Araştırma Makalesi
BibTex RIS Kaynak Göster

Lif levha üretiminde dolgu maddesi olarak fıstık kabuğu kullanımı

Yıl 2025, Cilt: 26 Sayı: 4, 610 - 616, 29.12.2025
https://doi.org/10.18182/tjf.1745428

Öz

Bu çalışmada, yer fıstığı kabuklarının lif levha üretiminde termomekanik hamur (TMP) yöntemi ile rafine edilerek ve Wiley değirmeninde öğütülerek değerlendirilmesi amaçlanmıştır. Bu kapsamda gerçekleştirilen deneyler; holoselüloz, alfa selüloz, lignin ve kül gibi kimyasal içeriklerinin belirlenmesi, alkol, sıcak su, soğuk su, %1'lik sodyum hidroksit çözeltisindeki çözünürlüklerinin tespit edilmiştir. Ayrıca liflerin lif uzunluğu, genişliği, lümen genişliği, hücre duvarı kalınlığı, keçeleşme oranı, elastikiyet oranı, rijitlik oranı, Runkel oranı ve "F" faktörü gibi morfolojik özellikleri de incelenmiştir. Yer fıstığı kabuğu örnekleri 100 °C'de sıcak su ile 10 dakika ön işleme tabi tutulmuş ve laboratuvar ölçekli bir rafinörde liflendirilmiştir. Ayrıca bir kısım fıstık kabuğu örneği ise öğütülerek toz haline getirilmiştir. Orta yoğunluklu lif levha (MDF) üretimi için ahşap liflerine farklı oranlarda (%5, %10, %15, Kg/Kg) fıstık kabuğu TMP lifleri ve toz örnekleri eklenmiştir. Lif levha örneklerinin yoğunluk, su alma, kalınlığa şişme, elastikiyet modülü (MOE), eğilme direnci (MOR) ve iç yapışma direnci gibi bazı fiziksel ve mekanik özellikleri belirlenmiş ve istatistiksel olarak analiz edilmiştir. Fıstık kabuklarının lif özelliklerinin kağıt yapımından daha çok odun kompozitlerinin üretimi için uygun olduğu bulunmuştur. Sonuçlara göre, rafinasyon işlemine fıstık kabuğu TMP liflerinin eklenmesinin kalınlık şişmesinde iyileştirdiği, ancak test edilen diğer değerlerde istatistiksel olarak anlamlı bir değişiklik olmadığı bulunmuştur.

Destekleyen Kurum

Kastamonu Üniversitesi Bİlimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

KÜBAP01/2020-49

Teşekkür

Bu çalışma, Kastamonu Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından KÜBAP01/2020-49 numaralı proje kapsamında desteklenmiştir.

