Araştırma Makalesi
BibTex RIS Kaynak Göster

Toros sediri için gövde çapı modelinin tahmin performansını iyileştirmek için meşcere sıklığının kullanılması

Yıl 2020, Cilt: 21 Sayı: 2, 113 - 122, 30.06.2020
https://doi.org/10.18182/tjf.705719

Öz

Toros sediri (Cedrus libani A. Rich.) Türkiye’nin ekonomik ve ekolojik açıdan en önemli orman ağacı türlerinden birisidir. Bu çerçevede doğal Toros sediri ormanlarının geleceğe dönük yönetim ve planlanması ile ilgili stratejilerinin geliştirilmesinde, türün büyüme ve hasılatına ilişkin mevcut durumun ortaya konması gerekmektedir. Ağaç türlerinin büyüme ve hasılatına ilişkin tahminlerde kullanılan en önemli yapı taşlarından birisi, ağaç hacim tahminleridir. Ağaç hacimlerinin tahmini amacıyla gövde çapı modellerinin kullanımı son yıllarda önemli bir araç olmuştur. Gövde çapı modelleri, bir ağaç gövdesi boyunca farklı yüksekliklerdeki çap değerlerinin tahmin edilmesi, buna bağlı olarak da ağaç hacim tahminleri ve bu hacmin farklı ürün sınıflarına dağılımının belirlenmesi için kullanılmaktadır. Yapılan çalışmalar, ağaçların büyüme ve gövde formu üzerinde; meşcere sıklığı, gençleştirme yöntemi, toprak tipi ve joe-klimatik faktörler gibi bazı karakteristiklerinin önemli etkilere sahip olduğunu göstermiştir. Dolayısıyla, gövde çapı modellerine meşcere sıklığının yardımcı değişken olarak eklenmesi ile modellerin gövde çapı ve hacim tahminlerindeki performansları arttırılabilir. 
Bu çalışma ile Batı Akdeniz yöresi saf doğal sedir meşcereleri için, karışık etkili modelleme tekniği (NLME) kullanılarak, meşcere sıklığının gövde formu üzerindeki etkisi ve meşcere sıklığının yardımcı değişken olarak kullanılması durumunda modelin gövde çapı tahmin performansının nasıl değiştiği araştırılmıştır. Çalışma sonucunda, gövde çapı modeline, meşcere sıklığının eklenmesi ile model tahmin performansının arttığı görülmüştür. Buna ilaveten, ağaç gövdesi üzerinde farklı yüksekliklerdeki çap ölçümleri kullanılarak kalibrasyon alternatifleri de değerlendirilmiş, çap tahminleri için en uygun kalibrasyon seçeneğinin ağaç gövdesinin dipten itibaren 9.3 m’de ölçülen çap değeri olduğu görülmüştür.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

215 O 060

Teşekkür

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından maddi olarak desteklenen (Proje No: 215 O 060) projedeki verilerden yararlanılarak üretilmiştir. Arazi çalışmalarındaki yardımlarından dolayı Orman Genel Müdürlüğü çalışanlarına teşekkür ederiz

