sheng, T.C., 2001. Important and Controversial Watershed Management Issues in Developing Countries. In: Sustaining the Global Farm (Ed: Stott, D.E., Mohtar, R.H., Steinhardt, G.C.), International Soil Conservation Organization (ISCO), West Lafayette, pp. 49–52.
  • Shreve, R.L., 1967. Infinite topologically random channel networks. The Journal of Geology, 75: 178-186.
  • Shreve, R.L., 1966. Statistical law of stream numbers. The Journal of Geology, 74: 17-37.
  • Sidral, A., Zende, A.M., 2016. Quantitative evaluation of morphometric parameters of Sakli River using geospatial techniques. National Conference on Water Resources and Flood Management with special reference to Flood Modelling, October 14-15, SVNIT Surat, pp. 1-14.
  • Smith, K.G., 1950. Standards for grading texture of erosional topography. American Journal of Science, 248: 655-668.
  • Strahler, A.N., 1952. Hypsometric (area-altitude curve) analysis analysis of erosional topography. Geological Society of America Bulletin, 63: 1117-1141.
  • Strahler, A.N., 1957. Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union, 38: 913-920.
  • Strahler, A.N., 1964. Quantitative geomorphology of drainage basins and channel networks. In: Handbook of Applied Hydrology (Ed: Chow, V.), McGraw Hill, New York, pp. 9-76.
  • Swain, S.S., Mishra, A., Sahoo, B., Chatterjee, C. 2020. Water scarcity-risk assessment in data-scarce river basins under decadal climate change using a hydrological modelling approach. Journal of Hydrology, 590: 1-53. DOI: 10.1016/j.jhydrol.2020.125260.
  • Tekin, S., Can, T., 2017. Gökçay Havzasının Karar Ağaç Yöntemi ile Heyelan Duyarlılık Değerlendirmesi. Ulusal Mühendislik Jeolojisi- Jeoteknik Sempozyumu, 12-17 Ekim, Adana, s. 12-14.
  • Tekin, S., Çan, T., 2019. Yapay sinir ağları yöntemi ile Ermenek Havzası’nın (Karaman) kayma türü heyelan duyarlılık değerlendirmesi. Bilge International Journal of Science and Technology Research, 3: 21-28. DOI: 10.30516/bilgesci.525438.
  • Turoğlu, H., Aykut, T., 2019. Ergene nehri havzası için hidromorfometrik analizlerle taşkın duyarlılık değerlendirmesi. Jeomorfolojik Araştırmalar Dergisi, 2: 1-15.
  • Uzun, M., 2014. Lale Dere (Yalova) Havzası’nın jeomorfolojik özelliklerinin jeomorfometrik analizlerle incelenmesi. Route Educational and Social Science Journal, 1: 72-88.
  • Van Wijk, F.J., De la Haye, M.A.A., Hehenkamp, M.J., Velde, I.A., De Bruin, E.F.L.M., Schelleman F.J.M., 2003. Uygulama El Kitabı, Su Çerçeve Direktifi’nin Türkiye’de Uygulanması. Grontmij Advies ve Techniek, Utrecht.
  • Wagan, F.H., Khoso, S., 2013. Water Shortage; Its Causes, Impacts and Remedial Measues. 6th International Civil Engineering Congress, 28 December, Karachi, Pakistan, pp. 1-6.
  • Withanage, N.S., Dayawansa, N.D.K., De Silva, R.P., 2015. Morphometric analysis of the Gal Oya river basin using spatial data derived from GIS. Tropical Agricultural Research, 26: 175-188. DOI: 10.4038/tar.v26i1.8082.
  • Zhang, W., Li, W., Loaiciga, H.A., Liu, X., Liu, S., Zheng, S., Zhang, H. 2021. Adaptive Determination of the Flow Accumulation Threshold for Extracting Drainage Networks from DEMs. DOI: 10.3390/rs13112024.

