Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of saponin usage on physical, mechanical and fire properties of PP based wood-plastic composites

Yıl 2024, , 483 - 493, 28.12.2024
https://doi.org/10.18182/tjf.1494050

Öz

In this study, the effects of intumescent flame retardant and wood flour on the physical, mechanical and combustion properties of fire materials were investigated.Saponin (SP), ammonium polyphosphate (APP) and pentaerythritol (PER) were used as intumescent flame retardants.0-10% wood flour, 0-18% APP and 0-6% PER were used in production.SP was used at 0-2-4-6-8% ratio to determine the effect on the physical, mechanical and fire properties of the composite material.A total of 20 different combinations of composite materials were produced.The density value, tensile strength (TS), tensile modulus of elasticity (TM), elongation at break (EB), flexural strength (FS), flexural modulus (FM), impact strength (IS), horizontal burning and limit oxygen index (LOI) properties of the produced composites were determined.According to the test results, with the addition of wood flour, APP/PER and SP, there was a decrease in tensile strength and elongation at break values, while there was an increase in tensile modulus of elasticity, flexural strength, flexural modulus and impact strength values.An increase in the density of the samples was detected with the addition of fillers.Addition of APP/PER to composite materials improved their fire properties.In the horizontal combustion test, the flame did not progress and was extinguished in the APP/PER added samples.A decrease in burning rate and an increase in LOI value were detected with the increase in SP usage rate.

Destekleyen Kurum

Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırma Projeleri koordinasyon Birimi

Proje Numarası

2023/2-19M Münferit Proje

Teşekkür

Bu çalışma, Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından “2023/2-19M Münferit Proje” kapsamında desteklenmiştir.

