Araştırma Makalesi
BibTex RIS Kaynak Göster

Nijerya Orman Araştırma Enstitüsü’nde yerli tür deneme plantasyonlarında yaşa bağlı meşcere verimliliği, karbon depolama ve ağaç büyüme özellikleri

Yıl 2025, Cilt: 26 Sayı: 4, 486 - 496, 29.12.2025
https://doi.org/10.18182/tjf.1577813

Öz

Plantasyonlar, hızlı büyüme potansiyelleri ve yüksek verimlilikleri sayesinde endüstriyel oduna yönelik ulusal ve küresel talebin karşılanmasında önemli bir yere sahiptir. Doğal ormanlardan 3 ila 10 kat daha fazla biyokütle üretebilmeleri nedeniyle iklim değişikliğiyle mücadelede de önemli yere sahiptirler. Bu çalışmada, Nijerya Orman Araştırma Enstitüsü'ndeki farklı yaşlardaki Nauclea diderrichii ve Terminalia ivorensis plantasyonlarının büyüme özellikleri, verimlilikleri ve karbon depolama kapasiteleri incelenmiştir. Büyüme parametreleri, her iki türe ait 6 ile 24 yaş aralığındaki plantasyonlardan seçilen 25 m x 25 m boyutundaki örnek alanlarda ölçülmüştür. Biyokütle verileri tahribatsız ölçüm yöntemleriyle elde edilmiştir. Ortalama göğüs çapı (DBH), T. ivorensis meşcerelerinde 13,3 cm (6 yaş) ile 37 cm (24 yaş) arasında ve N. diderrichii meşcerelerinde 18,3 cm (13 yaş) ile 22,4 cm (14 yaş) arasında değişirken; ortalama boylar sırasıyla 10,1 m - 21,2 m ve 16,5 m - 17,8 m aralığındadır. Her iki tür de yüksek derecede ticari kullanılabilirlik göstermiş olup, türler arasında istatistiksel anlamda bir farklılık tespit edilmemiştir (T. ivorensis'te %66,5 - %81,4 ve N. diderrichii'de %77,0 - %77,2). T. ivorensis plantasyonlarında ortalama göğüs yüzeyi, hacim, biyokütle ve karbon stoku sırasıyla: 9,4 - 19,4 m²/ha, 63,5 - 252 m³/ha, 48,8 t/ha - 188,6 t/ha ve 24,4 t/ha - 94,3 t/ha olarak belirlenirken, N. diderrichii plantasyonlarında bu değerler 12,0 m²/ha - 12,1 m²/ha, 118,4 m³/ha - 195,8 m³/ha, 187,0 t/ha - 214,6 t/ha ve 93,5 t/ha - 107,3 t/ha’dır. Bu iki ağaç türü, diğer bazı tropikal plantasyon ağaç türleri ile karşılaştırıldığında iyi bir büyüme hızı ve verimlilik sergilemektedir. N. diderrichii ve T. ivorensis meşcerelerinin verimliliği, ticari kullanılabilirliği, biyokütlesi ve karbon stoku; bu türlerin kaliteli kereste üretimi, karbon tutumu ve iklim değişikliği ile mücadele açısından uygun türler olduğunu göstermektedir.

