Araştırma Makalesi
BibTex RIS Kaynak Göster

Adenocarpus complicatus (L.) Gay türünün iklim değişkenlerine bağlı günümüz ve gelecekteki yayılış alanlarının tahmini

Yıl 2020, Cilt: 21 Sayı: 4, 498 - 508, 29.12.2020
https://doi.org/10.18182/tjf.779776

Öz

Ülkemize ait ve Peyzaj Mimarlığı meslek disiplininin en önemli tasarım elemanı olan bitkisel materyalin iklim değişikliğinden nasıl etkileneceğinin analiz edilmesi, bu türlerin bitkilendirme çalışmalarında gelecek kullanımının planlanabilmesi açısından önemlidir. Çalışmada ilk olarak Adenocarpus complicatus (L.) Gay’e ait var verileri (presence data) ve WorldClim 2.1 versiyonu 2.5 dakika (yaklaşık 20 km2) konumsal çözünürlükteki 19 adet biyoiklimsel değişken kullanılarak türün günümüz koşullarındaki potansiyel yayılış alanı tahmin edilmiştir. İkinci aşamada ise türün yayılış alanlarının iklim değişiminden nasıl etkileneceğini belirlemek için 6. IPCC raporu temel alınarak oluşturulmuş ve eşleştirilmiş model karşılaştırma projesi (CMIP6) modellerinden olan IPSL-CM6A-LR iklim değişim modeli kullanılarak türün SSP2 4.5 ve SSP5 8.5 senaryolarına göre 2041-2060 ve 2081-2100 periyodlarına ait potansiyel yayılış alanı modellenmiştir. Ayrıca türlere ait üretilen günümüz ve gelecekteki yayılış alanları arasındaki alansal ve konumsal farklar değişim analizi ile ortaya konulmuştur. Bulgulara göre günümüz yayılış alanı uygun ve çok uygun olarak değerlendirilen alanlar 63.695 km2 olarak hesaplanmıştır. Sonuçta türün yayılış alanlarının yıllara göre giderek azalacağı, özellikle SSP5 8.5 senaryosuna göre ~2090 yılında Türkiye koşullarında türe rastlanılamayacağı tahmin edilmektedir.

Teşekkür

Bu çalışma Almira UZUN tarafından Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Peyzaj Mimarlığı Anabilim Dalı’nda hazırlanan “İklim Değişimi Senaryolarına Göre Peyzaj Tasarımında Kullanılan Fabaceae Familyasına Ait Bazı Odunsu Türlerin Günümüz ve Gelecekteki Yayılış Alanlarının Tahmini’ adlı Yüksek Lisans Tez çalışmasından üretilmiştir.

