Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of tensile strength of furniture dovetail fasteners produced with 3D printers and those produced with injection molding method

Yıl 2025, Cilt: 26 Sayı: 4, 617 - 623, 29.12.2025
https://doi.org/10.18182/tjf.1772963

Öz

Joints are the most critical elements of furniture construction because the integrity of a furniture parts depends more on the strength performance of these joints than on any other factor. There are many types of joints used in wood furniture manufacturing, including dovetails, mortise and tenon, dowels, screws, metal plates, and so on. Dovetail joints, renowned for their high strength performance, are a commonly encountered method, especially in drawers, chairs, and tables. Dovetail joints are a preferred method of connection, especially in joints subjected to tensile loads. A study was conducted on the tensile strength of dovetail fasteners used to join the front and side sections of drawers in furniture intended for storage purposes. In this context, dovetail joint fasteners affecting tensile strength was measured and compared among fasteners commonly used in the market made from Poly amide (PA) material by injection method and those produced from tough Polylactic Acid (PLA) using a 3 D printer under laboratory conditions. Results indicated that the average tensile strength of 3D printed tough PLA dovetails is 2043 N while the average tensile strength of injected PA dovetail fasteners is 933 N.

Kaynakça

  • Alaboodi, A.S., Sivasankaran, S., 2018. Experimental design and investigation on the mechanical behavior of novel 3D printed biocompatibility polycarbonate scaffolds for medical applications. Journal of Manufacturing Processes, 35: 479-491.
  • Boyla, O., 2012. Mobilya tarihi. Istanbul http:///C:/Users/USER/ Downloads/Oya_boyla_mobilya_tarihi.pdf,Accessed: 23.08.2025.
  • Can, Ö., Önal, M.M., 2007. An investigation on the comparison of the compressive strength of corner joints of window which were prepared using first class yellow pine wood grew at the central Anatolia. Sigma, 25(3): 283-296.
  • Carutasu, N.L., Simion, I., Carutasu, G., Jiga, G., Arion, A.F., 2015. Experimental test for elastic and mechanical evaluation of abs plastic used in 3D printing. Materiale Plastice, 52(3): 397-401.
  • Chen, S., Lu, J., Feng, J., 2018. 3D-printable abs blends with improved scratch resistance and balanced mechanical performance. Industrial and Engineering Chemistry Research, 57(11): 3923-3931.
  • Demirel, S., Zhang, J., 2014. Bending moment resistances of L-shaped two-gusset-plate furniture joints in oriented strandboard. Wood and Fiber Science, 46(3):356-367.
  • Demirel, S., Erdem, M., Çava, K., Aslan, M., 2024a. The performance of 3D printed dowel with three different surface designs in furniture joints. Turkish Journal of Forestry, 25(1): 100-106.
  • Demirel, S., Kuvel, N. T., Çava, K., Uşun, A., Aslan, M., 2024b. Considering tensile resistance of scot pine-MDF joint connected with 3d printed single dovetail fastener. Histrate Conference, 5-6 June, Istanbul, pp. 42-44.
  • Ding, H., Zhang, Y., He, Z., 2017. Fracture failure mechanisms of long single PA6 fibers. Polymers, 9(7):1–11.
  • Dul, S., Fambri, L., Pegoretti, A., 2016. Fused deposition modelling with ABS-graphene nanocomposites. Composite Part A: Applied Science and Manufacturing, 85: 181-191.
  • Hamzah, K.A., Yeoh, C.K., Noor, M.M., Teh, P.L., Aw, Y.Y., Sazali, S.A., 2019. Mechanical properties and thermal and electrical conductivity of 3D printed ABS-Copper ferrite composites via 3D printing technique. Journal of Thermoplast Composite Materials, 35: 3-16.
  • Hossain, N., Chowdhury, M.A., Shuvho M.B.A., 2021. 3D-Printed objects for multipurpose applications. Journal of Material Engineering Performance, 30: 4756-4767.
  • Kohutiar, M., Kakošová, L., Krbata, M., Janík, R., Fekiač, J.J., Breznická, A., Eckert, M., Mikus, P., Timárová, Ľ., 2025. Comprehensive review: technological approaches, properties, and applications of pure and reinforced polyamide 6 (PA6) and polyamide 12 (PA12) composite materials. Polymers, 17: 442-482.
  • Konukcu, A.C., 2018. Tensile strength of dovetail joints in furniture. PhD Dissertation, Mississippi State University, MS, USA.
  • Kuo, C.C., Liu, L.C., Teng, W.F., Chang, H.Y., Chien, F.M., Liao, S.J., 2016. Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Composite Part B: Engineering, 86: 36-39.
  • Levenhagen, N.P., Dadmun, M.D., 2018. Interlayer diffusion of surface segregating additives to improve the isotropy of fused deposition modeling products. Polymer, 152: 35-41.
  • Maciag, T., Wieczorek, J., Kalsa, W., 2019. Surface analysis of ABS 3D prints subjected to copper plating. Archives Metallurgy and Materials, 64(2): 639–646.
  • McCullough, E.J., Yadavalli, V.K., 2013. Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. Journal of Material Process Technology, 213(6): 947–954.
  • Raj, S.A., Muthukumaran, E., Jayakrishna, K., 2018. A case study of 3D printed PLA and its mechanical properties. Materials Today Proceeding, 5(5): 11219-11226.
  • Selin, Ü.S.T., 2015. Konutlarda iç mekan ile mobilya etkileşimi bağlamında mobilyaya dair özelliklerin incelenmesi. Sanat ve Tasarım Dergisi, 1(15): 103-118.
  • Skorski, M.R., Esenther, J.M., Ahmed, Z., Miller, A.E., Hartings, M.R., 2016. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites. Science and Technology of Advanced Materials, 17(1): 89-97.
  • Şeker, S., 2018. Engineering analysis application and investigation of design-construction interaction in furniture. Master's thesis, İstanbul Universitesi-Cerrahpaşa, İstanbul.
  • Vlasceanu, D., Baciu, F., Popescu, D., Hadar, A., Marinescu, R., 2018. Development and 3D printing of an ABS ergonomic handle for medical use a case study. Materiale Plastice, 55(4): 630-633.
  • Zou, R., Xia, Y., Liu, S., Hu, P., Hou, W., Hu, Q., 2016. Isotropic and anisotropic elasticity and yielding of 3D printed material. Composite Part B: Engineering, (99): 506-13.