Kaynakça

  • Adeyemi, A.A., Ugo-Mbonu, N.A., 2017. Tree slenderness coefficients and crown ratio models for Gmelina arborea (Roxb) stand in Afi river forest reserve, Cross River state, Nigeria. Nigerian Journal of Agriculture, Food and Environment, 13(1):226-233.
  • Ajayi, S., Adie, D., 2018. Above ground carbon sequestration in Tropical High Forests and Mono-plantations of Okpon River Forest Reserve, Cross River State, Nigeria. Proceedings of the 6th Biennial National Conference of the Forests and Forest Products Society, 23 – 27 April,.Sokoto, Nigeria, pp. 1-25.
  • Akintunde-Alo, D.A, Onilude, Q.A, Ige, P.O., Adeoti, O.O., 2024. Stand growth, biomass and carbon sequestration potentials of Parkia biglobosa (jacq.) bench plantation in SouthWestern Nigeria. Journal of Applied Sciences and Environmental Management 28 (4): 1297-1304.
  • Awosusi, B.M, Onilude, Q.A, Adamu, I, Ukoha, P.,Salami, K.D., 2020. Assessment of Growth Characteristics and Carbon Sequestration Potentials of Gmelina arborea (Roxb.) and Nauclea diderrichii (De Wild) in Oyo State. EBSU Science Journal, 1(1): pp. 1-8. Baishya, R., Barik, S. K., Upadhaya, K., 2009. Distribution pattern of aboveground biomass in natural and plantation forests of humid tropics in northeast India. Tropical Ecology 50(2): 295–304.
  • Bonan, G.B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320:1444–1449.
  • Brown, S., Lugo, A.E., 1992. Above ground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia, 17: 8–18.
  • Chave, J., Rejou-Mechain, M., Burquez, A., Chidumayo, E., Colgan, M., Delitti, W., Duque, A., Welington, D., Fearnside, PM., Goodman, R., Henry, M., Martinez-Yrizar, A., Mugasha, W., Muller-Landau, H., Mencuccini, M., Nelson, B., Ngomanda, A., Nogueira, E., Ortiz-Malavassi, E., Pelissier, R., Ploton, P., Ryan, C., Saldarriaga, J., Vieilledent, G., 2014. Improved pan tropical allometric models to estimate the above ground biomass of tropical forests. Global Change Biology, 20 (10): 3177-3190. https://doi.org/10.1111/gcb.12629
  • Dar, J.A, Rather, M.Y, Subashree, K., Sundarapandian, S., Khan, M.L., 2017. Distribution patterns of tree, understorey, and detritus biomass in coniferous and broad-leaved forests of Western Himalaya, India. Journal of Sustainable Forestry, 36(8): 787-805.
  • Evans, J., 1999. Sustainability of Forest Plantations: The Evidence. A Review of Evidence Concerning the Narrow-Sense Sustainability of Planted Forests. Department for International Development (DFID), London, UK.
  • Evans, J., Turnbull, J.W., 2004. Plantation Forestry in the Tropics (3rd edn.). Oxford University Press, Oxford, UK.
  • FAO, 1992. Forest resources assessment 1990. Tropical forest plantation resources. (FAO Forestry Paper No. 128). Rome, Italy. https://www.fao.org/4/v8330e/v8330e00.htm Accessed: 16.05.2025
  • FAO, 2006. Global forest resources assessment 2005:Progress towards sustainable forest management (FAO Forestry Paper No. 147).Rome, Ital. http://www.fao.org/forestry/fra2005/en/ Accessed: 15.05.2025
  • FAO, 2018. The State of the World’s Forests 2018:Forest pathways to sustainable development. FAO, Rome, Italy. https://www.fao.org/3/19535EN/i9535en.pdf Accessed: 08.06.2025
  • FAO, 2020. Global forest resources assessment 2020: Main report. FAO: Rome. https://www.fao.org/3/ca9825en/CA9825EN.pdf Accessed: 08.06.2025
  • FAO, 2022. State of the World’s forests 2022: Forest pathways for green recovery and building inclusive, resilient and sustainable economies. Food and Agricultural Organisation of the United Nations, Rome, https://www.fao.org/3/cb9360en/cb9360en.pdf Accessed: 08.06.2025
  • Ghimire, P., Lamichhane, U., 2023. Carbon sequestration in Pinus roxburghii. Sarg Forest on two different aspects in Daman Hill, Nepal. Asian Journal of Biodiversity, 14(1):43. http://dx.doi.org/10.7828/ajob.v14i1.1545
  • Franklin, J., Mercker, D., 2009. Tree growth characteristics, (Publication No. 10-0030) The University of Tennessee Agricultural Extension Service. USA.
  • Godfrey, S., Tunhuma, F.A., 2020. The climate crisis: Climate change impacts, trends and vulnerabilities of Children in Sub Sahara Africa.United Nations, Kenya.
  • Husch, B., Beers, T.W., Keenshaw, J.A. Jr., 2003. Forest Mensuration. John Wiley & Sons, New York.
  • Ige, P.O., Adesoye, P.O., Akinyemi, G.O., 2019. Relationship between tree slenderness coefficient and growth characteristics of Gmelina arborea stands in Omo Forest Reserve, Nigeria. Forests and Forest Products Journal, 19: 62-72.
  • Ige, P.O., Komolafe, O.O., 2022. Tree slenderness coefficient models for biodiversity conservation in International Institute of Tropical Agriculture Forest Ibadan, Nigeria. Tanzania Journal of Forestry and Nature Conservation, 91(1): 20-31.
  • IPCC (2021). The Physical Science Basis. Contribution of Working Group 1 to the Sixth Assessment Report of the intergovernmental Panel on Climate change {(Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekci, O., Yu, R., Zhou, B. (eds.)}. Cambridge university Press, Cambridge, United Kingdom and New York, USA, 2391 pp. doi:10.1017/9781009157896.
  • Isola, J.O., Fawole, O.A., Oluwaponle, I.A., Ojedokun R.O., Owoade, A.D., 2021. Suitability assessment of soils around Forestry Research Institute of Nigeria (FRIN), Ibadan for maize production: A parametric analysis. Nigerian Agricultural Journal, 52 (2): 85 - 92.
  • IUCN (2021). The IUCN Red List of Threatened Species. Version 2021-3. www.iucnredlist.org. Accessed: 10.06.2025.
  • Keay, R.W.J., 1989. Trees of Nigeria. (A revised edition). Clarendon Press, U.K.
  • Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A. Lindquist, E., 2015. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management, 352: 9–20. doi:10.1016/j.foreco.2015.06.014.