Kaynakça

  • Akaike, H., 1974. A new look at the statistical model identification. IEEE transactions on automatic control, 19(6): 716-723.
  • Arabatzis, A.A., Burkhart, H.E., 1992. An evaluation of sampling methods and model forms for estimating height-diameter relationships in loblolly pine plantations. Forest science, 38(1): 192-198.
  • Arias-Rodil, M., Castedo-Dorado, F., Camara-Obregon, A., Dieguez-Aranda, U., 2015. Fitting and calibrating a multilevel mixed-effects stem taper model for maritime pine in NW Spain. PloS one, 10(12): e0143521. doi: 10.1371/journal.pone.0143521
  • Avery, T.E., Burkhart, H.E., 2002. Forest Measurements. 5th Ed. McGraw-Hill, New York.
  • Boydak, M., 2007. Reforestation of Lebanon cedar (Cedrus libani A. Rich.) in bare karstic lands by broadcast seeding in Turkey. In Proc. of the International workshop MEDPINE 3: Conservation, regeneration, and restoration of Mediterranean pines and their ecosystems, Leone, V., and R. Lovreglio (eds.). CIHEAM, Bari, Italy. 221 p.
  • Brooks, J.R., Jiang, L., Özçelik, R., 2008. Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. Forest Ecology and Management, 256(1-2): 147-151.
  • Bueno-López, S.W., Bevilacqua, E., 2012. Nonlinear mixed model approaches to estimating merchantable bole volume for Pinus occidentalis. iForest-Biogeosciences and Forestry, 5(5): 247.
  • Burkhart, H.E., Walton, S.B., 1985. Incorporating crown ratio into taper equations for loblolly pine trees. Forest Science, 31(2): 478-484.
  • Calama, R., Montero, G., 2006. Stand and tree-level variability on stem form and tree volume in Pinus pinea L.: a multilevel random components approach. Forest Systems, 15(1): 24-41.
  • Cao, Q.V., 2009. Calibrating a segmented taper equation with two diameter measurements. Southern Journal of Applied Forestry, 33(2): 58-61.
  • Cao, Q.V., Wang, J., 2015. Evaluation of methods for calibrating a tree taper equation. Forest Science, 61(2): 213-219.
  • Cao, Q.V., Wang, J., 2011. Calibrating fixed-and mixed-effects taper equations. Forest Ecology and Management, 262(4): 671-673.
  • Davidian, M., Giltinan, D.M., 1995. Nonlinear models for repeated measurement data (Vol. 62). CRC press, Ohio, USA.
  • De-Miguel, S., Mehtätalo, L., Shater, Z., Kraid, B., Pukkala, T., 2012. Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Canadian Journal of Forest Research, 42(7): 1383-1394.
  • Fang, Z., Borders, B.E., Bailey, R.L., 2000. Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. Forest Science, 46(1): 1-12.
  • Fang, Z., Bailey, R.L., 2001. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. Forest Science, 47(3): 287-300.
  • Figueiredo-Filho, A., Borders, B.E., Hitch, K.L., 1996. Taper equations for Pinus taeda plantations in Southern Brazil. Forest Ecology and Management, 83(1-2): 39-46.
  • Garber, S.M., Maguire, D.A., 2003. Modeling stem taper of three central Oregon species using nonlinear mixed effects models and autoregressive error structures. Forest Ecology and Management, 179(1-3): 507-522.
  • Gómez-García, E., Crecente-Campo, F., Diéguez-Aranda, U., 2013. Selection of mixed-effects parameters in a variable-exponent taper equation for birch trees in northwestern Spain. Annals of Forest Science, 70(7): 707-715.
  • Gomez-Garcia, E., Dieguez-Aranda, U., Ozcelik, R., Sal-Cando, M., Castedo-Dorado, F., Crecente-Campo, F., Javier Corral-Rivas, J., Arias-Rodil, M., 2016. Development of a stem taper function using mixed-effects models for Pinus sylvestris in Turkey: selection of fixed parameters to expand. Bosque, 37: 159-167, doi: dx.doi.org/10.4067/S0717-92002016000100015.
  • Gray, H.R., 1956. The form and taper of forest-tree stems (pp. 1-79). UK: Imperial Forestry Institute, University of Oxford, Oxford.
  • Gregoire, T.G., Schabenberger, O., 1996. A non-linear mixed-effects model to predict cumulative bole volume of standing trees. Journal of Applied Statistics, 23(2-3): 257-272.
  • Huang, S., Price, D., Morgan, D., Peck, K., 2000. Kozak's variable-exponent taper equation regionalized for white spruce in Alberta. Western Journal of Applied Forestry, 15(2): 75-85.
  • Jiang, L.C., Liu, R.L., 2011. Segmented taper equations with crown ratio and stand density for Dahurian Larch (Larix gmelinii) in Northeastern China. Journal of Forestry Research, 22(3): 347.
  • Jiang, L., Brooks, J.R., Wang, J., 2005. Compatible taper and volume equations for yellow-poplar in West Virginia. Forest Ecology and Management, 213(1-3): 399-409.
  • Jiang, L., Brooks, J.R., Hobbs, G.R., 2007. Using crown ratio in yellow-poplar compatible taper and volume equations. Northern Journal of Applied Forestry, 24(4): 271-275.
  • Klos, R.J., Wang, G.G., Dang, Q.L., East, E.W., 2007. Taper equations for five major commercial tree species in Manitoba, Canada. Western Journal of Applied Forestry, 22(3): 163-170.
  • Kozak, A., 1988. A variable-exponent taper equation. Canadian Journal of Forest Research, 18(11): 1363-1368.