Comparative morphometric analysis of Ermenek river basin and Gökçay basin in terms of basin prioritization

Yıl 2022, , 1 - 10, 29.03.2022
https://doi.org/10.18182/tjf.1024569

Öz

In the study, the morphometric parameters of Ermenek River Basin (ERB) and Gökçay Basin (GB) have been analyzed, as comparatively aim to contribute to the prioritization of the watersheds in terms of natural resource management. In the study, 23 parameters, including linear, areal, and relief morphometries were calculated. The data infrastructure of the research was created by using the Digital Elevation Model (DEM) obtained from ALOS PALSAR (Advanced Land Observing Satellite-1, Phased Array type L-band Synthetic Aperture Radar Mission) satellite images with a resolution of 12.5 m in determining the stream streams used in the analysis, the Strahler method was taken into account, and the measurements were made using the ArcMap 10.4.1 program. According to the results based on parameter calculations, the ratio of ERB to GB; impermeable (Rb, RL, Fs, If, Re, Rn), circular (Lum, lo, T, Ff, Rc, Kg), high slope value (H, Rh, Rhp, Rn), geomorphologically closer to old age (Hc, Hi), and also indirectly determined to be a basin with high flood sensitivity and erosion susceptibility. According to the data obtained, it has been understood that ERB has a higher priority than GB in terms of natural resource management due to these potential problems in the soil and water resources.

Kaynakça

  • Ahmed, F., Srinivasa Rao, K., 2016. Hypsometric analysis of the Tuirini drainage basin: A Geographic Information System approach. International Journal of Geomatics and Geosciences, 6: 1685-1695.
  • Ajaykumar, B.N., Gopinath, G., 2018. Geospatial techniques for the analysis of hypsometric parameters of a humid tropical river basin, south western Ghats, India. Carpathian Journal of Earth and Environmental Sciences, 13: 465-476.
  • Al-Assadi, K.H.F., 2020. Analyzing the morphometric characteristics of Wadi Mezal basin using geographical information systems. Groundwater for Sustainable Development, 11: 1-7. DOI: 10.1016/j.gsd.2020.100436.
  • Aldharab, H.S., Ali, S.A., Ghareb, J.I.S.A., 2019. Analysis of basin geometry in Ataq region, part of Shabwah Yemen: Using remote sensing and geographic information system techniques. Bulletin of Pure and Applied Sciences, 38: 1-15. DOI: 10.5958/2320-3234.2019.00001.5.
  • Amiri, M., Pourghasemi, H.R., Arabameri, A., Vazirzadeh, A., Yousefi, H., Kafaei, S., 2019. Prioritization of Flood Inundation of Maharloo Watershed in Iran Using Morphometric Parameters Analysis and TOPSIS MCDM Model. In: Spatial Modeling in GIS and R for Earth and Environmental Sciences (Ed: Pourghasemi, H.R., Gokceoglu, C.), Elsevier Inc., pp. 371-390. DOI: 10.1016/b978-0-12-815226-3.00016-8.
  • Atalay, İ., 2010. Uygulamalı Klimatoloji. Meta Basım Matbaacılık Hizmetleri, İzmir.
  • Atalay, İ., Altunbaş, S., Khan, A.A., Coşkun, M., 2018. The Mountain Ecology of the Taurus Mountains and Its Effects on Nomadism. International Geography Symposium on the 30th Anniversary of TUCAUM, 3-6 October, Ankara, Turkey, pp. 623-640.
  • Atalay, İ., 2018. Uygulamalı Hidrografya. Meta Basım Matbaacılık Hizmetleri, İzmir.
  • Atalay, İ., Altunbaş, S., Coşkun M., Siler, M., 2020. Taşların Ekolojisi ile Topografyanın Toprak Oluşumu, Tarım ve Ormancılık Açısından Önemi. Meta Basım Matbaacılık Hizmetleri, İzmir.
  • Babu, K.J., Sreekumar, S., Aslam, A., 2016. Implication of drainage basin parameters of a tropical river basin of South India. Applied Water Science, 6: 67–75. Springer Berlin Heidelberg. DOI: 10.1007/s13201-014-0212-8.
  • Banerjee, A., Singh, P., Pratap, K., 2017. Morphometric evaluation of Swarnrekha watershed, Madhya Pradesh, India: An integrated GIS-based approach. Applied Water Science, 7: 1807-1815. DOI:10.1007/s13201-015-0354-3.
  • Barrow, C., 1998. River basin development planning and management: A critical review. World Development, 26: 171-186.
  • Bendjoudi, H., Hubert, P., 2002. Le coefficient de compacité de Gravelius: Analyse critique d’un indice de forme des bassins versants. Hydrological Sciences Journal, 47: 921-930. DOI: 10.1080/02626660209493000.