  • Keith, H., Mackey, B.G., Lindenmayer, D.B., 2009. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proceedings of the National Academy of Sciences of the United States of America, 106:11635–11640.
  • Oladoye, A.O., Ige, P.O., Baruwa, N., Onilude, Q.A., Animashaun, Z.T., 2020. Slenderness coefficient models for tree species in Omo biosphere reserve, South-western Nigeria. Tropical Plant Research, 7(3): 609–618, DOI: 10.22271/tpr.2020.v7.i3.075
  • Onemayin, J.J., Olayiwola, V.A., Abiodun, F.O., Musa, F.B., Idris, R.S., 2020. Land use influence on some soil physical and chemical properties of an Alfisol at Forestry Research Institute of Nigeria. International Journal of Plant & Soil Science, 32(4): 1-8.
  • Onilude, Q.A., Adesoye, P.O., 2007. Relationship between slenderness coefficient and tree growth characteristics of Triplochiton Scleroxylon (K. Schum) stands in Ibadan metropolis. Obeche Journal, 25 (2): 16-23.
  • Onilude, Q.A., Fajemila, A., Adeleye, I.G., Oduola, M., Osijo, A.,
  • Oso, A.O. 2017. Stem Taper and Tree Growth Characteristics for Triplochton Scleroxylon (K.schum) stands in Ibadan Metropolis, Nigeria. International Journal of Biosciences, Agriculture and Technology. 8: 28-35.
  • Onyekwelu, J.C, Biber, P. Stimm, B., 2003. Density management diagram as a tool for thinning recommendations in even-aged Nauclea diderrichii plantations in Omo forest reserve, Nigeria. Nigerian Journal of Forestry, 33(2): 59 – 69.
  • Onyekwelu, J.C., 2004. Above-ground biomass production and biomass equations for even-aged Gmelina arborea (ROXB) plantations in south-western Nigeria. Biomass & Bioenergy, 26(1): 39 – 46. doi:10.1016/S0961-9534(03)00100-4
  • Onyekwelu, J.C, Mosandl, R., Stimm, B., 2006. Productivity, site evaluation and state of nutrition of Gmelina arborea plantations in tropical rainforest zone in South-western Nigeria. Forest Ecology and Management, 229: 214–227. doi:10.1016/j.foreco.2006.04.002
  • Onyekwelu, J.C., 2007. Growth, biomass yield and biomass functions for plantation-grown Nauclea diderrichii in humid tropical rainforest zone of Nigeria. Bioresource Technology, 98: 2679 – 2687. doi:10.1016/j.biortech.2006.09.023
  • Onyekwelu, J.C., 2020. Sustainable management of tropical plantation forests. In: Achieving sustainable management of tropical forests. (Eds: Blaser, J. and Hardcastle, P.D.), Burleigh Dodds Science Publishing, Cambridge, UK. pp 551 - 594 Onyekwelu, J.C., 2024. Forestry research and development. In: Forest for International Job and Wealth Creation (Ogunsanwo et al., eds). Invited lead paper; proceedings of the 45th annual conference of the Forestry Association of Nigeria, Katsina, Katsina State, May 6 – 11, pp. 497-518.
  • Onyekwelu, J.C., Agbelade, A.D., Stimm, B., Mosandl, R., 2024. Role of sacred groves in southwestern Nigeria in biodiversity conservation, biomass and carbon storage. Environmental Monitoring and Assessment, 196(3):269. https://doi.org/10.1007/s10661-024-12407-6
  • Payn, T., Carnus, J., Freer-Smith, P., Kimberley, M., Kollert, W., Liu, S., Orazio, C., Rodriguez, L., Silva, L.N., Wingfield, M.J., 2015. Changes in planted forests and future global implications. Forest Ecology and Management, 352: 57-67. doi:10.1016/j.foreco.2015.06.021.
  • Petit, B., Montagnini, F., 2004. Growth equations and rotation ages of ten native tree species in mixed and pure plantations in the humid neotropics. Forest Ecology and Management, 199: 243–257. doi:10.1016/j.foreco.2004.05.039
  • Porter, L., Bongers, F., Aide, T.M., Almeyda Zambrano, A.M., Balvanera, P., Bechnell, J.M., Rozendaal, D.M.A., 2015. Biomass resilience of Neotropical secondary forests. Nature, 530(7589): 211-214. https://doi.org/10.103
  • Pugh, T.A., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., Calle, L., 2019. Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences USA, 116 (10): 4382–4387. doi: 10.1073/pnas.1810512116.
  • Redondo-Brenes, A., Montagnini, F., 2006. Growth, productivity, aboveground biomass, and carbon sequestration of pure and mixed native tree plantations in the Caribbean lowlands of Costa Rica. Forest Ecology and Management, 232: 168–178. doi:10.1016/j.foreco.2006.05.067 Sharma, K.P., Bhatta, S.P., Khatri, G.B., Pajiyar, A., Joshi, D.K., 2020. Estimation of carbon stock in the Chir Pine (Pinus roxburghii Sarg.) plantation forest of Kathmandu Valley, Central Nepal. Journal of Forest and Environmental Science, 36 (1): 37-46. https://doi.org/10.7747/JFES.2020.36.1.37
  • Warman, R. D., 2014. Global wood production from natural forests has peaked. Biodiversity Conservation 23(5): 1063–78. doi:10.1007/s10531-014-0633-6.
  • Wirabuana, P.Y.A.P, Hendrati, R.L., Baskorowati, L., Susanto, M., Sulistiadi, H.B.S, Setiadi, D., Alam, S., 2022. Growth performance, biomass accumulation, and energy production in age series of clonal teak plantation, Forest Science and Technology, 18(2): 67-75. DOI: 10.1080/21580103.2022.2063952
  • Xu, H., He, B., Guo, L., Yan, X., Zeng, Y., Yuan, W., Zhong, Z., Tang, R., Yang, Y., Liu, H., Chen, Y. 2024. Global forest plantations mapping and biomass carbon estimation. Journal of Geopphysical Research: Biogeosciences, 129, e2023JG007441. https://doi.org/10.1029/2023JG007441.
  • Zanne, A.E., Lopez-Gonzalez, G., Coomes, D.A.A., Ilic, J., Jansen, S., Lewis, S.L., Miller, R.B.B., Swenson, N.G.G., Wiemann, M.C.C., Chave, J., 2009. Global Wood Density Database. Dryad Identifer, 235: 33. https://doi. org/10.5061/dryad.234
  • Zeller, L., Pretzsch, H., 2019. Effect of forest structure on stand productivity in Central European forests depends on developmental stage and tree species diversity. Forest Ecology and Management, 434: 193-204. https://doi.org/10.1016/j. foreco.2018.12.024.