Kaynakça

  • Akgül, M., 2009. Mısır saplarından orta yoğunlukta lif levha üretimi. Düzce Üniversitesi Ormancılık Dergisi, 5(2): 95-103.
  • Akgül, M., Uner, B., Camlibel, O., Ayata, U., 2017. Manufacture of medium density fiberboard (MDF) panels from agribased lignocellulosic biomass. Wood Research, 62(4): 615-624.
  • Akgül, M., Tozluoğlu, A., 2008. Utilizing peanut husk (Arachis hypogaea L.) in the manufacture of medium-density fiberboards. Bioresource Technology, 99(13): 5590-5594.
  • Alkan, Ç., Eroğlu, H., Yaman, B., 2003. Türkiye’deki bazı odunsu angiospermae taksonlarının lif morfolojileri. Bartın Orman Fakültesi Dergisi, 5(5): 96-101.
  • Antreich, S. J., Xiao, N., Huss, J. C., Horbelt, N., Eder, M., Weinkamer, R., Gierlinger, N., 2019. The puzzle of the walnut shell: a novel cell type with interlocked packing. Advanced Science, 6(16): 1900644.
  • Arslan M. B., Karakuş B., Güntekin E., 2007. Tarımsal atıklardan lif ve yonga levha üretimi. ZKÜ Bartın Orman Fakültesi Dergisi, 9(12): 54-62.
  • Batalla, L., Nunez, A. J., Marcovich, N. E., 2005. Particleboards from peanut‐shell flour. Journal of Applied Polymer Science, 97(3): 916-923.
  • Chaudhary, A. K., Gope, P. C., Singh, V. K., 2013. Effect of almond shell particles on tensile property of particleboard. Journal of Materials and Environmental Science, 4(1): 109-112.
  • Cheng, X., He, X., Xie, J., Quan, P., Xu, K., Li, X., Cai, Z., 2016. Effect of the particle geometry and adhesive mass percentage on the physical and mechanical properties of particleboard made from peanut hull. BioResources, 11(3): 7271-7281.
  • Çamlıbel, O., 2012. Orta yoğunlukta lif levha (MDF) üretiminde inorganik dolgu maddelerinden kaya tuzu, kalsit, boraks, pentahidrat ve talk minerallerinin kullanılabilme olanaklarının araştırılması. Doktora tezi, Düzce Üniversitesi, Fen Bilimleri Enstitüsü, Düzce.
  • Çöpür, Y., Güler, C., Akgül, M., Taşçıoğlu, C., 2007. Some chemical properties of hazelnut husk and its suitability for particleboard production. Building and Environment, 42(7): 2568-2572.Çöpür, Y., Güler, C., Taşçıoğlu, C., Tozluoğlu, A., 2008. Incorporation of hazelnut shell and husk in MDF production. Bioresource Technology, 99(15): 7402-7406.
  • Deniz, I., Kırcı, H., Ates, S., 2004. Optimisation of wheat straw Triticum drum kraft pulping. Industrial Crops and Products, 19(3): 237-243.
  • EN 310, 1999. Wood-based panels: Determination of modulus of elasticity in bending and of bending strength. Institute of European Committee for Standardization, Brussels, Belgium.
  • EN 317, 1999. Particleboards and fiberboards- Determination of swelling in thickness after immersion in water. Institute of European Committee for Standardization, Brussels, Belgium.
  • EN 319, 1999. Particleboards and fiberboards- Determination of tensile strength perpendicular to the plane of the board. Institute of European Committee for Standardization, Brussels, Belgium.
  • EN 323, 1999. Wood based panels- Determination of density. Institute of European Committee for Standardization, Brussels, Belgium.
  • Erkan, S., Bektaş, İ., 2021. Investigation of chemical and morphological properties of the sapwood and heartwoods of stone pine and black locust. Kastamonu University Journal of Forestry Faculty, 21(2): 183-195.
  • FAOSTAT, 2023. Forestry production and trade statistics. Food and Agriculture Organization of the United Nation, Rome, http://www.fao.org/faostat/en/#data/FO, Accessed: 15.06.2025.
  • Guler, C., Copur, Y., Tascioglu, C., 2008. The manufacture of particleboards using mixture of peanut hull (Arachis hypoqaea L.) and European black pine (Pinus nigra Arnold) wood chips. Bioresource Technology, 99(8): 2893-2897.
  • Gulsoy, S.K., Ozturk, F., 2015. Kraft pulping properties of European black pine cone. Maderas. Ciencia y Tecnología, 17(4): 875-882.
  • Halliburton, B.W., Glasser, W.G., Byrne, J.M., 1975. An anatomical study of the pericarp of Arachis hypogaea, with special emphasis on the sclereid component. Botanical Gazette, 136(2): 219-223.
  • Halvarsson, S., Norgren, M. and Edlund, H., 2005. Processing of wheat straw materials for production of medium density fiberboard (MDF). 59th Appita Annual Conference and Exhibition: Incorporating the 13th ISWFPC (International Symposium on Wood, Fibre and Pulping Chemistry), 16-19 May, Auckland, New Zealand, pp. 623 – 629.
  • Hamad, A.M., Ates, S., Olgun, Ç., Gür, M., 2019. Chemical composition and antioxidant properties of some industrial tree bark extracts. BioResources, 14(3): 5657-5671.
  • Istek, A., Tutus, A., Gülsoy, S.K., 2009. The effect of tree age on fiber morphology of Pinus pinaster and paper properties. KSU Journal of Engineering Sciences, 12(1): 1-5.
  • Jennings, B. R., Parslow, K., 1988. Particle size measurement: the equivalent spherical diameter. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 419(1856): 137-149.
  • Kırcı, H., 2003. Kağıt Hamuru Endüstrisi Ders Notları. K.T.Ü., Orman Fakültesi Yayınları, Yayın No:63. TrabzonKhanjanzadeh, H., Pirayesh, H., Sepahvand, S., 2014. Influence of walnut shell as filler on mechanical and physical properties of MDF improved by nano-SiO2. Journal of the Indian Academy of Wood Science, 11(1): 15-20.
  • Nasser, S., Morales, E., Pereira, L., Eugênio, R., Biazzon, J., Jr. Lima, M., Bueno M.AP., Archangelo A., Celestino V.R.B., Nasser H.M., Dias L.G., Munhoz M. R., Gonçalves G.J.C., Breganon R., Valarelli, I.D., 2020. Mechanical analysis of bamboo and agro-industrial residue one-layer particleboard. BioResources, 15(2): 2163.
  • Nazerian, M., Dalirzadeh, A., Farrokhpayam, S. R., 2015. Use of almond shell powder in modification of the physical and mechanical properties of medium density fiberboard. BioResources, 10(1): 169-181.
  • Newton, J. A., Morrell, J. J., 2020. Utilization of ground peanut husk as an alternative fiber material for particleboard. Forest Products Journal, 70(4): 416-419.
  • Olgun, Ç., Ateş, S., Uzer, E., 2023. Effects of medium density fiberboards (MDF) recycling methods on fiber dimensions and some reconstructed board properties. Drvna Industrija, 74(1): 61-69.
  • Öztürk Çalı, İ., Candan, F., 2011. Bitki Anatomisi Uygulamaları Kitabı, Nobel Yayınları, Ankara.
  • Pirayesh, H., Khazaeian, A., Tabarsa, T., 2012. The potential for using walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Composites Part B: Engineering, 43(8): 3276-3280.
  • Potadar, O.V., Kadam, G.S., 2018. Preparation and testing of composites using waste groundnut shells and coir fibres. Procedia Manufacturing, 20: 91-96.
  • Raveendran, K., Ganesh, A., Khilar, K.C., 1995. Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74(12): 1812-1822.
  • Singh, S., Dutt, D., Tyagi, C.H., 2011. Complete characterization of wheat straw (Triticum aestivum PBW-343 L. Emend. Fiori & Paol.)-A renewable source of fibres for pulp and paper making. BioResources, 6(1): 154-177.
  • Stokke, D.D., Wu, Q., Han, G., 2013. Introduction to Wood and Natural Fiber Composites. John Wiley & Sons, West Sussex,United Kingdom
  • TAPPI T 222 om-88, 1988. Acid-insoluble lignin in wood and pulp. Test Method T 222 om-88. USA.
  • TAPPI T 204 om-88, 1988. Solvent extractives of wood and pulp. Test Method T 204 om-88. USA.
  • TAPPI T 203 om-93, 1993. Alpha-, beta- and gamma – cellulose in pulp. Test Method T 203 om-93. USA.
  • TAPPI T 207 om-93, 1993. Water solubility of wood and pulp. Test Method T 207 om-93. USA.
  • TAPPI T 212 om-93, 1993. One percent sodium hydroxide solubility of wood and pulp. Test Method T 212 om-93. USA.
  • TAPPI T 211 om-93, 1993. Ash in wood, pulp, paper and paperboard: combustion at 525 °C Test Method T 211 om-93. USA.
  • Tavares, F., Quilhó, T., Pereira, H., 2011. Wood and bark fiber characteristics of Acacia melanoxylon and comparison to Eucalyptus globules. Cerne, 17: 61-68.
  • Wise, L.E., Murphy, M., DʼAddieco, A.A., 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal, 122(2): 35–43.