  • Biswas, A., Das Majumdar, D., Banerjee, S., 2014. Morphometry governs the dynamics of a drainage basin: Analysis and implications. Hindawi Publishing Corporation Geography Journal, 27 (3): 1-14. DOI: 10.1155/2014/927176.
  • Biswas, S., Sudhakar, S., Desai, V.R., 1999. Prioritisation of subwatersheds based on morphometric analysis of drainage basin: A remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing, 27: 155-166. DOI: 10.1007/BF02991569.
  • Chandrashekar, H., Lokesh, K.V., Sameena, M., Roopa, J., Ranganna, G., 2015. GIS –based morphometric analysis of two reservoir catchments of Arkavati River, Ramanagaram District, Karnataka. Aquatic Procedia, 4: 1345–1353. DOI: 10.1016/j.aqpro.2015.02.175.
  • Coşkun, M., Coşkun, S., 2019. Yer Kabuğu’nu Oluşturan Maddeler: Mineraller, Kayaçlar ve Topraklar. Yer Bilimi (Ed., Doğanay, S., Alım, M.), Pegem Akademi Yayınları, Ankara, s: 194-243.
  • Dubey, S.K., Sharma, D., Mundetia, N., 2015. Morphometric analysis of the Banas river basin using the geographical information system, Rajasthan, India. Hydrology, 3: 47–54. DOI: 10.11648/j.hyd.20150305.11.
  • Erdede, B., Öztürk, D., 2016. Kızılırmak havzasının taşkın potansi̇yeli̇ni̇n çi̇zgi̇sel, alansal ve rölyef morfometri̇k indi̇sler kullanılarak değerlendi̇ri̇lmesi̇. 6. Uzaktan Algılama-CBS Sempozyumu (Uzal-CBS 2016), 5-7 Ekim, Adana, s.392-399.
  • Faniran, A., 1968. The index of drainage intensity- A provisional new drainage factor. Australian Journal of Science, 31: 328-330.
  • Garipağaoğlu, N., 2012. Havza planlamalarında coğrafyanın rolü ve Türkiye’de havza planlamacılığı. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 16 (2): 303-336.
  • Gosavi, V.E., Kumar Thakur, P., Kumar, K. 2018. Study of drainage system and its hydrological implications using geo-spatial techniques: A morphometric analysis in Mohal Khad watershed of Kullu district, Himachal Pradesh, India. International Journal of Advanced Research, 6: 456-463. DOI: 10.21474/ijar01/8158.
  • Gökgöz, T., Ulugtekin, N., Basaraner, M., Gulgen, F., Dogru, A.O., Bilgi, S., Yucel, M.A., Cetinkaya, S., 2006. Watershed delineation from grid DEMs in GIS: Effects of drainage lines and resolution. Proceedings of the 10th International Specialised Conference on Diffuse Pollution and Sustainable Basin Management, 18-22 September, İstanbul, Turkey, pp. 1-8.
  • Gravelius, H., 1914. Grundriß der gesamten Gewässerkunde Band 1: Flufikunde. Goschen, Berlin, Germany.
  • Gray, D.M., 1961. Interrelationships of watershed characteristics. Journal of Geophysical Research, 66: 1215-1223. DOI: 10.1029/jz066i004p01215.
  • Grigg, N.S., 1999. Integrated water resources managemenet: Who should lead? Who should pay? Journal of The American Water Resources Association, 35: 527-534.
  • Horton, R.E., 1932. Drainage-basin characteristics. American Geophysical Union of Transactions, 13: 350–361. DOI: 10.1029/tr013i001p00350.
  • Horton, R.E., 1945. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, 56: 275-370.
  • Ishak, N.A., Ahamad, M.S.S., Abujayyab, S.K.M., Ab Ghani, A., 2016. Effects of DEMs from different sources in deriving stream networks threshold values. Engineering Challenges for Sustainable Future. 3rd International Conference on Civil, offshore and Environmental Engineering, 15-17 August, Malaysia, pp. 361-364.
  • Keller, E.A., Pinter, N., 2002. Active Tectonics Earthquakes, Uplift and Landscape. Prentice Hall, New Jersey.
