Araştırma Makalesi
BibTex RIS Kaynak Göster

Benford Kanunu ve Genelleştirilmiş Benford Kanunu ile ekosistem doğallığının hesaplanması

Yıl 2021, , 73 - 82, 29.06.2021
https://doi.org/10.18182/tjf.907217

Öz

Ekosistemlerin doğallık tespitine yönelik yeni bir yöntem önerilmiştir. Bitki türleri ve örnek alanlardan oluşan (S Χ A ) üç veri seti kullanılmıştır. Bunlar Sultan Dağları Alt Bölgesi (BS) veri seti (60 Χ 96), Dedegül Dağları Alt Bölgesi (BD) veri seti (89 Χ 119) ve iki alt bölgenin birleşmesinden oluşan Beyşehir Gölü Havzası (B) veri setidir (98 Χ 215). İlk olarak BS ve BD veri setlerinden belirlenen ilk rakam olasılık değerleri (〖d_1 p〗_o ) ile Benford Kanunu teorik olasılık değerleri (d_1 p_e ) arasındaki genel uyumu belirlemek için ki kare (χ^2 ) testleri yapılmıştır. Sonuçta χ^2 (e_BS )=16,579 ve χ^2 (e_BD )=2,406 olarak bulunmuştur. İkinci olarak BS ve BD’nin gözlenen olasılık değerlerine en uyumlu teorik olasılık değerlerini belirlemek için genelleştirilmiş Benford Kanunu (GB(d;γ)) kullanılmıştır. BS ve BD için en küçük χ^2 değerleri sırasıyla γ=0,65’de ve γ=0,07’de elde edilmiştir (χ^2 (e_BD^γ )=4,992 ve χ^2 (e_BD^γ )=2,209). Beklendiği gibi genelleştirilmiş Benford Kanunu ile her iki alt bölgenin χ^2 değerleri düşmüştür. χ^2 değer düşüşü BS’de çok daha yüksek olmuştur. Alt bölgelerin örnek alan sayıları birbirlerinden farklıdır. Bu yüzden üçüncü aşamada B veri setinden her iki alt bölgenin örnek alan sayıları dikkate alınarak rastlantısal yinelemeli işlemler uygulanmış ve yineleme sayısı (K) kadar (K=10000) χ^2 değerleri elde edilmiştir. Daha sonra kalibrasyon katsayı değerlerini (kd) belirlemek için bu χ^2 değerlerinin ortalamaları ((_ ^k)(χ^2 ) ̅ (E_BS^γ )=6,747 ve (_ ^k)(χ^2 ) ̅ (E_BD^γ )=6,176) alınmıştır. Sonuçta, BS için kd=1 olduğu için BS doğallık değeri 4,992 ve BD için kd=1,093 olduğu için BD doğallık değeri 2,414 olarak bulunmuştur. Teorik olarak en doğal ekosistemler için tam doğallık değeri=0 kabul edildiğinden, elde edilen doğallık hesaplama sonuçları BD ekosistemlerinin BS ekosistemlerinden daha doğal olduğu göstermiştir.