Using peanut shell added as filler for producing fiberboard

Yıl 2025, Cilt: 26 Sayı: 4, 610 - 616, 29.12.2025
https://doi.org/10.18182/tjf.1745428

Öz

In this study, the shells of peanuts were refined with the thermomechanical pulping (TMP) method and ground with a Wiley mill to evaluate for fiberboard production. The experiments carried out within this scope are; determining of chemical contents such as holocellulose, alpha cellulose, lignin and ash, and solubility’s in alcohol, hot water, cold water, and 1% sodium hydroxide solution. Also, morphological properties such as fiber length, width, lumen width, cell wall thickness, slenderness ratio, flexibility ratio, rigidity ratio, Runkel ratio and “F” factor of the fibres were studied. Peanut shell samples were pretreated with hot water at 100 °C for 10 min and refined with a lab-scale refiner. In addition to a part of peanut shell samples were milled to obtain powder samples. Peanut shell TMP fibers and powder samples were added at different ratios (5%, 10%, 15%, w/w) to the wooden fibers for medium density fiberboard (MDF) production. Some physical and mechanical properties of fiberboard samples, such as density, water absorption, thickness swelling, modulus of elasticity (MOE), bending strength (MOR), and internal bond strength were determined and analysed statistically. The fiber properties of peanut shells were found to be more suitable for the production of wood composite materials than for papermaking. According to results, it was found that the addition of peanut shell TMP fibers into the refining process led to an improvement in the thickness swelling, while there was no statistically significant change in the other tested values.

Destekleyen Kurum

Kastamonu University, Scientific Research Projects Coordination Department

Proje Numarası

KÜBAP01/2020-49

Teşekkür

This study was supported by Kastamonu University, Scientific Research Projects Coordination Department under grant Project Number: KÜBAP01/2020-49