  • Kummu, M., Guillaume, J.H.A., de Moel, H., Eisner, S., Flörke, M., Porkka, M., Siebert, S., Veldkamp, T.I.E., Ward, P.J., 2016. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Scientific Reports, 6: 1-16. DOI: 10.1038/srep38495.
  • Luo, W., Harlin, J.M., 2003. A theoretical travel time based on watershed hypsometry. Journal of the American Water Resources Association, 39: 785-792. DOI: 10.1111/j.1752-1688.2003.tb04405.x.
  • Malik, A., Kumar, A., Kandpal, H., 2019. Morphometric analysis and prioritization of sub-watersheds in a hilly watershed using weighted sum approach. Arabian Journal of Geosciences, 12: 1-12. DOI: 10.1007/s12517-019-4310-7.
  • Melton, M.A., 1957. An analysis of the relations among elements of climate, Surface properties and geomorphology. Columbia University. Technical Report, NR 389042.
  • Miller, V.C., 1953. Quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Varginia and Tennessee. Columbia University, Department of Geology, ONR, Geography Branch, Technical Report, NR 389042, New York.
  • Muminjanov, H., Karagöz, A., 2018. Biodiversity of Turkey: Contribution of Genetic Resources to Sustainable Agriculture and Food Systems. Food and Agriculture Organization of the United Nations.
  • Ogarekpe, N., Obio, E., Tenebe, I., Emenike, P., Nnaji, C., 2020. A dataset for the flood vulnerability assessment of the upper Cross River basin using morphometric analysis. Data in Brief, 30: 1-9. DOI: 10.1016/j.dib.2020.105344.
  • Omernik, J.M., Bailey, R.G., 1997. Distinguishing between watersheds and ecoregions. JAWRA Journal of the American Water Resources Association, 33: 935-949. DOI: 10.1111/j.1752-1688.1973.tb01754.x.
  • Ozulu, I.M., Gökgöz, T., 2018. Examining the stream threshold approaches used in hydrologic analysis. ISPRS International Journal of Geo-Information, 7: 1-12. DOI: 10.3390/ijgi7060201.
  • Özdemir, H., 2011. Havza Morfometrisi ve Taşkınlar. Fiziki Coğrafya Araştırmaları: Sistematik ve Bölgesel (Ed., Ekinci, D.), Türk Coğrafya Kurumu Yayınları, İstanbul, s: 457-474.
  • Öztekinci, S.Y., Coşkun, M., 2021. Devrek Çayı Havzasının Vejetasyonu ve Hidrografyası. İKSAD Yayınevi, Ankara.
  • Parupalli, S., Padma Kumari, K., Ganapuram, S., 2019. Assessment and planning for integrated river basin management using remote sensing, SWAT model and morphometric analysis (case study: Kaddam river basin, India). Geocarto International, 34: 1332-1362. DOI: 10.1080/10106049.2018.1489420.
  • Poongodi, R., Venkateswaran, S., 2018. Prioritization of the micro-watersheds through morphometric analysis in the Vasishta Sub Basin of the Vellar River, Tamil Nadu using ASTER Digital Elevation Model (DEM) data. Data in Brief, 20: 1353-1359. DOI: 10.1016/j.dib.2018.08.197.
  • Rahmati, O., Samadi, M., Shahabi, H., Azareh, A., Rafiei-Sardooi, E., Alilou, H., Melesse, A.M., Pradhan, B., Chapi, K., Shirzadi, A., 2019. SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geoscience Frontiers, 10: 2167-2175. DOI: 10.1016/j.gsf.2019.03.009.
  • Rai, P.K., Chandel, R.S., Mishra, V.N., Singh, P., 2018. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data. Applied Water Science, 8: 1-16. DOI: 10.1007/s13201-018-0660-7.
  • Rai, P.K., Singh, P., Mishra, V.N., Singh, A., Sajan, B., Shahi, A.P., 2019. Geospatial approach for quantitative drainage morphometric analysis of varuna river basin, India. Journal of Landscape Ecology (Czech Republic), 12: 1-25. DOI: 10.2478/jlecol-2019-0007.
  • Rajasekhar, M., Raju, G.S., Raju, R.S., 2020. Morphometric analysis of the Jilledubanderu River Basin, Anantapur District, Andhra Pradesh, India, using geospatial technologies. Groundwater for Sustainable Development, 11: 1-30. DOI: 10.1016/j.gsd.2020.100434.