Tree growth characteristics, stand productivity and carbon storage in age series indigenous species demonstration plantations in Forest Research Institute of Nigeria

Yıl 2025, Cilt: 26 Sayı: 4, 486 - 496, 29.12.2025
https://doi.org/10.18182/tjf.1577813

Öz

Forest plantations are important in meeting national and global demand for industrial wood due to their fast growth rate and high productivity. They can produce 3–10 times higher biomass than natural forests, making them important for climate change mitigation. We examined the growth characteristics, productivity and carbon storage of age series Nauclea diderrichii and Terminalia ivorensis plantations at Forestry Research Institute of Nigeria. Tree growth variables were measured in 25 m x 25 m temporary sample plots selected from 6 to 24 years plantations of the two species. Biomass data were obtained through non-destructive means. Mean diameter at breast height (DBH) ranged from 13.3 cm (6 years) - 37 cm (24 years) in T. ivorensis and 18.3 cm (13 years) - 22.4 cm (14 years) in N. diderrichii stands while mean total height varied from 10.1 m - 21.2 m and 16.5 m - 17.8 m in respective plantations of the two species. Both species demonstrated a high degree of merchantability, with no difference between them (66.5 - 81.4% in T. ivorensis and 77.0 - 77.2% in N. diderrichiii). Mean basal area, volume, biomass and carbon stock in T. ivorensis stands were: 9.4 - 19.4 m2/ha, 63.5 - 252 m3/ha, 48.8 t/ha - to 188.6 t/ha and 24.4 t/ha - 94.3 t/ha, respectively while they were 12.0 m2/ha - 12.1 m2/ha, 118.4 m3/ha - 195.8 m3/ha, 187.0 t/ha - 214.6 t/ha and 93.5 t/ha - 107.3 t/ha in N. diderrichii plantations. The two tree species have a good growth rate and productivity when compared with some tropical plantation tree species. The productivity, merchantability, biomass and carbon stock of N. diderrichii and T. ivorensis stands are indicating their suitability as candidates for good quality timber, carbon sequestration and climate change mitigation.