Kaynakça

  • Akgül, M., 2009. Mısır saplarından orta yoğunlukta lif levha üretimi. Düzce Üniversitesi Ormancılık Dergisi, 5(2): 95-103.
  • Akgül, M., Uner, B., Camlibel, O., Ayata, U., 2017. Manufacture of medium density fiberboard (MDF) panels from agribased lignocellulosic biomass. Wood Research, 62(4): 615-624.
  • Akgül, M., Tozluoğlu, A., 2008. Utilizing peanut husk (Arachis hypogaea L.) in the manufacture of medium-density fiberboards. Bioresource Technology, 99(13): 5590-5594.
  • Alkan, Ç., Eroğlu, H., Yaman, B., 2003. Türkiye’deki bazı odunsu angiospermae taksonlarının lif morfolojileri. Bartın Orman Fakültesi Dergisi, 5(5): 96-101.
  • Antreich, S. J., Xiao, N., Huss, J. C., Horbelt, N., Eder, M., Weinkamer, R., Gierlinger, N., 2019. The puzzle of the walnut shell: a novel cell type with interlocked packing. Advanced Science, 6(16): 1900644.
  • Arslan M. B., Karakuş B., Güntekin E., 2007. Tarımsal atıklardan lif ve yonga levha üretimi. ZKÜ Bartın Orman Fakültesi Dergisi, 9(12): 54-62.
  • Batalla, L., Nunez, A. J., Marcovich, N. E., 2005. Particleboards from peanut‐shell flour. Journal of Applied Polymer Science, 97(3): 916-923.
  • Chaudhary, A. K., Gope, P. C., Singh, V. K., 2013. Effect of almond shell particles on tensile property of particleboard. Journal of Materials and Environmental Science, 4(1): 109-112.
  • Cheng, X., He, X., Xie, J., Quan, P., Xu, K., Li, X., Cai, Z., 2016. Effect of the particle geometry and adhesive mass percentage on the physical and mechanical properties of particleboard made from peanut hull. BioResources, 11(3): 7271-7281.
  • Çamlıbel, O., 2012. Orta yoğunlukta lif levha (MDF) üretiminde inorganik dolgu maddelerinden kaya tuzu, kalsit, boraks, pentahidrat ve talk minerallerinin kullanılabilme olanaklarının araştırılması. Doktora tezi, Düzce Üniversitesi, Fen Bilimleri Enstitüsü, Düzce.
  • Çöpür, Y., Güler, C., Akgül, M., Taşçıoğlu, C., 2007. Some chemical properties of hazelnut husk and its suitability for particleboard production. Building and Environment, 42(7): 2568-2572.Çöpür, Y., Güler, C., Taşçıoğlu, C., Tozluoğlu, A., 2008. Incorporation of hazelnut shell and husk in MDF production. Bioresource Technology, 99(15): 7402-7406.
  • Deniz, I., Kırcı, H., Ates, S., 2004. Optimisation of wheat straw Triticum drum kraft pulping. Industrial Crops and Products, 19(3): 237-243.
  • EN 310, 1999. Wood-based panels: Determination of modulus of elasticity in bending and of bending strength. Institute of European Committee for Standardization, Brussels, Belgium.
  • EN 317, 1999. Particleboards and fiberboards- Determination of swelling in thickness after immersion in water. Institute of European Committee for Standardization, Brussels, Belgium.
  • EN 319, 1999. Particleboards and fiberboards- Determination of tensile strength perpendicular to the plane of the board. Institute of European Committee for Standardization, Brussels, Belgium.
  • EN 323, 1999. Wood based panels- Determination of density. Institute of European Committee for Standardization, Brussels, Belgium.
  • Erkan, S., Bektaş, İ., 2021. Investigation of chemical and morphological properties of the sapwood and heartwoods of stone pine and black locust. Kastamonu University Journal of Forestry Faculty, 21(2): 183-195.
  • FAOSTAT, 2023. Forestry production and trade statistics. Food and Agriculture Organization of the United Nation, Rome, http://www.fao.org/faostat/en/#data/FO, Accessed: 15.06.2025.
  • Guler, C., Copur, Y., Tascioglu, C., 2008. The manufacture of particleboards using mixture of peanut hull (Arachis hypoqaea L.) and European black pine (Pinus nigra Arnold) wood chips. Bioresource Technology, 99(8): 2893-2897.
  • Gulsoy, S.K., Ozturk, F., 2015. Kraft pulping properties of European black pine cone. Maderas. Ciencia y Tecnología, 17(4): 875-882.
  • Halliburton, B.W., Glasser, W.G., Byrne, J.M., 1975. An anatomical study of the pericarp of Arachis hypogaea, with special emphasis on the sclereid component. Botanical Gazette, 136(2): 219-223.