Kaynakça

  • Alongi, J., Poskovic, M., Frache, A., Malucelli, G., 2012. Cyclodextrin nanosponges as novel green flame retardants for PP, LLDPE and PA6. Carbohydrate Polymers, 88 (4): 1387−1394.
  • Alongi, J., Poskovic, M., Frache, A., Trotta, F., 2010. Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties. Polymer Degradation and Stability, 95: 2093−2100.
  • Arif, T., Bhosale, J. D., Kumar, N., Mandal, T. K., Bendre, R. S., Lavekar, G. S., Dabur, R. 2009. Natural products–antifungal agents derived from plants. Journal of Asian Natural Products Research, 11(7): 621-638.
  • ASTM D6662, 2001. Standard Specification for Polyolefin- based Plastic Lumber Decking Boards. ASTM International, West Conshohocken, PA, USA.
  • ASTM D256, 2010. Standard test for determining the izod pendulum impact resistance of plastics. ASTM International, West Conshohocken, PA, USA.
  • ASTM D638, 2010. Standard test for tensile properties of plastics. ASTM International, West Conshohocken, PA, USA.
  • ASTM D790, 2010. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, PA, USA.
  • Atar, İ., Başboğa, İ.H., Karakuş, K., Mengeloğlu F., 2021. Effect of waste tea (Camellia sinensis) wood fibers and MAPE on some properties of high density polyethylene (HDPE) based polymer composites. Turkish Journal of Forest Science, 5(2): 606-619.
  • Attia, N., Hassan, M., Nour, M., Geckeler, K., 2014. Flame retardant materials: synergistic effect of halloysite nanotubes on the flammability properties of acrylonitrile– butadiene–styrene composites. Polymer International, 63: 1168–1173.
  • Başboğa, H. I., 2023.Polypropylene-based composites reinforced with waste tropic wood flours: Determination of accelerated weathering resistance, tribological, and thermal properties. BioResources, 18(4): 7251-7294. DOI: 10.15376/biores.18.4.7251-7294
  • Başboğa, İ.H., Atar, İ., Karakuş, K., Mengeloğlu, F., 2020. Determination of some technological properties of injection molded pulverized‑HDPE based composites reinforced with micronized waste tire powder and red pine wood wastes. Journal of Polymers and the Environment, 28:1776–1794.
  • Başboğa, H. İ., Kılıç, İ., Atar, İ., Mengeloğlu, F., 2022. The usage of wood of dahoma (Piptadeniastrumafricanum), a tropic tree, in the production of wood plastic composite. Turkish Journal of Forestry Research, 9(Special Issue): 271-280. DOI: 10.17568/ogmoad.1091247
  • Bledzki, A., Faruk, O., 2003. Wood fibre reinforced polypropylene composites: Effect of fibre geometry and coupling agent on physico-mechanical properties. Applied Composite Materials, 10: 365-379. DOI: 10.1023/A:1025741100628
  • Carosio, F., Alongi, J., Malucelli, G., 2012. Layer by layer ammonium polyphosphate-based coatings for flame retardancy of polyester−cotton blends. Carbohydrate Polymers, 88(4): 1460−1469.
  • Çavuş, V., 2020. Selected properties of mahogany wood flour filled polypropylene composites: The effect of maleic anhydride-grafted polypropylene (MAPP). BioResources, 15(2): 2227-2236. DOI: 10.15376/biores.15.2.2227-2236
  • Çavuş, V., Mengeloğlu, F., 2020. Effect of wood particle size on selected properties of neat and recycled wood polypropylene composites. BioResources, 15(2): 3427-3442. DOI: 10.15376/biores.15.2.3427-3442
  • Çavdar, A. D., Kalaycıoğlu, H., Mengeloğlu, F., 2011. Tea mill waste fibers filled thermoplastic composites: The effects of plastic type and fiber loading. Journal of Reinforced Plastics and Composites, 30(10): 833-844. DOI: 10.1177/ 0731684411408752 Cavdar, A. D., Mengeloğlu, F.,Karakus, K., 2015. Effect of boricacidandborax on mechanical, fire andthermalproperties of woodflourfilledhighdensitypolyethylenecomposites. Measurement, 60:6-12.
  • Cavdar, A. D., Torun, S. B., Ertas, M., Mengeloglu, F., 2019. Ammonium zeolite andammoniumphosphateapplied as fire retardantsformicrocrystallinecellulosefilledthermoplasticcomposites. Fire Safety Journal, 107: 202-209.
  • EN 323, 1993. Wood-based panels Determination of density, European Standard.
  • Espinach, F. X., Julian, F., Verdaguer, N., Torres, L., Pelach, M. A., Vilaseca, F., Mutje, P., 2013. Analysis of tensile and flexural modulus in hemp strands/ polypropylene composites. Composites Part B: Engineering, 47: 339-343. DOI: 10.1016/j.compositesb.2012.11.021
  • Feng, J. X., Su, S. P., Zhu, J., 2011. An intumescent flame retardant system using β-cyclodextrin as a carbon source in polylactic acid (PLA). Polymers for Advanced Technologies, 22: 1115−1122.
  • ISO 4589-2, 2017. Plastics - Determination of burning behaviour by oxygen index. International Standard.
  • Istomina, E.I., Zubkovaa, N.S., Butylkina, N.G., Gordeeva, S.A., Tjuganovaa, M.A., Khalturinskya, N.A., 1996. Lowering of polyethylene (PE) and polypropylene (PP) combustibility. Fire Safety Journal, 26:185.
  • Jiang, H. P., Sun, L. F., 2003. Progress on the research fields on the extraction and application of tea saponin. Jiangxi Chemical Industry, 4: 52−57.