  • Rana, N., Singh, S., Sundriyal, Y.P., Rawat, G.S., Juyal, N. 2016. Interpreting the geomorphometric indices for neotectonic implications: An example of Alaknanda valley, Garhwal Himalaya, India. Journal of Earth System Science, 125: 841-854. DOI: 10.1007/s12040-016-0696-8.
  • Rosa, L., Chiarelli, D.D., Rulli, M.C., Dell’Angelo, J., D’Odorico, P., 2020. Global agricultural economic water scarcity. Science Advances, 6: 1-10. DOI: 10.1126/sciadv.aaz6031.
  • Reddy, G.P.O., Kumar, N., Sahu, N., Singh, S.K., 2017. Evaluation of automatic drainage extraction thresholds using ASTER GDEM and Cartosat-1 DEM: A case study from basaltic terrain of Central India. Egyptian Journal of Remote Sensing and Space Science, 21: 95-104. DOI: 10.1016/j.ejrs.2017.04.001.
  • Sassolas-Serrayet, T., Cattin, R., Ferry, M., 2018. The shape of watersheds. Nature Communications, 9: 1-8. Springer US. DOI: 10.1038/s41467-018-06210-4.
  • Schumm, S.A., 1956. Evolation of drainage system amd slopes in Badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67: 597-646. DOI: 10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2. Sharma, S., Mahajan, A.K., 2020. GIS-based sub-watershed prioritization through morphometric analysis in the outer Himalayan region of India. Applied Water Science, 10: 1-11. DOI: 10.1007/s13201-020-01243-x.
  • Sheng, T.C., 2001. Important and Controversial Watershed Management Issues in Developing Countries. In: Sustaining the Global Farm (Ed: Stott, D.E., Mohtar, R.H., Steinhardt, G.C.), International Soil Conservation Organization (ISCO), West Lafayette, pp. 49–52.
  • Shreve, R.L., 1967. Infinite topologically random channel networks. The Journal of Geology, 75: 178-186.
  • Shreve, R.L., 1966. Statistical law of stream numbers. The Journal of Geology, 74: 17-37.
  • Sidral, A., Zende, A.M., 2016. Quantitative evaluation of morphometric parameters of Sakli River using geospatial techniques. National Conference on Water Resources and Flood Management with special reference to Flood Modelling, October 14-15, SVNIT Surat, pp. 1-14.
  • Smith, K.G., 1950. Standards for grading texture of erosional topography. American Journal of Science, 248: 655-668.
  • Strahler, A.N., 1952. Hypsometric (area-altitude curve) analysis analysis of erosional topography. Geological Society of America Bulletin, 63: 1117-1141.
  • Strahler, A.N., 1957. Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union, 38: 913-920.
  • Strahler, A.N., 1964. Quantitative geomorphology of drainage basins and channel networks. In: Handbook of Applied Hydrology (Ed: Chow, V.), McGraw Hill, New York, pp. 9-76.
  • Swain, S.S., Mishra, A., Sahoo, B., Chatterjee, C. 2020. Water scarcity-risk assessment in data-scarce river basins under decadal climate change using a hydrological modelling approach. Journal of Hydrology, 590: 1-53. DOI: 10.1016/j.jhydrol.2020.125260.
  • Tekin, S., Can, T., 2017. Gökçay Havzasının Karar Ağaç Yöntemi ile Heyelan Duyarlılık Değerlendirmesi. Ulusal Mühendislik Jeolojisi- Jeoteknik Sempozyumu, 12-17 Ekim, Adana, s. 12-14.
  • Tekin, S., Çan, T., 2019. Yapay sinir ağları yöntemi ile Ermenek Havzası’nın (Karaman) kayma türü heyelan duyarlılık değerlendirmesi. Bilge International Journal of Science and Technology Research, 3: 21-28. DOI: 10.30516/bilgesci.525438.
  • Turoğlu, H., Aykut, T., 2019. Ergene nehri havzası için hidromorfometrik analizlerle taşkın duyarlılık değerlendirmesi. Jeomorfolojik Araştırmalar Dergisi, 2: 1-15.
  • Uzun, M., 2014. Lale Dere (Yalova) Havzası’nın jeomorfolojik özelliklerinin jeomorfometrik analizlerle incelenmesi. Route Educational and Social Science Journal, 1: 72-88.