3D yazıcılarla ve enjeksiyon kalıplama yöntemiyle üretilen mobilya kırlangıç kuyruğu bağlantı elemanlarının çekme dayanımlarının karşılaştırılması

Yıl 2025, Cilt: 26 Sayı: 4, 617 - 623, 29.12.2025
https://doi.org/10.18182/tjf.1772963

Öz

Birleşme yerleri, mobilya konstrüksiyonunun en kritik unsurlarıdır çünkü bir mobilya parçasının bütünlüğü, birleşme yerlerinin sağlamlığına ve mukavemet performansına bağlıdır, diğer etkenlerden daha fazla etkilenir. Ahşap mobilya imalatında kullanılan birçok bağlantı türü bulunmaktadır. Bu bağlantı türleri arasında kırlangıçkuyruğu, zıvana, kavela, vida, metal levha vb. yer almaktadır. Mukavemet performansı açısından etkileyici olan kırlangıç kuyruğu birleştirmeleri, özellikle çekmecelerde, sandalyelerde ve masalarda sıkça karşılaşılan bir bağlantı yöntemidir. Bir çalışmada, mobilyalarda depolama amaçlı kullanılan dolap çekmecelerinin ön ve yan kısımlarını birleştiren kırlangıç kuyruğu bağlantı elemanlarının çekme dayanımı üzerine bir araştırma gerçekleştirilmiştir. Bu bağlamda, çekme dayanımını etkileyen kırlangıç kuyruğu bağlantıları incelenmiş ve Poli Amit (PA) malzemesinden piyasada yaygın olarak kullanılan kırlangıç kuyruğu bağlantılar ile laboratuvar koşullarında 3 D yazıcı ile tok Poli Laktik Asitten (PLA) üretilen kırlangıç kuyruğu bağlantıları karşılaştırılmıştır. Bu karşılaştırma sonucunda, malzemeler ve üretim yöntemleri arasında direnç açısından bir analiz yapılmıştır. Sonuçlar, 3 boyutlu yazdırılmış kırlangıç kuyruğu bağlantı elemanlarının ortalama çekme yükünün 2043 N olduğunu, piyasadan temin edilmiş kırlangıç kuyruğu bağlantı elemanlarının ortalama çekme yükünün ise 933 N olduğunu göstermiştir.