  • Karmarkar, A., Chauhan, S. S., Modak, J. M., Chanda, M., 2007. Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Composites Part A: Applied Science and Manufacturing, 38(2): 227-233. DOI: 10.1016/j.compositesa.2006.05.005
  • Kılıç, İ., Avcı, B., Atar, İ., Korkmaz, N., Yılmaz, G., Mengeloğlu, F., 2023. Using furniture factory waste sawdust in wood plastic composite production and prototype sample production. BioResources, 18(4): 7212-7229. DOI: 10.15376/biores.18.4.7212-7229
  • Kılıç, İ., Avcı, B., Atar, İ., Korkmaz, N., Yılmaz, G., Mengeloğlu, F., 2024. Utilization of flours from hemp stalks as reinforcement in polypropylene matrix. Bioresources, 19(1): 1494-1516. DOI: 10.15376/biores.19.1.1494-1516
  • Le Bras, M., Bourbigot, S., Le Tallec, Y., Laureyns, J., 1997. Synergy in intumescence-application to β-cyclodextrin carbonisation agent in intumescent additives for fire retardant polyethylene formulations. Polymer Degradation and Stability, 56: 11−21.
  • Li, B., Xu, M.J., 2006. Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polymer Degradation and Stability, 91: 1380–1386.
  • Maddah, H.A., 2016. Polypropylene as a promising plastic: a review. American Journal of Polymer Science, 6(1): 1-11. DOI: 10.5923/j.ajps.20160601.01
  • Maziero, R., Soares, K., Filho, A. I., Franco, A. R., Rubio, J. C. C., 2019. Maleated polypropylene as coupling agent for polypropylene composites reinforced with eucalyptus and pinus particles. BioResources, 14(2): 4774-4791. DOI: 10.15376/biores.14.2.4774-4791
  • Mengeloǧlu, F., Karakuş, K., 2008. Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turkish Journal of Agriculture and Forestry, 32:537–546. https ://doi.org/10.3906/tar-0801-7
  • Mengeloğlu, F., Çavuş, V., 2020. Preparation of thermoplastic polyurethane-based biocomposites through injection molding: Effect of the filler type and content. BioResources, 15(3): 5749-5763. DOI: 10.15376/biores.15.2.2227-2236 Nie, S., Liu, X., Wu, K., Dai, G., Hu, Y., 2013. Intumescent flame retardation of polypropylene/ bamboo fiber semi-biocomposites: flame retardancy and thermal degradation. Journal of Thermal Analysis and Calorimetry, 111: 425–430.
  • Qian, W., Li, X.Z., Wu, Z.P., Liu, Y.X., Fang, C.C., Meng, W., 2015. Formulation of intumescent flame retandant coatings containing natural-based tea saponin. Journal of Agricultural and Food Chemitry, 63: 2782-2788.
  • Qian, W., Li., Zhou, J., Liu, Y., Wu, Z., 2019. High synergistic effects of natural-based tea saponin in intumescent flameretardant coatings for enhancement of flame retardancy and pyrolysis performance. Progress in Organic Coatings, 127: 408-418.
  • Reti, C., Casetta, M., Duquesne, S., Bourbigot, S., Delobel, R., 2008. Flammability properties of intumescent PLA including starch and lignin. Polymers for Advanced Technologies, 19: 628−635.
  • Ruter, J.M., 2002. Nursery Production of Tea Oil Camellia Under Different Light Levels. Trends in New Crop and New Uses, 222-224.
  • Stark, N., Berger, M. J., 1997. Effect of species and particle size on properties of wood-flour-filled polypropylene composites. Symposium of Functional Fillers for Thermoplastics and Thermosets, 8-10 December, San Diego, California, USA, pp. 1-20.
  • UL 94,2021. Tests for Flammability of Plastic Materials for Parts in Devices and Appliances.American National Standard.
  • Vandersall, H.L., 1971. Intumescent coating system, their development and chemistry. Journal of Fire and Flammability, 2: 97-140.
  • Weil, E.D., Levchik, S.V., 2008. Flame retardants in commercial use or development for polyolefins. Journal of Fire Sciences,26: 5-43.
  • Wen, P.Y., Wang, X.F., Xing, W.Y., Feng, X.M., Yu, B., Shi, Y.Q., Tang, G., Song, L., Hu, Y. R., Yuen, K.K., 2013. Synthesis of a novel triazine-based hyperbranched char foaming agent and the study of its enhancement on flame retardancy and thermal stability of polypropylene. Industrial and Engineering Chemistry Research, 52: 17015-17022.
  • Yang, H.-S., Kim, H.-J., Son, J., Park, H. J., Lee, B. J., Hwang, T. S., 2004. Rice- husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, 63: 305-312. DOI: 10.1016/S0263-8223(03)00179-X
  • Yang, H. S., Kim, H. J., Park, H. J., Lee, B. J., Hwang, T. S., 2007. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Composite Structures, 77: 45-55. DOI: 10.1016/j.compstruct.2005.06.005
  • Yuan, Q., Wu, D., Gotama, J., Bateman, S., 2008. Wood fiber reinforced polyethylene and polypropylene composites with high modulus and impact strength. Journal of Thermoplastic Composite Materials, 21(3): 195-208. DOI: 10.1177/0892705708089472
  • Zaini, M. J., Fuad, M. Y. A., Ismail, Z., Mansor, M. S., Mustafah, J., 1996. The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites. Polymer International, 40: 51-55. DOI: 10.1002/(SICI)1097-0126(199605)