  • Halvarsson, S., Norgren, M. and Edlund, H., 2005. Processing of wheat straw materials for production of medium density fiberboard (MDF). 59th Appita Annual Conference and Exhibition: Incorporating the 13th ISWFPC (International Symposium on Wood, Fibre and Pulping Chemistry), 16-19 May, Auckland, New Zealand, pp. 623 – 629.
  • Hamad, A.M., Ates, S., Olgun, Ç., Gür, M., 2019. Chemical composition and antioxidant properties of some industrial tree bark extracts. BioResources, 14(3): 5657-5671.
  • Istek, A., Tutus, A., Gülsoy, S.K., 2009. The effect of tree age on fiber morphology of Pinus pinaster and paper properties. KSU Journal of Engineering Sciences, 12(1): 1-5.
  • Jennings, B. R., Parslow, K., 1988. Particle size measurement: the equivalent spherical diameter. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 419(1856): 137-149.
  • Kırcı, H., 2003. Kağıt Hamuru Endüstrisi Ders Notları. K.T.Ü., Orman Fakültesi Yayınları, Yayın No:63. TrabzonKhanjanzadeh, H., Pirayesh, H., Sepahvand, S., 2014. Influence of walnut shell as filler on mechanical and physical properties of MDF improved by nano-SiO2. Journal of the Indian Academy of Wood Science, 11(1): 15-20.
  • Nasser, S., Morales, E., Pereira, L., Eugênio, R., Biazzon, J., Jr. Lima, M., Bueno M.AP., Archangelo A., Celestino V.R.B., Nasser H.M., Dias L.G., Munhoz M. R., Gonçalves G.J.C., Breganon R., Valarelli, I.D., 2020. Mechanical analysis of bamboo and agro-industrial residue one-layer particleboard. BioResources, 15(2): 2163.
  • Nazerian, M., Dalirzadeh, A., Farrokhpayam, S. R., 2015. Use of almond shell powder in modification of the physical and mechanical properties of medium density fiberboard. BioResources, 10(1): 169-181.
  • Newton, J. A., Morrell, J. J., 2020. Utilization of ground peanut husk as an alternative fiber material for particleboard. Forest Products Journal, 70(4): 416-419.
  • Olgun, Ç., Ateş, S., Uzer, E., 2023. Effects of medium density fiberboards (MDF) recycling methods on fiber dimensions and some reconstructed board properties. Drvna Industrija, 74(1): 61-69.
  • Öztürk Çalı, İ., Candan, F., 2011. Bitki Anatomisi Uygulamaları Kitabı, Nobel Yayınları, Ankara.
  • Pirayesh, H., Khazaeian, A., Tabarsa, T., 2012. The potential for using walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Composites Part B: Engineering, 43(8): 3276-3280.
  • Potadar, O.V., Kadam, G.S., 2018. Preparation and testing of composites using waste groundnut shells and coir fibres. Procedia Manufacturing, 20: 91-96.
  • Raveendran, K., Ganesh, A., Khilar, K.C., 1995. Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74(12): 1812-1822.
  • Singh, S., Dutt, D., Tyagi, C.H., 2011. Complete characterization of wheat straw (Triticum aestivum PBW-343 L. Emend. Fiori & Paol.)-A renewable source of fibres for pulp and paper making. BioResources, 6(1): 154-177.
  • Stokke, D.D., Wu, Q., Han, G., 2013. Introduction to Wood and Natural Fiber Composites. John Wiley & Sons, West Sussex,United Kingdom
  • TAPPI T 222 om-88, 1988. Acid-insoluble lignin in wood and pulp. Test Method T 222 om-88. USA.
  • TAPPI T 204 om-88, 1988. Solvent extractives of wood and pulp. Test Method T 204 om-88. USA.
  • TAPPI T 203 om-93, 1993. Alpha-, beta- and gamma – cellulose in pulp. Test Method T 203 om-93. USA.
  • TAPPI T 207 om-93, 1993. Water solubility of wood and pulp. Test Method T 207 om-93. USA.
  • TAPPI T 212 om-93, 1993. One percent sodium hydroxide solubility of wood and pulp. Test Method T 212 om-93. USA.
  • TAPPI T 211 om-93, 1993. Ash in wood, pulp, paper and paperboard: combustion at 525 °C Test Method T 211 om-93. USA.
  • Tavares, F., Quilhó, T., Pereira, H., 2011. Wood and bark fiber characteristics of Acacia melanoxylon and comparison to Eucalyptus globules. Cerne, 17: 61-68.
  • Wise, L.E., Murphy, M., DʼAddieco, A.A., 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal, 122(2): 35–43.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ormancılık (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Çağrı Olgun 0000-0002-0811-0381