  • Kozak, A., 2004. My last words on taper equations. The Forestry Chronicle, 80(4), 507-515.
  • Larson, P.R., 1963. Stem form development of forest trees. Forest Science, 9(2): 1-42.
  • Lee, W.K., Seo, J.H., Son, Y.M., Lee, K.H., Von Gadow, K., 2003. Modeling stem profiles for Pinus densiflora in Korea. Forest Ecology and Management, 172(1): 69-77.
  • Leites, L.P., Robinson, A.P., 2004. Improving taper equations of loblolly pine with crown dimensions in a mixed-effects modeling framework. Forest Science, 50(2): 204-212.
  • Lejeune, G., Ung, C.H., Fortin, M., Guo, X.J., Lambert, M.C., Ruel, J.C., 2009. A simple stem taper model with mixed effects for boreal black spruce. European Journal of Forest Research, 128(5): 505-513.
  • Li, R., Weiskittel, A., Dick, A.R., Kershaw Jr, J.A., Seymour, R.S., 2012. Regional stem taper equations for eleven conifer species in the Acadian region of North America: development and assessment. Northern Journal of Applied Forestry, 29(1): 5-14.
  • Li, R., Weiskittel, A.R., 2011. Estimating and predicting bark thickness for seven conifer species in the Acadian Region of North America using a mixed-effects modeling approach: comparison of model forms and subsampling strategies. European Journal of Forest Research, 130(2): 219-233.
  • Meng, S.X., Huang, S., 2010. Incorporating correlated error structures into mixed forest growth models: prediction and inference implications. Canadian Journal of Forest Research, 40(5): 977-990.
  • Muhairwe, C.K., LeMay, V.M., Kozak, A., 1994. Effects of adding tree, stand, and site variables to Kozak's variable-exponent taper equation. Canadian Journal of Forest Research, 24(2): 252-259.
  • OGM., 2006. Orman Kaynakları. Orman Genel Müdürlüğü, Ankara, Türkiye.
  • Özçelik, R., Bal, C., 2013. Effects of adding crown variables in stem taper and volume predictions for black pine. Turkish Journal of Agriculture and Forestry, 37(2): 231-242.
  • Özçelik, R., Cao, Q.V., 2017. Evaluation of fitting and adjustment methods for taper and volume prediction of black pine in Turkey. Forest Science, 63(4): 349-355.
  • Pancoast, A.D., 2018. Evaluation of Taper and Volume Estimation Techniques for Ponderosa Pine in Eastern Oregon and Eastern Washington. MSc Thesis, Forest Engineering, Resources, and Management Graduate School, Oregon State University, Oregon.
  • Sabatia, C.O., Burkhart, H.E., 2015. On the use of upper stem diameters to localize a segmented taper equation to new trees. Forest Science, 61(3): 411-423.
  • Sakıcı, O.E., Mısır, N., Yavuz, H., Mısır, M., 2008. Stem taper functions for Abies nordmanniana subsp. bornmulleriana in Turkey. Scandinavian Journal of Forest Research, 23(6): 522-533.
  • Sakıcı, O.E., Özdemir, G., 2018. Stem taper estimations with artificial neural networks for mixed Oriental beech and Kazdağı fir stands in Karabük region, Turkey. Cerne, 24(4): 439-451.
  • Schroeder, T., Moisen, G., Schleeweis, K., 2014. Testing alternative response designs for training forest disturbance and attribution models. The International Forestry Review, 16(5): 424.
  • Sharma, M., Burkhart, H.E., 2003. Selecting a level of conditioning for the segmented polynomial taper equation. Forest Science, 49(2): 324-330.
  • Sharma, M., Oderwald, R.G., 2001. Dimensionally compatible volume and taper equations. Canadian Journal of Forest Research, 31(5): 797-803.
  • Sharma, M., Parton, J., 2009. Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis. Forest Science, 55(3): 268-282.
  • Sharma, M., Zhang, S.Y., 2004. Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada. Forest Ecology and Management, 198(1-3): 39-53.
  • Tasissa, G., Burkhart, H.E., 1998. An application of mixed effects analysis to modeling thinning effects on stem profile of loblolly pine. Forest Ecology and Management, 103(1): 87-101.
  • Temesgen, H., Affleck, D., Poudel, K., Gray, A., Sessions, J., 2015. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scandinavian Journal of Forest Research, 30(4): 326-335.
  • Trincado, G., Burkhart, H.E., 2006. A generalized approach for modeling and localizing stem profile curves. Forest Science, 52(6): 670-682.
  • Valenti, M.A., Cao, Q.V., 1986. Use of crown ratio to improve loblolly pine taper equations. Canadian Journal of Forest Research, 16(5): 1141-1145.
  • Vonesh, E., Chinchilli, V.M., 1997. Linear and Non-Linear Models for the Analysis of Repeated Measurements Marcel Decker. Inc, New York.
  • Yang, Y., Huang, S., Trincado, G., Meng, S.X., 2009a. Nonlinear mixed-effects modeling of variable-exponent taper equations for lodgepole pine in Alberta, Canada. European Journal of Forest Research, 128(4): 415-429.
  • Yang, Y., Huang, S., Meng, S.X., 2009b. Development of a tree-specific stem profile model for white spruce: a nonlinear mixed model approach with a generalized covariance structure. Forestry, 82(5): 541-555.

