Investigation of the effects of heat treatment on medium density fiberboard (MDF)
Yıl 2024,
, 530 - 533, 28.12.2024
Hikmet Yazıcı
,
Hüseyin Peker
,
Murat Özalp
Öz
In particular, materials such as medium density fiberboard (MDF) have advantages such as high strength, homogeneous structure and easy processability, but disadvantages such as sensitivity to water and formaldehyde emission. To minimize these disadvantages and increase the durability of the material, methods such as heat treatment are used. This study was carried out to determine the effect of heat treatment at different temperatures on water swelling and formaldehyde emission values of MDF samples. Fiberboards with a thickness of 18 mm were used in the experiments. The fiberboard samples used in this study were kept at 120 °C, 150 °C and 180 °C for 2, 4 and 6 hours respectively. It was observed that water swelling and formaldehyde emission values decreased with increasing time and temperature in heat treatment.
Etik Beyan
Ethics is not required for our work.
Kaynakça
- Asumani, O. M. L., Reid, R.G., Paskaramoorthy, R., 2012. The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 43(9): 1431–1440.
- Ayrilmis, N., 2000. The effect of tree species on technological properties of MDF. MSc Thesis, Istanbul University, Institute of Natural Sciences, Turkey.
- Boran, S., Usta, M., Gümüşkaya, E., 2011. Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin. International Journal of Adhesion and Adhesives, 31(7): 674–678.
- Cavdar, A. D., Mengeloğlu, F., Karakus, K., 2015. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement, 60: 6–12.
- Clemons, C.M., Caulfield, D.F., 2010. Functional fillers for plastics. In: Natural Fibers, John Wiley & Sons, Weinheim, pp. 150-556.
- Elbert, A. A., 1995. Influence of hardener systems and wood on the formaldehyde emission from urea-formaldehyde resin and particleboards. Holzforschung, 49(4):358-362.
- Ishak, M. R., Leman, Z., Sapuan, S. M., Salleh, M. Y., Misri, S., 2009. The effect of sea water treatment on the impact and flexural strength of sugar palm fibre reinforced epoxy composites. International Journal of Mechanical and Materials Engineering. 4(3): 316–320.
- Jawaid, M., Khalil, H.P.S.A., 2011. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1): 1–18.
- Kaddami, H., Dufresne, A., Khelifi, B., Bendahou, A., Taourirte, M., Raihane, M., Issartel, N., Sautereau, H., Gerard, J-F, Sami, N., 2006. Short palm tree fibers–Thermoset matrices composites. Composites Part A: Applied Science and Manufacturing, 37(9): 1413–1422.
Kara, M.E., Ateş, S., 2015. Effects of Some Production Variables on MDF qualİty. In: XXVIIth International Conference Resarch Furniture Industry, 17-20 September, s.74-80 Ankara.
- Moezzipour, B., Abdolkhani, A., Doost-hoseini, K., Ahmad Ramazani, S. A., Tarmian, A., 2018. Practical properties and formaldehyde emission of medium density fiberboards (MDFs) recycled by electrical method. European Journal of Wood and Wood Products, 76: 1287–1294.
- Myers, G.E., Koutsky, J.A., 1990. Formaldehyde liberation and cure behavior of urea-formaldehyde resins. Holzforschung, 44(2), 117–126.
- Nessuer, H., Schall, W. 1970. Experiments for the determination of hydrolysis phenomena in particleboards. Holzforschung Holzverwert, 22(6), 116-120.
- Örs, Y., Keskin, H., 2003. Ağaç Malzeme Teknolojisi. Gazi Yayınevi, Ankara.
- Özalp, M., 2010. The effect of borax pentahydrate addition to urea formaldehyde on the mechanical characteristics and free formaldehyde content of medium density fiberboard (MDF). European Journal of Wood and Wood Products, 68: 117–119.
- Ringena, O., Janzon, R., Pfizenmayer, G., Schulte, M., Lehnen, R., 2006. Estimating the hydrolytic durability of cured wood adhesives by measuring formaldehyde liberation and structural stability. Holz als Roh-und Werkst., 64(4): 321–326.
- Robitschek, P., Christensen, R. L., 1976. Degradation phenomena in urea-formaldehyde resin-bonded particleboard. Forest Products Journal, 26(2): 43-46.
- TS EN 317, 1999. Particleboards and fibreboards determination of swelling in thickness after immersion in water. TSE, Ankara.
- TS 4894 EN 120, 1999. Wood based sheets boards determination of formaldehyde content, TSE, Ankara.
- Widiarto, S., 2005. Effect of borax on mechanical properties and biodegradability of sago starch—poly (vinylalcohol) blend films. Jurnal Sains and Teknologi, 2: 151–157.