Kaynakça

  • Adeyemi, A.A., Ugo-Mbonu, N.A., 2017. Tree slenderness coefficients and crown ratio models for Gmelina arborea (Roxb) stand in Afi river forest reserve, Cross River state, Nigeria. Nigerian Journal of Agriculture, Food and Environment, 13(1):226-233.
  • Ajayi, S., Adie, D., 2018. Above ground carbon sequestration in Tropical High Forests and Mono-plantations of Okpon River Forest Reserve, Cross River State, Nigeria. Proceedings of the 6th Biennial National Conference of the Forests and Forest Products Society, 23 – 27 April,.Sokoto, Nigeria, pp. 1-25.
  • Akintunde-Alo, D.A, Onilude, Q.A, Ige, P.O., Adeoti, O.O., 2024. Stand growth, biomass and carbon sequestration potentials of Parkia biglobosa (jacq.) bench plantation in SouthWestern Nigeria. Journal of Applied Sciences and Environmental Management 28 (4): 1297-1304.
  • Awosusi, B.M, Onilude, Q.A, Adamu, I, Ukoha, P.,Salami, K.D., 2020. Assessment of Growth Characteristics and Carbon Sequestration Potentials of Gmelina arborea (Roxb.) and Nauclea diderrichii (De Wild) in Oyo State. EBSU Science Journal, 1(1): pp. 1-8. Baishya, R., Barik, S. K., Upadhaya, K., 2009. Distribution pattern of aboveground biomass in natural and plantation forests of humid tropics in northeast India. Tropical Ecology 50(2): 295–304.
  • Bonan, G.B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320:1444–1449.
  • Brown, S., Lugo, A.E., 1992. Above ground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia, 17: 8–18.
  • Chave, J., Rejou-Mechain, M., Burquez, A., Chidumayo, E., Colgan, M., Delitti, W., Duque, A., Welington, D., Fearnside, PM., Goodman, R., Henry, M., Martinez-Yrizar, A., Mugasha, W., Muller-Landau, H., Mencuccini, M., Nelson, B., Ngomanda, A., Nogueira, E., Ortiz-Malavassi, E., Pelissier, R., Ploton, P., Ryan, C., Saldarriaga, J., Vieilledent, G., 2014. Improved pan tropical allometric models to estimate the above ground biomass of tropical forests. Global Change Biology, 20 (10): 3177-3190. https://doi.org/10.1111/gcb.12629
  • Dar, J.A, Rather, M.Y, Subashree, K., Sundarapandian, S., Khan, M.L., 2017. Distribution patterns of tree, understorey, and detritus biomass in coniferous and broad-leaved forests of Western Himalaya, India. Journal of Sustainable Forestry, 36(8): 787-805.
  • Evans, J., 1999. Sustainability of Forest Plantations: The Evidence. A Review of Evidence Concerning the Narrow-Sense Sustainability of Planted Forests. Department for International Development (DFID), London, UK.
  • Evans, J., Turnbull, J.W., 2004. Plantation Forestry in the Tropics (3rd edn.). Oxford University Press, Oxford, UK.
  • FAO, 1992. Forest resources assessment 1990. Tropical forest plantation resources. (FAO Forestry Paper No. 128). Rome, Italy. https://www.fao.org/4/v8330e/v8330e00.htm Accessed: 16.05.2025
  • FAO, 2006. Global forest resources assessment 2005:Progress towards sustainable forest management (FAO Forestry Paper No. 147).Rome, Ital. http://www.fao.org/forestry/fra2005/en/ Accessed: 15.05.2025
  • FAO, 2018. The State of the World’s Forests 2018:Forest pathways to sustainable development. FAO, Rome, Italy. https://www.fao.org/3/19535EN/i9535en.pdf Accessed: 08.06.2025
  • FAO, 2020. Global forest resources assessment 2020: Main report. FAO: Rome. https://www.fao.org/3/ca9825en/CA9825EN.pdf Accessed: 08.06.2025
  • FAO, 2022. State of the World’s forests 2022: Forest pathways for green recovery and building inclusive, resilient and sustainable economies. Food and Agricultural Organisation of the United Nations, Rome, https://www.fao.org/3/cb9360en/cb9360en.pdf Accessed: 08.06.2025
  • Ghimire, P., Lamichhane, U., 2023. Carbon sequestration in Pinus roxburghii. Sarg Forest on two different aspects in Daman Hill, Nepal. Asian Journal of Biodiversity, 14(1):43. http://dx.doi.org/10.7828/ajob.v14i1.1545