Use of stand density to improve prediction performance of stem taper model for Taurus cedar

Yıl 2020, Cilt: 21 Sayı: 2, 113 - 122, 30.06.2020
https://doi.org/10.18182/tjf.705719

Öz

Taurus cedar (Cedrus libani A. Rich.) is economically and ecologically one of the most important forest tree species in Turkey. In this context, knowing the state and limitations of growth and yield of Taurus cedar forests is necessary for improving future management and planning strategies of timber resources. Individual tree volume estimations are one of the most important tools in growth and yield prediction models of the tree species. The use of taper equations in estimating tree volume has recently become useful tool. Taper equations are used to estimate diameters along the bole at any given height and these models are basic pre-requisite to estimating individual tree volumes and product yield. The previous studies showed that, stand characteristics, such as stand density, regeneration method, soil type, and geoclimatic attributes also may have significant impact on tree growth and stem form. Therefore, it makes sense that including stand density information in stem form models should improve model performance in stem diameter and volume estimations. 
In this study, the effects of stand density on stem form were examine and to develop taper equations that incorporate stand density information using nonlinear mixed-effects modeling approach for natural cedar stands in West Mediterranean Region of Turkey. As a result, the predictive accuracy of the model was improved by including stand density as covariate. In addition to, diameter measurements from various stem locations were evaluated for tree-specific calibrations by predicting random-effects parameters. It was found that an upper stem diameter at 9.3 m above ground was best suited for calibrating tree-specific predictions of diameter outside bark.