Kaynakça

  • Akkaş, M., 2007. Denetimde Benford kanunu’nun uygulaması. Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9(1): 191-206.
  • Anderson, J.E., 1991. A conceptual framework for evaluating and quantifying naturalness. Conservation Biology, 5: 347−352.
  • Ausloos, M., Castellano, R., Cerqueti, R., 2016. Regularities and discrepancies of credit default swaps: A data science approach through Benford's law. Chaos, Solitons & Fractals, 90: 8-17.
  • Aybars A., Ataunal L., 2016. An application of Benford’s Law to fundamental accounting figures reported by Borsa Istanbul (BIST) companies. Journal of Economics, Finance and Accounting, 3(3): 234-243.
  • Benford, F., 1938. The law of anomalous numbers. Proceedings of The American Philosophical Society, 78: 551-572.
  • Branets, S., 2019. Detecting money laundering with Benford’s law and machine learning . Masters Thesis, University of Tartu, Faculty of Social Sciences, Estonia.
  • Cleary, R., Thibodeau, J.C., 2005. Applying digital analysis using Benford's law to detect fraud: The dangers of type I errors. Auditing: A Journal of Practice & Theory, 24(1): 77-81.
  • Clippe, P., Ausloos, M., 2012. Benford's law and theil transform of financial data. Physica A: Statistical Mechanics and Its Applications, 391: 6556- 6567.
  • Côté, S., Bélanger, L., Beauregard, R., Thiffault, É., Margni, M., 2019. A conceptual model for forest naturalness assessment and application in Quebec’s Boreal Forest. Forests, 10(4): 325. https://doi.org/10.3390/f10040325
  • Cressie, N., Read, T.R.C., 1984. Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society. Series B (Methodological), 46: 440–464.
  • Crocetti, E., Randi, G., 2016. Using the Benford's Law as a first step to assess the quality of the cancer registry data. Frontiers in Public Health, 4:225. DOI:10.3389/fpubh.2016.00225.
  • Dunlop, S., Lanfranco, S., Schembri, J.S., 2014. The role of 'Naturalness' and seral stage in the assessment and management of coastal sites, https://www.um.edu.mt/library/oar/bitstream/ 123456789/21115/1/Dunlop%2C%20Lanfranco%20%26%20Schembri%20%282014%29.%20The%20role%20of%20%27Naturalness%27%20and%20seral%20stage%20in%20the%20assessment%20and%20management%20of%20coastal%20sites.pdf, Erişim: 20.12.2020.
  • Durtschi, C., Hillison, W., Pacini, C., 2004. The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting, 5(1): 17-34.
  • Erdős, L., Bátori, Z., Penksza, K., Dénes, A., Kevey, B., Kevey, D., Magnes, M., Sengl, P., Tölgyesi, C., 2017. Can naturalness indicator values reveal habitat degradation? A test of four methodological approaches. Polish Journal Of Ecology, 65: 1-13.
  • Fanfarillo, E., Kasperski, A., Giuliani, A., Cicinelli, E., Latini, M., Abbate, G., 2018. Assessing naturalness of arable weed communities: A new index applied to a case study in central Italy. Biological Agriculture & Horticulture, 34(4): 232-244, DOI: 10.1080/01448765.2018.1434832.
  • Fattorini, L., 2003. Statistical analysis of ecological diversity (Eds., El-Shaarawi, A.H., Jureckova, J.), Environmetrics, EOLSS: Paris, France, 1, 18–29.
  • Fewster, R.M., 2009. A simple explanation of Benford’s Law. The American Statistician, 63: 26-32. http://dx.doi.org/10.1198/tast.2009.0005.
  • Fu, D., Shi, Y.Q., Su, W., 2007. A generalized Benford’s Law for JPEG coefficients and its applications in image forensics. Proceedings of SPIE, 6506, 1L1- 1L11.
  • Hill, T.P., 1995. A statistical derivation of the significant-digit law. Statistical Science, 10: 354–363.
  • Hindls, R., Hronová, S., 2015. Benford’s Law and possibilities for its use in governmental statistics. Statistika, 95(2): 54-64.
  • Hürlimann, W., 2009. Generalizing Benford’s law using power laws: Application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284, Doi:10.1155/2009/970284.
  • Hürlimann, W., 2003. A generalized Benford law and its application. Mathematics Preprint Archive, 3(3): 217-228.
  • Hürlimann, W., 2015. On the uniform random upper bound family of first sig-nificant digit distributions. Journal of Informetrics, 9(2): 349-358.
  • Judge, G., Schechter, L., 2009. Detecting problems in survey data using Benford’s Law. Journal of Human Resources, 44(1): 1-24.
  • Leroy, B., 2016. Calculation of rarity indices for species and assemblages of species. R package version 1.3-4. Available at: https://CRAN.R-project.org/package=Rarity.
  • Machado, A., 2004. An index of naturalness. Journal for Nature Conservation, 12: 95-110.
  • Margules, C., Usher, M.B., 1981. Criteria used in assessing wildlife conservation potential: A review. Biological Conservation, 21:79–109.
  • Newcomb, S., 1881. Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics, 4(1): 39–40.
  • Nigrini, M.J., Mittermaier, L.J., 1997. The use of Benford's law as an aid in analytical procedures. Auditing, 16(2): 52.
  • Nigrini, M.J., Miller, S.J., 2007. Benford’s Law applied to hydrology data—Results and relevance to other geophysical data. Mathematical Geology, 39(5): 469–490. http://doi.org/10.1007/s11004-007-9109-5.
  • Özkan, K., 2016. Biyolojik Çeşitlilik Bileşenleri (α, β ve γ) Nasıl Ölçülür (1. Basım). Süleyman Demirel Üniversitesi, Orman Fakültesi Yayınları, Isparta.
  • Özkan, K., 2003. Beyşehir Gölü Havzasının Yetişme Ortamı Özellikleri ve Sınıflandırılması. Doktora Tezi, İÜ Araştırma Fonu Proje Numarası T-981/19022001, 189s.
  • Reif, A., Walentowski, H., 2008. The assessment of naturalness and its role for nature conservation and forestry in Europe. Waldökologie Landschaftsforschung Naturschutz, 6:63–76.
  • Shao, L., Ma, B.Q., 2010. First-digit law in nonextensive statistics, Physical Review E, 82(4): 1-4, 10.1103/PhysRevE.82.041110.
  • Smith, P.G.R., Theberge, J.B., 1986. A review of criteria for evaluating natural areas. Environmental Management, 10(6): 715-734.
  • Tans, W., 1974. Priority ranking of biotic natural areas. Michigan Botanist, 13: 31–39.
  • Tseng, H.C., Huang, W.N., Huang, D.W., 2017. Modified Benford's law for two-exponent distributions. Scientometrics, 110(3): 1403–1413.