Kaynakça

  • Alaboodi, A.S., Sivasankaran, S., 2018. Experimental design and investigation on the mechanical behavior of novel 3D printed biocompatibility polycarbonate scaffolds for medical applications. Journal of Manufacturing Processes, 35: 479-491.
  • Boyla, O., 2012. Mobilya tarihi. Istanbul http:///C:/Users/USER/ Downloads/Oya_boyla_mobilya_tarihi.pdf,Accessed: 23.08.2025.
  • Can, Ö., Önal, M.M., 2007. An investigation on the comparison of the compressive strength of corner joints of window which were prepared using first class yellow pine wood grew at the central Anatolia. Sigma, 25(3): 283-296.
  • Carutasu, N.L., Simion, I., Carutasu, G., Jiga, G., Arion, A.F., 2015. Experimental test for elastic and mechanical evaluation of abs plastic used in 3D printing. Materiale Plastice, 52(3): 397-401.
  • Chen, S., Lu, J., Feng, J., 2018. 3D-printable abs blends with improved scratch resistance and balanced mechanical performance. Industrial and Engineering Chemistry Research, 57(11): 3923-3931.
  • Demirel, S., Zhang, J., 2014. Bending moment resistances of L-shaped two-gusset-plate furniture joints in oriented strandboard. Wood and Fiber Science, 46(3):356-367.
  • Demirel, S., Erdem, M., Çava, K., Aslan, M., 2024a. The performance of 3D printed dowel with three different surface designs in furniture joints. Turkish Journal of Forestry, 25(1): 100-106.
  • Demirel, S., Kuvel, N. T., Çava, K., Uşun, A., Aslan, M., 2024b. Considering tensile resistance of scot pine-MDF joint connected with 3d printed single dovetail fastener. Histrate Conference, 5-6 June, Istanbul, pp. 42-44.
  • Ding, H., Zhang, Y., He, Z., 2017. Fracture failure mechanisms of long single PA6 fibers. Polymers, 9(7):1–11.
  • Dul, S., Fambri, L., Pegoretti, A., 2016. Fused deposition modelling with ABS-graphene nanocomposites. Composite Part A: Applied Science and Manufacturing, 85: 181-191.
  • Hamzah, K.A., Yeoh, C.K., Noor, M.M., Teh, P.L., Aw, Y.Y., Sazali, S.A., 2019. Mechanical properties and thermal and electrical conductivity of 3D printed ABS-Copper ferrite composites via 3D printing technique. Journal of Thermoplast Composite Materials, 35: 3-16.
  • Hossain, N., Chowdhury, M.A., Shuvho M.B.A., 2021. 3D-Printed objects for multipurpose applications. Journal of Material Engineering Performance, 30: 4756-4767.
  • Kohutiar, M., Kakošová, L., Krbata, M., Janík, R., Fekiač, J.J., Breznická, A., Eckert, M., Mikus, P., Timárová, Ľ., 2025. Comprehensive review: technological approaches, properties, and applications of pure and reinforced polyamide 6 (PA6) and polyamide 12 (PA12) composite materials. Polymers, 17: 442-482.
  • Konukcu, A.C., 2018. Tensile strength of dovetail joints in furniture. PhD Dissertation, Mississippi State University, MS, USA.
  • Kuo, C.C., Liu, L.C., Teng, W.F., Chang, H.Y., Chien, F.M., Liao, S.J., 2016. Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Composite Part B: Engineering, 86: 36-39.
  • Levenhagen, N.P., Dadmun, M.D., 2018. Interlayer diffusion of surface segregating additives to improve the isotropy of fused deposition modeling products. Polymer, 152: 35-41.
  • Maciag, T., Wieczorek, J., Kalsa, W., 2019. Surface analysis of ABS 3D prints subjected to copper plating. Archives Metallurgy and Materials, 64(2): 639–646.
  • McCullough, E.J., Yadavalli, V.K., 2013. Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. Journal of Material Process Technology, 213(6): 947–954.
  • Raj, S.A., Muthukumaran, E., Jayakrishna, K., 2018. A case study of 3D printed PLA and its mechanical properties. Materials Today Proceeding, 5(5): 11219-11226.
  • Selin, Ü.S.T., 2015. Konutlarda iç mekan ile mobilya etkileşimi bağlamında mobilyaya dair özelliklerin incelenmesi. Sanat ve Tasarım Dergisi, 1(15): 103-118.
  • Skorski, M.R., Esenther, J.M., Ahmed, Z., Miller, A.E., Hartings, M.R., 2016. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites. Science and Technology of Advanced Materials, 17(1): 89-97.
  • Şeker, S., 2018. Engineering analysis application and investigation of design-construction interaction in furniture. Master's thesis, İstanbul Universitesi-Cerrahpaşa, İstanbul.
  • Vlasceanu, D., Baciu, F., Popescu, D., Hadar, A., Marinescu, R., 2018. Development and 3D printing of an ABS ergonomic handle for medical use a case study. Materiale Plastice, 55(4): 630-633.
  • Zou, R., Xia, Y., Liu, S., Hu, P., Hou, W., Hu, Q., 2016. Isotropic and anisotropic elasticity and yielding of 3D printed material. Composite Part B: Engineering, (99): 506-13.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ahşap İşleme
Bölüm Araştırma Makalesi
Yazarlar