Saim Ateş 0000-0003-0589-1773

Muhammet Fatih Hilal 0000-0002-4121-1969

Proje Numarası KÜBAP01/2020-49
Gönderilme Tarihi 18 Temmuz 2025
Kabul Tarihi 8 Aralık 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 26 Sayı: 4

Kaynak Göster

APA Olgun, Ç., Ateş, S., & Hilal, M. F. (2025). Using peanut shell added as filler for producing fiberboard. Turkish Journal of Forestry, 26(4), 610-616. https://doi.org/10.18182/tjf.1745428
AMA Olgun Ç, Ateş S, Hilal MF. Using peanut shell added as filler for producing fiberboard. Turkish Journal of Forestry. Aralık 2025;26(4):610-616. doi:10.18182/tjf.1745428
Chicago Olgun, Çağrı, Saim Ateş, ve Muhammet Fatih Hilal. “Using peanut shell added as filler for producing fiberboard”. Turkish Journal of Forestry 26, sy. 4 (Aralık 2025): 610-16. https://doi.org/10.18182/tjf.1745428.
EndNote Olgun Ç, Ateş S, Hilal MF (01 Aralık 2025) Using peanut shell added as filler for producing fiberboard. Turkish Journal of Forestry 26 4 610–616.
IEEE Ç. Olgun, S. Ateş, ve M. F. Hilal, “Using peanut shell added as filler for producing fiberboard”, Turkish Journal of Forestry, c. 26, sy. 4, ss. 610–616, 2025, doi: 10.18182/tjf.1745428.
ISNAD Olgun, Çağrı vd. “Using peanut shell added as filler for producing fiberboard”. Turkish Journal of Forestry 26/4 (Aralık2025), 610-616. https://doi.org/10.18182/tjf.1745428.
JAMA Olgun Ç, Ateş S, Hilal MF. Using peanut shell added as filler for producing fiberboard. Turkish Journal of Forestry. 2025;26:610–616.
MLA Olgun, Çağrı vd. “Using peanut shell added as filler for producing fiberboard”. Turkish Journal of Forestry, c. 26, sy. 4, 2025, ss. 610-6, doi:10.18182/tjf.1745428.
Vancouver Olgun Ç, Ateş S, Hilal MF. Using peanut shell added as filler for producing fiberboard. Turkish Journal of Forestry. 2025;26(4):610-6.