  • Franklin, J., Mercker, D., 2009. Tree growth characteristics, (Publication No. 10-0030) The University of Tennessee Agricultural Extension Service. USA.
  • Godfrey, S., Tunhuma, F.A., 2020. The climate crisis: Climate change impacts, trends and vulnerabilities of Children in Sub Sahara Africa.United Nations, Kenya.
  • Husch, B., Beers, T.W., Keenshaw, J.A. Jr., 2003. Forest Mensuration. John Wiley & Sons, New York.
  • Ige, P.O., Adesoye, P.O., Akinyemi, G.O., 2019. Relationship between tree slenderness coefficient and growth characteristics of Gmelina arborea stands in Omo Forest Reserve, Nigeria. Forests and Forest Products Journal, 19: 62-72.
  • Ige, P.O., Komolafe, O.O., 2022. Tree slenderness coefficient models for biodiversity conservation in International Institute of Tropical Agriculture Forest Ibadan, Nigeria. Tanzania Journal of Forestry and Nature Conservation, 91(1): 20-31.
  • IPCC (2021). The Physical Science Basis. Contribution of Working Group 1 to the Sixth Assessment Report of the intergovernmental Panel on Climate change {(Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekci, O., Yu, R., Zhou, B. (eds.)}. Cambridge university Press, Cambridge, United Kingdom and New York, USA, 2391 pp. doi:10.1017/9781009157896.
  • Isola, J.O., Fawole, O.A., Oluwaponle, I.A., Ojedokun R.O., Owoade, A.D., 2021. Suitability assessment of soils around Forestry Research Institute of Nigeria (FRIN), Ibadan for maize production: A parametric analysis. Nigerian Agricultural Journal, 52 (2): 85 - 92.
  • IUCN (2021). The IUCN Red List of Threatened Species. Version 2021-3. www.iucnredlist.org. Accessed: 10.06.2025.
  • Keay, R.W.J., 1989. Trees of Nigeria. (A revised edition). Clarendon Press, U.K.
  • Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A. Lindquist, E., 2015. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management, 352: 9–20. doi:10.1016/j.foreco.2015.06.014.
  • Keith, H., Mackey, B.G., Lindenmayer, D.B., 2009. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proceedings of the National Academy of Sciences of the United States of America, 106:11635–11640.
  • Oladoye, A.O., Ige, P.O., Baruwa, N., Onilude, Q.A., Animashaun, Z.T., 2020. Slenderness coefficient models for tree species in Omo biosphere reserve, South-western Nigeria. Tropical Plant Research, 7(3): 609–618, DOI: 10.22271/tpr.2020.v7.i3.075
  • Onemayin, J.J., Olayiwola, V.A., Abiodun, F.O., Musa, F.B., Idris, R.S., 2020. Land use influence on some soil physical and chemical properties of an Alfisol at Forestry Research Institute of Nigeria. International Journal of Plant & Soil Science, 32(4): 1-8.
  • Onilude, Q.A., Adesoye, P.O., 2007. Relationship between slenderness coefficient and tree growth characteristics of Triplochiton Scleroxylon (K. Schum) stands in Ibadan metropolis. Obeche Journal, 25 (2): 16-23.
  • Onilude, Q.A., Fajemila, A., Adeleye, I.G., Oduola, M., Osijo, A.,
  • Oso, A.O. 2017. Stem Taper and Tree Growth Characteristics for Triplochton Scleroxylon (K.schum) stands in Ibadan Metropolis, Nigeria. International Journal of Biosciences, Agriculture and Technology. 8: 28-35.
  • Onyekwelu, J.C, Biber, P. Stimm, B., 2003. Density management diagram as a tool for thinning recommendations in even-aged Nauclea diderrichii plantations in Omo forest reserve, Nigeria. Nigerian Journal of Forestry, 33(2): 59 – 69.
  • Onyekwelu, J.C., 2004. Above-ground biomass production and biomass equations for even-aged Gmelina arborea (ROXB) plantations in south-western Nigeria. Biomass & Bioenergy, 26(1): 39 – 46. doi:10.1016/S0961-9534(03)00100-4
  • Onyekwelu, J.C, Mosandl, R., Stimm, B., 2006. Productivity, site evaluation and state of nutrition of Gmelina arborea plantations in tropical rainforest zone in South-western Nigeria. Forest Ecology and Management, 229: 214–227. doi:10.1016/j.foreco.2006.04.002