  • Van Wijk, F.J., De la Haye, M.A.A., Hehenkamp, M.J., Velde, I.A., De Bruin, E.F.L.M., Schelleman F.J.M., 2003. Uygulama El Kitabı, Su Çerçeve Direktifi’nin Türkiye’de Uygulanması. Grontmij Advies ve Techniek, Utrecht.
  • Wagan, F.H., Khoso, S., 2013. Water Shortage; Its Causes, Impacts and Remedial Measues. 6th International Civil Engineering Congress, 28 December, Karachi, Pakistan, pp. 1-6.
  • Withanage, N.S., Dayawansa, N.D.K., De Silva, R.P., 2015. Morphometric analysis of the Gal Oya river basin using spatial data derived from GIS. Tropical Agricultural Research, 26: 175-188. DOI: 10.4038/tar.v26i1.8082.
  • Zhang, W., Li, W., Loaiciga, H.A., Liu, X., Liu, S., Zheng, S., Zhang, H. 2021. Adaptive Determination of the Flow Accumulation Threshold for Extracting Drainage Networks from DEMs. DOI: 10.3390/rs13112024.
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Orijinal Araştırma Makalesi
Yazarlar

Mücahit Coşkun 0000-0002-7881-6742

Ahmet Öztürk 0000-0002-4074-0201

Yayımlanma Tarihi 29 Mart 2022
Kabul Tarihi 17 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Coşkun, M., & Öztürk, A. (2022). Havza önceliklendirmesi bakımından Ermenek Çayı Havzası ve Gökçay Havzasının karşılaştırmalı morfometrik analizi. Turkish Journal of Forestry, 23(1), 1-10. https://doi.org/10.18182/tjf.1024569
AMA Coşkun M, Öztürk A. Havza önceliklendirmesi bakımından Ermenek Çayı Havzası ve Gökçay Havzasının karşılaştırmalı morfometrik analizi. Turkish Journal of Forestry. Mart 2022;23(1):1-10. doi:10.18182/tjf.1024569
Chicago Coşkun, Mücahit, ve Ahmet Öztürk. “Havza önceliklendirmesi bakımından Ermenek Çayı Havzası Ve Gökçay Havzasının karşılaştırmalı Morfometrik Analizi”. Turkish Journal of Forestry 23, sy. 1 (Mart 2022): 1-10. https://doi.org/10.18182/tjf.1024569.
EndNote Coşkun M, Öztürk A (01 Mart 2022) Havza önceliklendirmesi bakımından Ermenek Çayı Havzası ve Gökçay Havzasının karşılaştırmalı morfometrik analizi. Turkish Journal of Forestry 23 1 1–10.
IEEE M. Coşkun ve A. Öztürk, “Havza önceliklendirmesi bakımından Ermenek Çayı Havzası ve Gökçay Havzasının karşılaştırmalı morfometrik analizi”, Turkish Journal of Forestry, c. 23, sy. 1, ss. 1–10, 2022, doi: 10.18182/tjf.1024569.
ISNAD Coşkun, Mücahit - Öztürk, Ahmet. “Havza önceliklendirmesi bakımından Ermenek Çayı Havzası Ve Gökçay Havzasının karşılaştırmalı Morfometrik Analizi”. Turkish Journal of Forestry 23/1 (Mart 2022), 1-10. https://doi.org/10.18182/tjf.1024569.
JAMA Coşkun M, Öztürk A. Havza önceliklendirmesi bakımından Ermenek Çayı Havzası ve Gökçay Havzasının karşılaştırmalı morfometrik analizi. Turkish Journal of Forestry. 2022;23:1–10.
MLA Coşkun, Mücahit ve Ahmet Öztürk. “Havza önceliklendirmesi bakımından Ermenek Çayı Havzası Ve Gökçay Havzasının karşılaştırmalı Morfometrik Analizi”. Turkish Journal of Forestry, c. 23, sy. 1, 2022, ss. 1-10, doi:10.18182/tjf.1024569.
Vancouver Coşkun M, Öztürk A. Havza önceliklendirmesi bakımından Ermenek Çayı Havzası ve Gökçay Havzasının karşılaştırmalı morfometrik analizi. Turkish Journal of Forestry. 2022;23(1):1-10.