Estimating ecosystem naturalness using Benford’s Law and Generalized Benford’s Law

Yıl 2021, , 73 - 82, 29.06.2021
https://doi.org/10.18182/tjf.907217

Öz

A new method was proposed to estimate ecosystem naturalness. Three species-plot (S Χ A) datasets were used. Those data sets belong to Sultan mountain sub-district (BS) (60 Χ 96) Dedegül mountain sub-district (BD) (89 Χ 119) and, Beyşehir Watershed (B) (98 Χ 215) consisting of both of the sub-districts. Firstly, chi square test (χ^2 ) was applied to define the statistical goodness of fit between the first digit observed probabilities (〖d_1 p〗_o ) and the theoretical probabilities of Benford’s Law (d_1 p_e ). It was found that χ^2 (e_BS )=16.579 and χ^2 (e_BD )=2.406.
Secondly, to find the fittest theoretical probabilities for BS and BD, generalized Benford’s Law (GB(d;γ)) was applied. Minimal χ^2 values were obtained at γ=0.65 and γ=0.07 for BS and BD respectively (χ^2 (e_BD^γ )=4.992, χ^2 (e_BD^γ )=2.209). As expected, χ^2 values of the sub-districts decreased by generalized Benford’s Law. The most dramatic χ^2 decrease occurred in BS. The number of sample plots of the sub-districts are different. Two random iterative processes happened 10000 times were therefore performed considering the number of sample plots of the sub-districts in B dataset. As a result 10000 χ^2 values were obtained for each sub-district. Average values of those χ^2 values were then used ((_ ^k)(χ^2 ) ̅ (E_BS^γ )=6.747 and (_ ^k)(χ^2 ) ̅ (E_BD^γ )=6.176) to calculate calibration coefficients of each sub-district. Naturalness values of BS and BD were found to be 4.992 and 2.414 respectively due to calibration coefficients of BS= ((_ ^k)(χ^2 ) ̅ (E_max^γ ))⁄((_ ^k)(χ^2 ) ̅ (E_BS^γ ) )=1 and BD=((_ ^k)(χ^2 ) ̅ (E_max^γ ))⁄((_ ^k)(χ^2 ) ̅ (E_BD^γ ) )=1.093. Since the perfect naturalness value is theoretically equal to 0, the obtained results indicate that BD ecosystems are more natural than BS ecosystems.