  • Onyekwelu, J.C., 2007. Growth, biomass yield and biomass functions for plantation-grown Nauclea diderrichii in humid tropical rainforest zone of Nigeria. Bioresource Technology, 98: 2679 – 2687. doi:10.1016/j.biortech.2006.09.023
  • Onyekwelu, J.C., 2020. Sustainable management of tropical plantation forests. In: Achieving sustainable management of tropical forests. (Eds: Blaser, J. and Hardcastle, P.D.), Burleigh Dodds Science Publishing, Cambridge, UK. pp 551 - 594 Onyekwelu, J.C., 2024. Forestry research and development. In: Forest for International Job and Wealth Creation (Ogunsanwo et al., eds). Invited lead paper; proceedings of the 45th annual conference of the Forestry Association of Nigeria, Katsina, Katsina State, May 6 – 11, pp. 497-518.
  • Onyekwelu, J.C., Agbelade, A.D., Stimm, B., Mosandl, R., 2024. Role of sacred groves in southwestern Nigeria in biodiversity conservation, biomass and carbon storage. Environmental Monitoring and Assessment, 196(3):269. https://doi.org/10.1007/s10661-024-12407-6
  • Payn, T., Carnus, J., Freer-Smith, P., Kimberley, M., Kollert, W., Liu, S., Orazio, C., Rodriguez, L., Silva, L.N., Wingfield, M.J., 2015. Changes in planted forests and future global implications. Forest Ecology and Management, 352: 57-67. doi:10.1016/j.foreco.2015.06.021.
  • Petit, B., Montagnini, F., 2004. Growth equations and rotation ages of ten native tree species in mixed and pure plantations in the humid neotropics. Forest Ecology and Management, 199: 243–257. doi:10.1016/j.foreco.2004.05.039
  • Porter, L., Bongers, F., Aide, T.M., Almeyda Zambrano, A.M., Balvanera, P., Bechnell, J.M., Rozendaal, D.M.A., 2015. Biomass resilience of Neotropical secondary forests. Nature, 530(7589): 211-214. https://doi.org/10.103
  • Pugh, T.A., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., Calle, L., 2019. Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences USA, 116 (10): 4382–4387. doi: 10.1073/pnas.1810512116.
  • Redondo-Brenes, A., Montagnini, F., 2006. Growth, productivity, aboveground biomass, and carbon sequestration of pure and mixed native tree plantations in the Caribbean lowlands of Costa Rica. Forest Ecology and Management, 232: 168–178. doi:10.1016/j.foreco.2006.05.067 Sharma, K.P., Bhatta, S.P., Khatri, G.B., Pajiyar, A., Joshi, D.K., 2020. Estimation of carbon stock in the Chir Pine (Pinus roxburghii Sarg.) plantation forest of Kathmandu Valley, Central Nepal. Journal of Forest and Environmental Science, 36 (1): 37-46. https://doi.org/10.7747/JFES.2020.36.1.37
  • Warman, R. D., 2014. Global wood production from natural forests has peaked. Biodiversity Conservation 23(5): 1063–78. doi:10.1007/s10531-014-0633-6.
  • Wirabuana, P.Y.A.P, Hendrati, R.L., Baskorowati, L., Susanto, M., Sulistiadi, H.B.S, Setiadi, D., Alam, S., 2022. Growth performance, biomass accumulation, and energy production in age series of clonal teak plantation, Forest Science and Technology, 18(2): 67-75. DOI: 10.1080/21580103.2022.2063952
  • Xu, H., He, B., Guo, L., Yan, X., Zeng, Y., Yuan, W., Zhong, Z., Tang, R., Yang, Y., Liu, H., Chen, Y. 2024. Global forest plantations mapping and biomass carbon estimation. Journal of Geopphysical Research: Biogeosciences, 129, e2023JG007441. https://doi.org/10.1029/2023JG007441.
  • Zanne, A.E., Lopez-Gonzalez, G., Coomes, D.A.A., Ilic, J., Jansen, S., Lewis, S.L., Miller, R.B.B., Swenson, N.G.G., Wiemann, M.C.C., Chave, J., 2009. Global Wood Density Database. Dryad Identifer, 235: 33. https://doi. org/10.5061/dryad.234
  • Zeller, L., Pretzsch, H., 2019. Effect of forest structure on stand productivity in Central European forests depends on developmental stage and tree species diversity. Forest Ecology and Management, 434: 193-204. https://doi.org/10.1016/j. foreco.2018.12.024.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Orman Biyokütlesi ve Biyoürünleri
Bölüm Araştırma Makalesi
Yazarlar