Proje Numarası

215 O 060

Kaynakça

  • Akaike, H., 1974. A new look at the statistical model identification. IEEE transactions on automatic control, 19(6): 716-723.
  • Arabatzis, A.A., Burkhart, H.E., 1992. An evaluation of sampling methods and model forms for estimating height-diameter relationships in loblolly pine plantations. Forest science, 38(1): 192-198.
  • Arias-Rodil, M., Castedo-Dorado, F., Camara-Obregon, A., Dieguez-Aranda, U., 2015. Fitting and calibrating a multilevel mixed-effects stem taper model for maritime pine in NW Spain. PloS one, 10(12): e0143521. doi: 10.1371/journal.pone.0143521
  • Avery, T.E., Burkhart, H.E., 2002. Forest Measurements. 5th Ed. McGraw-Hill, New York.
  • Boydak, M., 2007. Reforestation of Lebanon cedar (Cedrus libani A. Rich.) in bare karstic lands by broadcast seeding in Turkey. In Proc. of the International workshop MEDPINE 3: Conservation, regeneration, and restoration of Mediterranean pines and their ecosystems, Leone, V., and R. Lovreglio (eds.). CIHEAM, Bari, Italy. 221 p.
  • Brooks, J.R., Jiang, L., Özçelik, R., 2008. Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. Forest Ecology and Management, 256(1-2): 147-151.
  • Bueno-López, S.W., Bevilacqua, E., 2012. Nonlinear mixed model approaches to estimating merchantable bole volume for Pinus occidentalis. iForest-Biogeosciences and Forestry, 5(5): 247.
  • Burkhart, H.E., Walton, S.B., 1985. Incorporating crown ratio into taper equations for loblolly pine trees. Forest Science, 31(2): 478-484.
  • Calama, R., Montero, G., 2006. Stand and tree-level variability on stem form and tree volume in Pinus pinea L.: a multilevel random components approach. Forest Systems, 15(1): 24-41.
  • Cao, Q.V., 2009. Calibrating a segmented taper equation with two diameter measurements. Southern Journal of Applied Forestry, 33(2): 58-61.
  • Cao, Q.V., Wang, J., 2015. Evaluation of methods for calibrating a tree taper equation. Forest Science, 61(2): 213-219.
  • Cao, Q.V., Wang, J., 2011. Calibrating fixed-and mixed-effects taper equations. Forest Ecology and Management, 262(4): 671-673.
  • Davidian, M., Giltinan, D.M., 1995. Nonlinear models for repeated measurement data (Vol. 62). CRC press, Ohio, USA.
  • De-Miguel, S., Mehtätalo, L., Shater, Z., Kraid, B., Pukkala, T., 2012. Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Canadian Journal of Forest Research, 42(7): 1383-1394.
  • Fang, Z., Borders, B.E., Bailey, R.L., 2000. Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. Forest Science, 46(1): 1-12.
  • Fang, Z., Bailey, R.L., 2001. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. Forest Science, 47(3): 287-300.
  • Figueiredo-Filho, A., Borders, B.E., Hitch, K.L., 1996. Taper equations for Pinus taeda plantations in Southern Brazil. Forest Ecology and Management, 83(1-2): 39-46.
  • Garber, S.M., Maguire, D.A., 2003. Modeling stem taper of three central Oregon species using nonlinear mixed effects models and autoregressive error structures. Forest Ecology and Management, 179(1-3): 507-522.
  • Gómez-García, E., Crecente-Campo, F., Diéguez-Aranda, U., 2013. Selection of mixed-effects parameters in a variable-exponent taper equation for birch trees in northwestern Spain. Annals of Forest Science, 70(7): 707-715.
  • Gomez-Garcia, E., Dieguez-Aranda, U., Ozcelik, R., Sal-Cando, M., Castedo-Dorado, F., Crecente-Campo, F., Javier Corral-Rivas, J., Arias-Rodil, M., 2016. Development of a stem taper function using mixed-effects models for Pinus sylvestris in Turkey: selection of fixed parameters to expand. Bosque, 37: 159-167, doi: dx.doi.org/10.4067/S0717-92002016000100015.
  • Gray, H.R., 1956. The form and taper of forest-tree stems (pp. 1-79). UK: Imperial Forestry Institute, University of Oxford, Oxford.
  • Gregoire, T.G., Schabenberger, O., 1996. A non-linear mixed-effects model to predict cumulative bole volume of standing trees. Journal of Applied Statistics, 23(2-3): 257-272.
  • Huang, S., Price, D., Morgan, D., Peck, K., 2000. Kozak's variable-exponent taper equation regionalized for white spruce in Alberta. Western Journal of Applied Forestry, 15(2): 75-85.
  • Jiang, L.C., Liu, R.L., 2011. Segmented taper equations with crown ratio and stand density for Dahurian Larch (Larix gmelinii) in Northeastern China. Journal of Forestry Research, 22(3): 347.
  • Jiang, L., Brooks, J.R., Wang, J., 2005. Compatible taper and volume equations for yellow-poplar in West Virginia. Forest Ecology and Management, 213(1-3): 399-409.
  • Jiang, L., Brooks, J.R., Hobbs, G.R., 2007. Using crown ratio in yellow-poplar compatible taper and volume equations. Northern Journal of Applied Forestry, 24(4): 271-275.
  • Klos, R.J., Wang, G.G., Dang, Q.L., East, E.W., 2007. Taper equations for five major commercial tree species in Manitoba, Canada. Western Journal of Applied Forestry, 22(3): 163-170.
  • Kozak, A., 1988. A variable-exponent taper equation. Canadian Journal of Forest Research, 18(11): 1363-1368.