Saponin kullanımının PP esaslı odun-plastik kompozitlerin fiziksel, mekanik ve yanma özellikleri üzerine etkisi

Yıl 2024, , 483 - 493, 28.12.2024
https://doi.org/10.18182/tjf.1494050

Öz

Bu çalışmada şişen alev geciktirici ve odun ununun kompozit malzemelerin fiziksel, mekanik ve yanma özellikleri üzerine etkisi araştırılmıştır. Şişen alev geciktirici olarak saponin (SP), amonyum polifosfat (APP) ve pentaeritritol (PER) kullanılmıştır. Üretimlerde odun unu %0-10, APP %0-18 ve PER %0-6 oranında kullanılmıştır. SP’nin kompozit malzemenin fiziksel, mekanik ve yanma özellikleri üzerine etkisini belirlemek amacıyla %0-2-4-6-8 oranında kullanılmıştır. Toplamda 20 farklı kombinasyonda kompozit malzeme üretimi yapılmıştır. Üretimi yapılan kompozitlerin yoğunluk değeri, çekme direnci (ÇD), çekme elastikiyet modülü (ÇM), kopmada uzama (KU), eğilme direnci (ED), eğilmede elastikiyet modülü (EM), darbe direnci (DD), yatay yanma ve limit oksijen indeksi (LOI) değerleri tespit edilmiştir. Test sonuçlarına göre odun unu, APP/PER ve SP ilavesi ile çekme direncinde ve kopmada uzama değerlerinde azalma görülürkençekme elastikiyet modülü, eğilme direnci, eğilmede elastikiyet modülü vedarbe direncinde değerlerinde artışmeydana gelmiştir. Dolgu maddelerinin ilavesi ile örneklerin yoğunluklarında artış tespit edilmiştir. Kompozit malzemelere APP/PER ilave edilmesi yanma özelliklerini iyileştirmiştir. Yatay yanma testinde APP/PER katkılı örneklerde alev ilerleme yapmamış ve sönmüştür. SP kullanım oranının artması ile yanma hızında düşme ve LOI değerinde artış tespit edilmiştir.

Destekleyen Kurum

Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırma Projeleri koordinasyon Birimi

Proje Numarası

2023/2-19M Münferit Proje

Teşekkür

Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırma Projeleri koordinasyon Birimi