Quadri Onilude 0000-0003-3539-8656

Oluseun Ogunade 0009-0008-3790-3445

Abdulwaheed Salaudeen 0009-0005-8238-2528

Olusola Ogunwande 0000-0002-3167-2710

Zacharia Yaduma 0009-0000-6412-6962

J. C Onyekwelu

Gönderilme Tarihi 19 Kasım 2024
Kabul Tarihi 24 Eylül 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 26 Sayı: 4

Kaynak Göster

APA Onilude, Q., Ogunade, O., Salaudeen, A., … Ogunwande, O. (2025). Tree growth characteristics, stand productivity and carbon storage in age series indigenous species demonstration plantations in Forest Research Institute of Nigeria. Turkish Journal of Forestry, 26(4), 486-496. https://doi.org/10.18182/tjf.1577813
AMA Onilude Q, Ogunade O, Salaudeen A, Ogunwande O, Yaduma Z, Onyekwelu JC. Tree growth characteristics, stand productivity and carbon storage in age series indigenous species demonstration plantations in Forest Research Institute of Nigeria. Turkish Journal of Forestry. Aralık 2025;26(4):486-496. doi:10.18182/tjf.1577813
Chicago Onilude, Quadri, Oluseun Ogunade, Abdulwaheed Salaudeen, Olusola Ogunwande, Zacharia Yaduma, ve J. C Onyekwelu. “Tree growth characteristics, stand productivity and carbon storage in age series indigenous species demonstration plantations in Forest Research Institute of Nigeria”. Turkish Journal of Forestry 26, sy. 4 (Aralık 2025): 486-96. https://doi.org/10.18182/tjf.1577813.
EndNote Onilude Q, Ogunade O, Salaudeen A, Ogunwande O, Yaduma Z, Onyekwelu JC (01 Aralık 2025) Tree growth characteristics, stand productivity and carbon storage in age series indigenous species demonstration plantations in Forest Research Institute of Nigeria. Turkish Journal of Forestry 26 4 486–496.
IEEE Q. Onilude, O. Ogunade, A. Salaudeen, O. Ogunwande, Z. Yaduma, ve J. C. Onyekwelu, “Tree growth characteristics, stand productivity and carbon storage in age series indigenous species demonstration plantations in Forest Research Institute of Nigeria”, Turkish Journal of Forestry, c. 26, sy. 4, ss. 486–496, 2025, doi: 10.18182/tjf.1577813.
ISNAD Onilude, Quadri vd. “Tree growth characteristics, stand productivity and carbon storage in age series indigenous species demonstration plantations in Forest Research Institute of Nigeria”. Turkish Journal of Forestry 26/4 (Aralık2025), 486-496. https://doi.org/10.18182/tjf.1577813.
JAMA Onilude Q, Ogunade O, Salaudeen A, Ogunwande O, Yaduma Z, Onyekwelu JC. Tree growth characteristics, stand productivity and carbon storage in age series indigenous species demonstration plantations in Forest Research Institute of Nigeria. Turkish Journal of Forestry. 2025;26:486–496.
MLA Onilude, Quadri vd. “Tree growth characteristics, stand productivity and carbon storage in age series indigenous species demonstration plantations in Forest Research Institute of Nigeria”. Turkish Journal of Forestry, c. 26, sy. 4, 2025, ss. 486-9, doi:10.18182/tjf.1577813.
Vancouver Onilude Q, Ogunade O, Salaudeen A, Ogunwande O, Yaduma Z, Onyekwelu JC. Tree growth characteristics, stand productivity and carbon storage in age series indigenous species demonstration plantations in Forest Research Institute of Nigeria. Turkish Journal of Forestry. 2025;26(4):486-9.