Kaynakça

  • Akkaş, M., 2007. Denetimde Benford kanunu’nun uygulaması. Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9(1): 191-206.
  • Anderson, J.E., 1991. A conceptual framework for evaluating and quantifying naturalness. Conservation Biology, 5: 347−352.
  • Ausloos, M., Castellano, R., Cerqueti, R., 2016. Regularities and discrepancies of credit default swaps: A data science approach through Benford's law. Chaos, Solitons & Fractals, 90: 8-17.
  • Aybars A., Ataunal L., 2016. An application of Benford’s Law to fundamental accounting figures reported by Borsa Istanbul (BIST) companies. Journal of Economics, Finance and Accounting, 3(3): 234-243.
  • Benford, F., 1938. The law of anomalous numbers. Proceedings of The American Philosophical Society, 78: 551-572.
  • Branets, S., 2019. Detecting money laundering with Benford’s law and machine learning . Masters Thesis, University of Tartu, Faculty of Social Sciences, Estonia.
  • Cleary, R., Thibodeau, J.C., 2005. Applying digital analysis using Benford's law to detect fraud: The dangers of type I errors. Auditing: A Journal of Practice & Theory, 24(1): 77-81.
  • Clippe, P., Ausloos, M., 2012. Benford's law and theil transform of financial data. Physica A: Statistical Mechanics and Its Applications, 391: 6556- 6567.
  • Côté, S., Bélanger, L., Beauregard, R., Thiffault, É., Margni, M., 2019. A conceptual model for forest naturalness assessment and application in Quebec’s Boreal Forest. Forests, 10(4): 325. https://doi.org/10.3390/f10040325
  • Cressie, N., Read, T.R.C., 1984. Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society. Series B (Methodological), 46: 440–464.
  • Crocetti, E., Randi, G., 2016. Using the Benford's Law as a first step to assess the quality of the cancer registry data. Frontiers in Public Health, 4:225. DOI:10.3389/fpubh.2016.00225.
  • Dunlop, S., Lanfranco, S., Schembri, J.S., 2014. The role of 'Naturalness' and seral stage in the assessment and management of coastal sites, https://www.um.edu.mt/library/oar/bitstream/ 123456789/21115/1/Dunlop%2C%20Lanfranco%20%26%20Schembri%20%282014%29.%20The%20role%20of%20%27Naturalness%27%20and%20seral%20stage%20in%20the%20assessment%20and%20management%20of%20coastal%20sites.pdf, Erişim: 20.12.2020.
  • Durtschi, C., Hillison, W., Pacini, C., 2004. The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting, 5(1): 17-34.
  • Erdős, L., Bátori, Z., Penksza, K., Dénes, A., Kevey, B., Kevey, D., Magnes, M., Sengl, P., Tölgyesi, C., 2017. Can naturalness indicator values reveal habitat degradation? A test of four methodological approaches. Polish Journal Of Ecology, 65: 1-13.
  • Fanfarillo, E., Kasperski, A., Giuliani, A., Cicinelli, E., Latini, M., Abbate, G., 2018. Assessing naturalness of arable weed communities: A new index applied to a case study in central Italy. Biological Agriculture & Horticulture, 34(4): 232-244, DOI: 10.1080/01448765.2018.1434832.
  • Fattorini, L., 2003. Statistical analysis of ecological diversity (Eds., El-Shaarawi, A.H., Jureckova, J.), Environmetrics, EOLSS: Paris, France, 1, 18–29.
  • Fewster, R.M., 2009. A simple explanation of Benford’s Law. The American Statistician, 63: 26-32. http://dx.doi.org/10.1198/tast.2009.0005.
  • Fu, D., Shi, Y.Q., Su, W., 2007. A generalized Benford’s Law for JPEG coefficients and its applications in image forensics. Proceedings of SPIE, 6506, 1L1- 1L11.
  • Hill, T.P., 1995. A statistical derivation of the significant-digit law. Statistical Science, 10: 354–363.
  • Hindls, R., Hronová, S., 2015. Benford’s Law and possibilities for its use in governmental statistics. Statistika, 95(2): 54-64.
  • Hürlimann, W., 2009. Generalizing Benford’s law using power laws: Application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284, Doi:10.1155/2009/970284.
  • Hürlimann, W., 2003. A generalized Benford law and its application. Mathematics Preprint Archive, 3(3): 217-228.
  • Hürlimann, W., 2015. On the uniform random upper bound family of first sig-nificant digit distributions. Journal of Informetrics, 9(2): 349-358.
  • Judge, G., Schechter, L., 2009. Detecting problems in survey data using Benford’s Law. Journal of Human Resources, 44(1): 1-24.
  • Leroy, B., 2016. Calculation of rarity indices for species and assemblages of species. R package version 1.3-4. Available at: https://CRAN.R-project.org/package=Rarity.
  • Machado, A., 2004. An index of naturalness. Journal for Nature Conservation, 12: 95-110.
  • Margules, C., Usher, M.B., 1981. Criteria used in assessing wildlife conservation potential: A review. Biological Conservation, 21:79–109.
  • Newcomb, S., 1881. Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics, 4(1): 39–40.
  • Nigrini, M.J., Mittermaier, L.J., 1997. The use of Benford's law as an aid in analytical procedures. Auditing, 16(2): 52.
  • Nigrini, M.J., Miller, S.J., 2007. Benford’s Law applied to hydrology data—Results and relevance to other geophysical data. Mathematical Geology, 39(5): 469–490. http://doi.org/10.1007/s11004-007-9109-5.
  • Özkan, K., 2016. Biyolojik Çeşitlilik Bileşenleri (α, β ve γ) Nasıl Ölçülür (1. Basım). Süleyman Demirel Üniversitesi, Orman Fakültesi Yayınları, Isparta.
  • Özkan, K., 2003. Beyşehir Gölü Havzasının Yetişme Ortamı Özellikleri ve Sınıflandırılması. Doktora Tezi, İÜ Araştırma Fonu Proje Numarası T-981/19022001, 189s.
  • Reif, A., Walentowski, H., 2008. The assessment of naturalness and its role for nature conservation and forestry in Europe. Waldökologie Landschaftsforschung Naturschutz, 6:63–76.
  • Shao, L., Ma, B.Q., 2010. First-digit law in nonextensive statistics, Physical Review E, 82(4): 1-4, 10.1103/PhysRevE.82.041110.
  • Smith, P.G.R., Theberge, J.B., 1986. A review of criteria for evaluating natural areas. Environmental Management, 10(6): 715-734.
  • Tans, W., 1974. Priority ranking of biotic natural areas. Michigan Botanist, 13: 31–39.
  • Tseng, H.C., Huang, W.N., Huang, D.W., 2017. Modified Benford's law for two-exponent distributions. Scientometrics, 110(3): 1403–1413.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Orijinal Araştırma Makalesi
Yazarlar