Kaynakça

  • Alongi, J., Poskovic, M., Frache, A., Malucelli, G., 2012. Cyclodextrin nanosponges as novel green flame retardants for PP, LLDPE and PA6. Carbohydrate Polymers, 88 (4): 1387−1394.
  • Alongi, J., Poskovic, M., Frache, A., Trotta, F., 2010. Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties. Polymer Degradation and Stability, 95: 2093−2100.
  • Arif, T., Bhosale, J. D., Kumar, N., Mandal, T. K., Bendre, R. S., Lavekar, G. S., Dabur, R. 2009. Natural products–antifungal agents derived from plants. Journal of Asian Natural Products Research, 11(7): 621-638.
  • ASTM D6662, 2001. Standard Specification for Polyolefin- based Plastic Lumber Decking Boards. ASTM International, West Conshohocken, PA, USA.
  • ASTM D256, 2010. Standard test for determining the izod pendulum impact resistance of plastics. ASTM International, West Conshohocken, PA, USA.
  • ASTM D638, 2010. Standard test for tensile properties of plastics. ASTM International, West Conshohocken, PA, USA.
  • ASTM D790, 2010. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, PA, USA.
  • Atar, İ., Başboğa, İ.H., Karakuş, K., Mengeloğlu F., 2021. Effect of waste tea (Camellia sinensis) wood fibers and MAPE on some properties of high density polyethylene (HDPE) based polymer composites. Turkish Journal of Forest Science, 5(2): 606-619.
  • Attia, N., Hassan, M., Nour, M., Geckeler, K., 2014. Flame retardant materials: synergistic effect of halloysite nanotubes on the flammability properties of acrylonitrile– butadiene–styrene composites. Polymer International, 63: 1168–1173.
  • Başboğa, H. I., 2023.Polypropylene-based composites reinforced with waste tropic wood flours: Determination of accelerated weathering resistance, tribological, and thermal properties. BioResources, 18(4): 7251-7294. DOI: 10.15376/biores.18.4.7251-7294
  • Başboğa, İ.H., Atar, İ., Karakuş, K., Mengeloğlu, F., 2020. Determination of some technological properties of injection molded pulverized‑HDPE based composites reinforced with micronized waste tire powder and red pine wood wastes. Journal of Polymers and the Environment, 28:1776–1794.
  • Başboğa, H. İ., Kılıç, İ., Atar, İ., Mengeloğlu, F., 2022. The usage of wood of dahoma (Piptadeniastrumafricanum), a tropic tree, in the production of wood plastic composite. Turkish Journal of Forestry Research, 9(Special Issue): 271-280. DOI: 10.17568/ogmoad.1091247
  • Bledzki, A., Faruk, O., 2003. Wood fibre reinforced polypropylene composites: Effect of fibre geometry and coupling agent on physico-mechanical properties. Applied Composite Materials, 10: 365-379. DOI: 10.1023/A:1025741100628
  • Carosio, F., Alongi, J., Malucelli, G., 2012. Layer by layer ammonium polyphosphate-based coatings for flame retardancy of polyester−cotton blends. Carbohydrate Polymers, 88(4): 1460−1469.
  • Çavuş, V., 2020. Selected properties of mahogany wood flour filled polypropylene composites: The effect of maleic anhydride-grafted polypropylene (MAPP). BioResources, 15(2): 2227-2236. DOI: 10.15376/biores.15.2.2227-2236
  • Çavuş, V., Mengeloğlu, F., 2020. Effect of wood particle size on selected properties of neat and recycled wood polypropylene composites. BioResources, 15(2): 3427-3442. DOI: 10.15376/biores.15.2.3427-3442
  • Çavdar, A. D., Kalaycıoğlu, H., Mengeloğlu, F., 2011. Tea mill waste fibers filled thermoplastic composites: The effects of plastic type and fiber loading. Journal of Reinforced Plastics and Composites, 30(10): 833-844. DOI: 10.1177/ 0731684411408752 Cavdar, A. D., Mengeloğlu, F.,Karakus, K., 2015. Effect of boricacidandborax on mechanical, fire andthermalproperties of woodflourfilledhighdensitypolyethylenecomposites. Measurement, 60:6-12.
  • Cavdar, A. D., Torun, S. B., Ertas, M., Mengeloglu, F., 2019. Ammonium zeolite andammoniumphosphateapplied as fire retardantsformicrocrystallinecellulosefilledthermoplasticcomposites. Fire Safety Journal, 107: 202-209.
  • EN 323, 1993. Wood-based panels Determination of density, European Standard.
  • Espinach, F. X., Julian, F., Verdaguer, N., Torres, L., Pelach, M. A., Vilaseca, F., Mutje, P., 2013. Analysis of tensile and flexural modulus in hemp strands/ polypropylene composites. Composites Part B: Engineering, 47: 339-343. DOI: 10.1016/j.compositesb.2012.11.021
  • Feng, J. X., Su, S. P., Zhu, J., 2011. An intumescent flame retardant system using β-cyclodextrin as a carbon source in polylactic acid (PLA). Polymers for Advanced Technologies, 22: 1115−1122.
  • ISO 4589-2, 2017. Plastics - Determination of burning behaviour by oxygen index. International Standard.
  • Istomina, E.I., Zubkovaa, N.S., Butylkina, N.G., Gordeeva, S.A., Tjuganovaa, M.A., Khalturinskya, N.A., 1996. Lowering of polyethylene (PE) and polypropylene (PP) combustibility. Fire Safety Journal, 26:185.
  • Jiang, H. P., Sun, L. F., 2003. Progress on the research fields on the extraction and application of tea saponin. Jiangxi Chemical Industry, 4: 52−57.