Isıl işlemin orta yoğunlukta lif levha (MDF) üzerindeki etkilerinin araştırılması
Yıl 2024,
, 530 - 533, 28.12.2024
Hikmet Yazıcı
,
Hüseyin Peker
,
Murat Özalp
Öz
Özellikle orta yoğunlukta lif levha (MDF) gibi malzemeler yüksek mukavemet, homojen yapı ve kolay işlenebilirlik gibi avantajlara sahip olmakla birlikte suya karşı hassasiyet ve formaldehit emisyonu gibi dezavantajlara sahiptir. Bu dezavantajları en aza indirmek ve malzemenin dayanıklılığını artırmak için ısıl işlem gibi yöntemler kullanılmaktadır. Bu çalışma, farklı sıcaklıklarda ısıl işlemin MDF numunelerinin suda şişme ve formaldehit emisyonu değerleri üzerindeki etkisini belirlemek amacıyla gerçekleştirilmiştir. Deneylerde 18 mm kalınlığında lif levhalar kullanılmıştır. Bu çalışmada kullanılan lif levha numuneleri 120 °C, 150 °C ve 180 °C'de sırasıyla 2, 4 ve 6 saat bekletilmiştir. Isıl işlemde artan süre ve sıcaklıkla birlikte suda şişme ve formaldehit emisyon değerlerinin azaldığı gözlemlenmiştir.
Kaynakça
- Asumani, O. M. L., Reid, R.G., Paskaramoorthy, R., 2012. The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 43(9): 1431–1440.
- Ayrilmis, N., 2000. The effect of tree species on technological properties of MDF. MSc Thesis, Istanbul University, Institute of Natural Sciences, Turkey.
- Boran, S., Usta, M., Gümüşkaya, E., 2011. Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin. International Journal of Adhesion and Adhesives, 31(7): 674–678.
- Cavdar, A. D., Mengeloğlu, F., Karakus, K., 2015. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement, 60: 6–12.
- Clemons, C.M., Caulfield, D.F., 2010. Functional fillers for plastics. In: Natural Fibers, John Wiley & Sons, Weinheim, pp. 150-556.
- Elbert, A. A., 1995. Influence of hardener systems and wood on the formaldehyde emission from urea-formaldehyde resin and particleboards. Holzforschung, 49(4):358-362.
- Ishak, M. R., Leman, Z., Sapuan, S. M., Salleh, M. Y., Misri, S., 2009. The effect of sea water treatment on the impact and flexural strength of sugar palm fibre reinforced epoxy composites. International Journal of Mechanical and Materials Engineering. 4(3): 316–320.
- Jawaid, M., Khalil, H.P.S.A., 2011. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1): 1–18.
- Kaddami, H., Dufresne, A., Khelifi, B., Bendahou, A., Taourirte, M., Raihane, M., Issartel, N., Sautereau, H., Gerard, J-F, Sami, N., 2006. Short palm tree fibers–Thermoset matrices composites. Composites Part A: Applied Science and Manufacturing, 37(9): 1413–1422.
Kara, M.E., Ateş, S., 2015. Effects of Some Production Variables on MDF qualİty. In: XXVIIth International Conference Resarch Furniture Industry, 17-20 September, s.74-80 Ankara.
- Moezzipour, B., Abdolkhani, A., Doost-hoseini, K., Ahmad Ramazani, S. A., Tarmian, A., 2018. Practical properties and formaldehyde emission of medium density fiberboards (MDFs) recycled by electrical method. European Journal of Wood and Wood Products, 76: 1287–1294.
- Myers, G.E., Koutsky, J.A., 1990. Formaldehyde liberation and cure behavior of urea-formaldehyde resins. Holzforschung, 44(2), 117–126.
- Nessuer, H., Schall, W. 1970. Experiments for the determination of hydrolysis phenomena in particleboards. Holzforschung Holzverwert, 22(6), 116-120.
- Örs, Y., Keskin, H., 2003. Ağaç Malzeme Teknolojisi. Gazi Yayınevi, Ankara.
- Özalp, M., 2010. The effect of borax pentahydrate addition to urea formaldehyde on the mechanical characteristics and free formaldehyde content of medium density fiberboard (MDF). European Journal of Wood and Wood Products, 68: 117–119.
- Ringena, O., Janzon, R., Pfizenmayer, G., Schulte, M., Lehnen, R., 2006. Estimating the hydrolytic durability of cured wood adhesives by measuring formaldehyde liberation and structural stability. Holz als Roh-und Werkst., 64(4): 321–326.
- Robitschek, P., Christensen, R. L., 1976. Degradation phenomena in urea-formaldehyde resin-bonded particleboard. Forest Products Journal, 26(2): 43-46.
- TS EN 317, 1999. Particleboards and fibreboards determination of swelling in thickness after immersion in water. TSE, Ankara.
- TS 4894 EN 120, 1999. Wood based sheets boards determination of formaldehyde content, TSE, Ankara.
- Widiarto, S., 2005. Effect of borax on mechanical properties and biodegradability of sago starch—poly (vinylalcohol) blend films. Jurnal Sains and Teknologi, 2: 151–157.