Kürşad Özkan 0000-0002-8526-7243

Yayımlanma Tarihi 29 Haziran 2021
Kabul Tarihi 17 Mayıs 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Özkan, K. (2021). Estimating ecosystem naturalness using Benford’s Law and Generalized Benford’s Law. Turkish Journal of Forestry, 22(2), 73-82. https://doi.org/10.18182/tjf.907217
AMA Özkan K. Estimating ecosystem naturalness using Benford’s Law and Generalized Benford’s Law. Turkish Journal of Forestry. Haziran 2021;22(2):73-82. doi:10.18182/tjf.907217
Chicago Özkan, Kürşad. “Estimating Ecosystem Naturalness Using Benford’s Law and Generalized Benford’s Law”. Turkish Journal of Forestry 22, sy. 2 (Haziran 2021): 73-82. https://doi.org/10.18182/tjf.907217.
EndNote Özkan K (01 Haziran 2021) Estimating ecosystem naturalness using Benford’s Law and Generalized Benford’s Law. Turkish Journal of Forestry 22 2 73–82.
IEEE K. Özkan, “Estimating ecosystem naturalness using Benford’s Law and Generalized Benford’s Law”, Turkish Journal of Forestry, c. 22, sy. 2, ss. 73–82, 2021, doi: 10.18182/tjf.907217.
ISNAD Özkan, Kürşad. “Estimating Ecosystem Naturalness Using Benford’s Law and Generalized Benford’s Law”. Turkish Journal of Forestry 22/2 (Haziran 2021), 73-82. https://doi.org/10.18182/tjf.907217.
JAMA Özkan K. Estimating ecosystem naturalness using Benford’s Law and Generalized Benford’s Law. Turkish Journal of Forestry. 2021;22:73–82.
MLA Özkan, Kürşad. “Estimating Ecosystem Naturalness Using Benford’s Law and Generalized Benford’s Law”. Turkish Journal of Forestry, c. 22, sy. 2, 2021, ss. 73-82, doi:10.18182/tjf.907217.
Vancouver Özkan K. Estimating ecosystem naturalness using Benford’s Law and Generalized Benford’s Law. Turkish Journal of Forestry. 2021;22(2):73-82.