  • Karmarkar, A., Chauhan, S. S., Modak, J. M., Chanda, M., 2007. Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Composites Part A: Applied Science and Manufacturing, 38(2): 227-233. DOI: 10.1016/j.compositesa.2006.05.005
  • Kılıç, İ., Avcı, B., Atar, İ., Korkmaz, N., Yılmaz, G., Mengeloğlu, F., 2023. Using furniture factory waste sawdust in wood plastic composite production and prototype sample production. BioResources, 18(4): 7212-7229. DOI: 10.15376/biores.18.4.7212-7229
  • Kılıç, İ., Avcı, B., Atar, İ., Korkmaz, N., Yılmaz, G., Mengeloğlu, F., 2024. Utilization of flours from hemp stalks as reinforcement in polypropylene matrix. Bioresources, 19(1): 1494-1516. DOI: 10.15376/biores.19.1.1494-1516
  • Le Bras, M., Bourbigot, S., Le Tallec, Y., Laureyns, J., 1997. Synergy in intumescence-application to β-cyclodextrin carbonisation agent in intumescent additives for fire retardant polyethylene formulations. Polymer Degradation and Stability, 56: 11−21.
  • Li, B., Xu, M.J., 2006. Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polymer Degradation and Stability, 91: 1380–1386.
  • Maddah, H.A., 2016. Polypropylene as a promising plastic: a review. American Journal of Polymer Science, 6(1): 1-11. DOI: 10.5923/j.ajps.20160601.01
  • Maziero, R., Soares, K., Filho, A. I., Franco, A. R., Rubio, J. C. C., 2019. Maleated polypropylene as coupling agent for polypropylene composites reinforced with eucalyptus and pinus particles. BioResources, 14(2): 4774-4791. DOI: 10.15376/biores.14.2.4774-4791
  • Mengeloǧlu, F., Karakuş, K., 2008. Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turkish Journal of Agriculture and Forestry, 32:537–546. https ://doi.org/10.3906/tar-0801-7
  • Mengeloğlu, F., Çavuş, V., 2020. Preparation of thermoplastic polyurethane-based biocomposites through injection molding: Effect of the filler type and content. BioResources, 15(3): 5749-5763. DOI: 10.15376/biores.15.2.2227-2236 Nie, S., Liu, X., Wu, K., Dai, G., Hu, Y., 2013. Intumescent flame retardation of polypropylene/ bamboo fiber semi-biocomposites: flame retardancy and thermal degradation. Journal of Thermal Analysis and Calorimetry, 111: 425–430.
  • Qian, W., Li, X.Z., Wu, Z.P., Liu, Y.X., Fang, C.C., Meng, W., 2015. Formulation of intumescent flame retandant coatings containing natural-based tea saponin. Journal of Agricultural and Food Chemitry, 63: 2782-2788.
  • Qian, W., Li., Zhou, J., Liu, Y., Wu, Z., 2019. High synergistic effects of natural-based tea saponin in intumescent flameretardant coatings for enhancement of flame retardancy and pyrolysis performance. Progress in Organic Coatings, 127: 408-418.
  • Reti, C., Casetta, M., Duquesne, S., Bourbigot, S., Delobel, R., 2008. Flammability properties of intumescent PLA including starch and lignin. Polymers for Advanced Technologies, 19: 628−635.
  • Ruter, J.M., 2002. Nursery Production of Tea Oil Camellia Under Different Light Levels. Trends in New Crop and New Uses, 222-224.
  • Stark, N., Berger, M. J., 1997. Effect of species and particle size on properties of wood-flour-filled polypropylene composites. Symposium of Functional Fillers for Thermoplastics and Thermosets, 8-10 December, San Diego, California, USA, pp. 1-20.
  • UL 94,2021. Tests for Flammability of Plastic Materials for Parts in Devices and Appliances.American National Standard.
  • Vandersall, H.L., 1971. Intumescent coating system, their development and chemistry. Journal of Fire and Flammability, 2: 97-140.
  • Weil, E.D., Levchik, S.V., 2008. Flame retardants in commercial use or development for polyolefins. Journal of Fire Sciences,26: 5-43.
  • Wen, P.Y., Wang, X.F., Xing, W.Y., Feng, X.M., Yu, B., Shi, Y.Q., Tang, G., Song, L., Hu, Y. R., Yuen, K.K., 2013. Synthesis of a novel triazine-based hyperbranched char foaming agent and the study of its enhancement on flame retardancy and thermal stability of polypropylene. Industrial and Engineering Chemistry Research, 52: 17015-17022.
  • Yang, H.-S., Kim, H.-J., Son, J., Park, H. J., Lee, B. J., Hwang, T. S., 2004. Rice- husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, 63: 305-312. DOI: 10.1016/S0263-8223(03)00179-X
  • Yang, H. S., Kim, H. J., Park, H. J., Lee, B. J., Hwang, T. S., 2007. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Composite Structures, 77: 45-55. DOI: 10.1016/j.compstruct.2005.06.005
  • Yuan, Q., Wu, D., Gotama, J., Bateman, S., 2008. Wood fiber reinforced polyethylene and polypropylene composites with high modulus and impact strength. Journal of Thermoplastic Composite Materials, 21(3): 195-208. DOI: 10.1177/0892705708089472
  • Zaini, M. J., Fuad, M. Y. A., Ismail, Z., Mansor, M. S., Mustafah, J., 1996. The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites. Polymer International, 40: 51-55. DOI: 10.1002/(SICI)1097-0126(199605)
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ormancılık (Diğer)
Bölüm Orijinal Araştırma Makalesi
Yazarlar