  • Kozak, A., 2004. My last words on taper equations. The Forestry Chronicle, 80(4), 507-515.
  • Larson, P.R., 1963. Stem form development of forest trees. Forest Science, 9(2): 1-42.
  • Lee, W.K., Seo, J.H., Son, Y.M., Lee, K.H., Von Gadow, K., 2003. Modeling stem profiles for Pinus densiflora in Korea. Forest Ecology and Management, 172(1): 69-77.
  • Leites, L.P., Robinson, A.P., 2004. Improving taper equations of loblolly pine with crown dimensions in a mixed-effects modeling framework. Forest Science, 50(2): 204-212.
  • Lejeune, G., Ung, C.H., Fortin, M., Guo, X.J., Lambert, M.C., Ruel, J.C., 2009. A simple stem taper model with mixed effects for boreal black spruce. European Journal of Forest Research, 128(5): 505-513.
  • Li, R., Weiskittel, A., Dick, A.R., Kershaw Jr, J.A., Seymour, R.S., 2012. Regional stem taper equations for eleven conifer species in the Acadian region of North America: development and assessment. Northern Journal of Applied Forestry, 29(1): 5-14.
  • Li, R., Weiskittel, A.R., 2011. Estimating and predicting bark thickness for seven conifer species in the Acadian Region of North America using a mixed-effects modeling approach: comparison of model forms and subsampling strategies. European Journal of Forest Research, 130(2): 219-233.
  • Meng, S.X., Huang, S., 2010. Incorporating correlated error structures into mixed forest growth models: prediction and inference implications. Canadian Journal of Forest Research, 40(5): 977-990.
  • Muhairwe, C.K., LeMay, V.M., Kozak, A., 1994. Effects of adding tree, stand, and site variables to Kozak's variable-exponent taper equation. Canadian Journal of Forest Research, 24(2): 252-259.
  • OGM., 2006. Orman Kaynakları. Orman Genel Müdürlüğü, Ankara, Türkiye.
  • Özçelik, R., Bal, C., 2013. Effects of adding crown variables in stem taper and volume predictions for black pine. Turkish Journal of Agriculture and Forestry, 37(2): 231-242.
  • Özçelik, R., Cao, Q.V., 2017. Evaluation of fitting and adjustment methods for taper and volume prediction of black pine in Turkey. Forest Science, 63(4): 349-355.
  • Pancoast, A.D., 2018. Evaluation of Taper and Volume Estimation Techniques for Ponderosa Pine in Eastern Oregon and Eastern Washington. MSc Thesis, Forest Engineering, Resources, and Management Graduate School, Oregon State University, Oregon.
  • Sabatia, C.O., Burkhart, H.E., 2015. On the use of upper stem diameters to localize a segmented taper equation to new trees. Forest Science, 61(3): 411-423.
  • Sakıcı, O.E., Mısır, N., Yavuz, H., Mısır, M., 2008. Stem taper functions for Abies nordmanniana subsp. bornmulleriana in Turkey. Scandinavian Journal of Forest Research, 23(6): 522-533.
  • Sakıcı, O.E., Özdemir, G., 2018. Stem taper estimations with artificial neural networks for mixed Oriental beech and Kazdağı fir stands in Karabük region, Turkey. Cerne, 24(4): 439-451.
  • Schroeder, T., Moisen, G., Schleeweis, K., 2014. Testing alternative response designs for training forest disturbance and attribution models. The International Forestry Review, 16(5): 424.
  • Sharma, M., Burkhart, H.E., 2003. Selecting a level of conditioning for the segmented polynomial taper equation. Forest Science, 49(2): 324-330.
  • Sharma, M., Oderwald, R.G., 2001. Dimensionally compatible volume and taper equations. Canadian Journal of Forest Research, 31(5): 797-803.
  • Sharma, M., Parton, J., 2009. Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis. Forest Science, 55(3): 268-282.
  • Sharma, M., Zhang, S.Y., 2004. Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada. Forest Ecology and Management, 198(1-3): 39-53.
  • Tasissa, G., Burkhart, H.E., 1998. An application of mixed effects analysis to modeling thinning effects on stem profile of loblolly pine. Forest Ecology and Management, 103(1): 87-101.
  • Temesgen, H., Affleck, D., Poudel, K., Gray, A., Sessions, J., 2015. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scandinavian Journal of Forest Research, 30(4): 326-335.
  • Trincado, G., Burkhart, H.E., 2006. A generalized approach for modeling and localizing stem profile curves. Forest Science, 52(6): 670-682.
  • Valenti, M.A., Cao, Q.V., 1986. Use of crown ratio to improve loblolly pine taper equations. Canadian Journal of Forest Research, 16(5): 1141-1145.
  • Vonesh, E., Chinchilli, V.M., 1997. Linear and Non-Linear Models for the Analysis of Repeated Measurements Marcel Decker. Inc, New York.
  • Yang, Y., Huang, S., Trincado, G., Meng, S.X., 2009a. Nonlinear mixed-effects modeling of variable-exponent taper equations for lodgepole pine in Alberta, Canada. European Journal of Forest Research, 128(4): 415-429.
  • Yang, Y., Huang, S., Meng, S.X., 2009b. Development of a tree-specific stem profile model for white spruce: a nonlinear mixed model approach with a generalized covariance structure. Forestry, 82(5): 541-555.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Orijinal Araştırma Makalesi
Yazarlar