Samet Demirel 0000-0003-4842-7073

Sümeyye Nur Manav 0009-0008-1357-6339

Gönderilme Tarihi 29 Ağustos 2025
Kabul Tarihi 19 Kasım 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 26 Sayı: 4

Kaynak Göster

APA Demirel, S., & Manav, S. N. (2025). Comparison of tensile strength of furniture dovetail fasteners produced with 3D printers and those produced with injection molding method. Turkish Journal of Forestry, 26(4), 617-623. https://doi.org/10.18182/tjf.1772963
AMA Demirel S, Manav SN. Comparison of tensile strength of furniture dovetail fasteners produced with 3D printers and those produced with injection molding method. Turkish Journal of Forestry. Aralık 2025;26(4):617-623. doi:10.18182/tjf.1772963
Chicago Demirel, Samet, ve Sümeyye Nur Manav. “Comparison of tensile strength of furniture dovetail fasteners produced with 3D printers and those produced with injection molding method”. Turkish Journal of Forestry 26, sy. 4 (Aralık 2025): 617-23. https://doi.org/10.18182/tjf.1772963.
EndNote Demirel S, Manav SN (01 Aralık 2025) Comparison of tensile strength of furniture dovetail fasteners produced with 3D printers and those produced with injection molding method. Turkish Journal of Forestry 26 4 617–623.
IEEE S. Demirel ve S. N. Manav, “Comparison of tensile strength of furniture dovetail fasteners produced with 3D printers and those produced with injection molding method”, Turkish Journal of Forestry, c. 26, sy. 4, ss. 617–623, 2025, doi: 10.18182/tjf.1772963.
ISNAD Demirel, Samet - Manav, Sümeyye Nur. “Comparison of tensile strength of furniture dovetail fasteners produced with 3D printers and those produced with injection molding method”. Turkish Journal of Forestry 26/4 (Aralık2025), 617-623. https://doi.org/10.18182/tjf.1772963.
JAMA Demirel S, Manav SN. Comparison of tensile strength of furniture dovetail fasteners produced with 3D printers and those produced with injection molding method. Turkish Journal of Forestry. 2025;26:617–623.
MLA Demirel, Samet ve Sümeyye Nur Manav. “Comparison of tensile strength of furniture dovetail fasteners produced with 3D printers and those produced with injection molding method”. Turkish Journal of Forestry, c. 26, sy. 4, 2025, ss. 617-23, doi:10.18182/tjf.1772963.
Vancouver Demirel S, Manav SN. Comparison of tensile strength of furniture dovetail fasteners produced with 3D printers and those produced with injection molding method. Turkish Journal of Forestry. 2025;26(4):617-23.