İlkay Atar 0000-0001-9527-1791

Proje Numarası 2023/2-19M Münferit Proje
Yayımlanma Tarihi 28 Aralık 2024
Gönderilme Tarihi 1 Haziran 2024
Kabul Tarihi 9 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Atar, İ. (2024). Saponin kullanımının PP esaslı odun-plastik kompozitlerin fiziksel, mekanik ve yanma özellikleri üzerine etkisi. Turkish Journal of Forestry, 25(4), 483-493. https://doi.org/10.18182/tjf.1494050
AMA Atar İ. Saponin kullanımının PP esaslı odun-plastik kompozitlerin fiziksel, mekanik ve yanma özellikleri üzerine etkisi. Turkish Journal of Forestry. Aralık 2024;25(4):483-493. doi:10.18182/tjf.1494050
Chicago Atar, İlkay. “Saponin kullanımının PP Esaslı Odun-Plastik Kompozitlerin Fiziksel, Mekanik Ve Yanma özellikleri üzerine Etkisi”. Turkish Journal of Forestry 25, sy. 4 (Aralık 2024): 483-93. https://doi.org/10.18182/tjf.1494050.
EndNote Atar İ (01 Aralık 2024) Saponin kullanımının PP esaslı odun-plastik kompozitlerin fiziksel, mekanik ve yanma özellikleri üzerine etkisi. Turkish Journal of Forestry 25 4 483–493.
IEEE İ. Atar, “Saponin kullanımının PP esaslı odun-plastik kompozitlerin fiziksel, mekanik ve yanma özellikleri üzerine etkisi”, Turkish Journal of Forestry, c. 25, sy. 4, ss. 483–493, 2024, doi: 10.18182/tjf.1494050.
ISNAD Atar, İlkay. “Saponin kullanımının PP Esaslı Odun-Plastik Kompozitlerin Fiziksel, Mekanik Ve Yanma özellikleri üzerine Etkisi”. Turkish Journal of Forestry 25/4 (Aralık 2024), 483-493. https://doi.org/10.18182/tjf.1494050.
JAMA Atar İ. Saponin kullanımının PP esaslı odun-plastik kompozitlerin fiziksel, mekanik ve yanma özellikleri üzerine etkisi. Turkish Journal of Forestry. 2024;25:483–493.
MLA Atar, İlkay. “Saponin kullanımının PP Esaslı Odun-Plastik Kompozitlerin Fiziksel, Mekanik Ve Yanma özellikleri üzerine Etkisi”. Turkish Journal of Forestry, c. 25, sy. 4, 2024, ss. 483-9, doi:10.18182/tjf.1494050.
Vancouver Atar İ. Saponin kullanımının PP esaslı odun-plastik kompozitlerin fiziksel, mekanik ve yanma özellikleri üzerine etkisi. Turkish Journal of Forestry. 2024;25(4):483-9.