Ramazan Özçelik 0000-0003-2132-2589

Onur Alkan 0000-0001-5798-3421

Proje Numarası 215 O 060
Yayımlanma Tarihi 30 Haziran 2020
Kabul Tarihi 20 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 21 Sayı: 2

Kaynak Göster

APA Özçelik, R., & Alkan, O. (2020). Toros sediri için gövde çapı modelinin tahmin performansını iyileştirmek için meşcere sıklığının kullanılması. Turkish Journal of Forestry, 21(2), 113-122. https://doi.org/10.18182/tjf.705719
AMA Özçelik R, Alkan O. Toros sediri için gövde çapı modelinin tahmin performansını iyileştirmek için meşcere sıklığının kullanılması. Turkish Journal of Forestry. Haziran 2020;21(2):113-122. doi:10.18182/tjf.705719
Chicago Özçelik, Ramazan, ve Onur Alkan. “Toros Sediri için gövde çapı Modelinin Tahmin performansını iyileştirmek için meşcere sıklığının kullanılması”. Turkish Journal of Forestry 21, sy. 2 (Haziran 2020): 113-22. https://doi.org/10.18182/tjf.705719.
EndNote Özçelik R, Alkan O (01 Haziran 2020) Toros sediri için gövde çapı modelinin tahmin performansını iyileştirmek için meşcere sıklığının kullanılması. Turkish Journal of Forestry 21 2 113–122.
IEEE R. Özçelik ve O. Alkan, “Toros sediri için gövde çapı modelinin tahmin performansını iyileştirmek için meşcere sıklığının kullanılması”, Turkish Journal of Forestry, c. 21, sy. 2, ss. 113–122, 2020, doi: 10.18182/tjf.705719.
ISNAD Özçelik, Ramazan - Alkan, Onur. “Toros Sediri için gövde çapı Modelinin Tahmin performansını iyileştirmek için meşcere sıklığının kullanılması”. Turkish Journal of Forestry 21/2 (Haziran 2020), 113-122. https://doi.org/10.18182/tjf.705719.
JAMA Özçelik R, Alkan O. Toros sediri için gövde çapı modelinin tahmin performansını iyileştirmek için meşcere sıklığının kullanılması. Turkish Journal of Forestry. 2020;21:113–122.
MLA Özçelik, Ramazan ve Onur Alkan. “Toros Sediri için gövde çapı Modelinin Tahmin performansını iyileştirmek için meşcere sıklığının kullanılması”. Turkish Journal of Forestry, c. 21, sy. 2, 2020, ss. 113-22, doi:10.18182/tjf.705719.
Vancouver Özçelik R, Alkan O. Toros sediri için gövde çapı modelinin tahmin performansını iyileştirmek için meşcere sıklığının kullanılması. Turkish Journal of Forestry. 2020;21(2):113-22.