Kaynakça

  • Adhikari, D., Barik, S., Upadhaya, K., 2012. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecological Engineering, 40: 37-43.
  • Akkemik, Ü., 2018. Türkiye’nin Doğal-Egzotik Ağaç ve Çalıları. Orman Genel Müdürlüğü Yayınları, Ankara.
  • Arslan, E.S., 2019. İklim değişimi senaryoları ve tür dağılım modeline göre kentsel yol ağaçlarının ekosistem hizmetleri bağlamında değerlendirilmesi: Robinia pseudoacacia L. örneği. Türkiye Ormancılık Dergisi, 20: 142-148.
  • Ashraf, U., Ali, H., Chaudry, M.N., Ashraf, I., Batool, A., Saqib, Z., 2016. Predicting the potential distribution of Olea Ferruginea in Pakistan incorporating climate change by using MaxEnt model. Sustainability, 8(8): 722.
  • Avcı, M., 2014. Türkiye’nin bitki çeşitliliği ve coğrafi açıdan değerlendirmesi. türkiye’nin doğal-egzotik ağaç ve çalıları (Ed: Akkemik, Ü.), Orman Genel Müdürlüğü Yayınları, Ankara, s. 28-53.
  • Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O., Swartz, B., Quental, T.B., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C., 2011. Has the earth’s sixth mass extinction already arrived? Nature, 471: 51-57.
  • Berber, A., Zengin, G., Aktumsek, A., Sanda, M.A., Uysal, T., 2014. Antioxidant capacity and fatty acid composition of different parts of Adenocarpus complicatus (Fabaceae) from Turkey. Revista de Biología Tropical, 62: 349-358.
  • Bertrand, R., Lenoir, J., Piedallu, C., Riofrío-Dillon, G., de Ruffray, P., Vidal, C., Pierrat, J.C., Gégout, J.C. J.N., 2011. Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479(7374): 517-520.
  • Cobben, M., Van Treuren, R., Castañeda-Álvarez, N.P., Khoury, C. K., Kik, C., van Hintum, T.J., 2015. Robustness and accuracy of maxent niche modelling for lactuca species distributions in light of collecting expeditions. Plant Genetic Resources, 13: 153-161.
  • Çoban, H.O., Örücü, Ö.K., Arslan, E.S., 2020. MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani olivier. Sustainability, 12: 2671.
  • Davis, P.H., 1972. Flora of Turkey and the East Aegean Islands. Vol. 3, Edinburgh University Press, Edinburg.
  • Duman, H., Aytaç, Z., Karavelioğulları, U.F., 2000. Gevne Vadisi Florası. Kırsal Çevre ve Ormancılık Sorunları Araştırma Derneği, Ankara.
  • Dülgeroğlu, C., Aksoy, A., 2018. Küresel iklim değişikliğinin Origanum minutiflorum Schwarz & PH Davis’in coğrafi dağılımına etkisinin maximum entropi algoritması ile tahmini. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11: 182-190.
  • Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37: 4302-4315.
  • Field, A., 2013. Discovering Statistics Using IBM SPSS Statistics. SAGE Publications Ltd, London. Fitzpatrick, M.C., Gove, A.D., Sanders, N.J., Dunn, R.R., 2008. Climate change, plant migration and range collapse in a global biodiversity hotspot: The banksia (Proteaceae) of western Australia. Global Change Biology, 14: 1337-1352.
  • Gassó, N., Thuiller, W., Pino, J., Vilà, M., 2012. Potential distribution range of invasive plant species in Spain. NeoBiota, 12: 25-40.
  • Gaston, K.J., 1996. Species Richness: Measure and Measurement. Blackwell Science Ltd, London.
  • GBIF, 2019. Global Biodiversity Information Facility. https://www.gbif.org/, Erişim: 01.02.2020.
  • Gibbs, P., 1970. Adenocarpus DC. Flora of Turkey and the East Aegean Islands (Ed: Davis, P.H.), Vol. 3, Edinburg Press, Edinburg.
  • Güner, Ö., Akçiçek, E., 2013. Ulus Dağı’nın florası Balıkesir/Türkiye. Biyolojik Çeşitlilik ve Koruma, 6: 101-113.
  • Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 1965-1978.
  • Hosmer, Jr, D.W., Lemeshow, S., Sturdivant, R.X., 2013. Applied Logistic Regression. Vol. 392, John Wiley & Sons, New York.
  • IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change P. R.K.veM. A.L., Geneva, Switzerland,151 p. Jaynes, E.T., 1957. Information Theory and Statistical Mechanics. II. Physical review, 108(2): 171-190.
  • Lawler, J.J., Shafer, S.L., White, D., Kareiva, P., Maurer, E.P., Blaustein, A.R., Bartlein, P.J., 2009. Projected climate‐induced faunal change in the western Hemisphere. Ecology, 90: 588-597.
  • Lenoir, J., Gégout, J.C., Marquet, P., De Ruffray, P., Brisse, H.J.S., 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science, 320: 1768-1771.
  • Liu, X., Zhu, X., Li, S., Liu, Y., Pan, Y., 2015. Changes in growing season vegetation and their associated driving forces in China during 2001–2012. Remote sensing, 7: 15517-15535.
  • Meyer, F.G., 1959. Plant Explorations: Ornamentals in Italy, Southern France, Spain, Portugal, England, and Scotland. Forgotten Books, London.
  • Ok, T., 2018. Adenocarpus DC. Türkiye'nin Doğal Egzotik Ağaç ve Çalıları (Ed: Akkemik, Ü.), Orman Genel Müdürlüğü Yayınları, Ankara.
  • Örücü, Ö.K., 2019. Phoenix theophrasti Gr.’nin iklim değişimine bağlı günümüz ve gelecekteki yayılış alanlarının MaxEnt modeli ile tahmini ve bitkisel tasarımda kullanımı. Türkiye Ormancılık Dergisi, 20: 274-283.
  • Özkan, K., Senol, H., Gulsoy, S., Mert, A., Suel, H., Eser, Y., 2009. Vegetation‐environment relationships in Mediterranean mountain forests on limeless bedrocks of southern Anatolia, Turkey. Journal of Environmental Engineering and Landscape Management, 17: 154-163.
  • Pearson, R.G., Raxworthy, C.J., Nakamura, M., Townsend Peterson, A., 2007. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of biogeography, 34: 102-117.
  • Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., Blair, M.E., 2017. Opening the black box: An open-source release of MaxEnt. Ecography, 40: 887-893.
  • Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, 190: 231-259.
  • Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography, 31: 161-175.
  • Phillips, S.J., Elith, J., 2010. POC Plots: Calibrating species distribution models with presence‐only data. Ecology, 91: 2476-2484.
  • QGIS, 2019. QGIS 3.8 Zanzibar - A Free and Open GIS. https://qgis.org/tr/site/forusers/download.html, Erişim: 20.08.2019.
  • Remya, K., Ramachandran, A., Jayakumar, S., 2015. Predicting the current and future suitable habitat distribution of Myristica Dactyloides Gaertn. using MaxEnt model in the eastern Ghats, India. Ecological engineering, 82: 184-188.
  • Sağlam, C., 2014. Phytosociological features of Cicek Mountain and environs (Isparta, Turkey). Ekoloji Dergisi, 23: 19-37.
  • Sarıkaya, O., Karaceylan, I.B., Sen, I., 2018. Maximum entropy modeling (Maxent) of current and future distributions of Ips Mannsfeldi (Wachtl, 1879) (Curculionidae: Scolytinae) in Turkey. Applied Ecology and Environmental Research, 16: 2527-2535.
  • Satıl, R., Polat, F., 2010. Havran ve Burhaniye'de (Balıkesir) etnobotanik araştırmaları. Türkiye Bilimler Akademisi Kültür Envanteri Dergisi, 8: 65-100.
  • Sérgio, C., Figueira, R., Draper, D., Menezes, R., Sousa, A.J., 2007. Modelling bryophyte distribution based on ecological information for extent of occurrence assessment. Biological conservation, 135(3): 341-351.
  • Shcheglovitova, M., Anderson, R.P., 2013. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecological Modelling, 269: 9-17.
  • Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T., Prentice, I. C., 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences, 102: 8245-8250.
  • Tittensor, D.P., Baco, A.R., Brewin, P.E., Clark, M.R., Consalvey, M., Hall‐Spencer, J., Rowden, A.A., Schlacher, T., Stocks, K.I., Rogers, A.D., 2009. Predicting global habitat suitability for stony corals on seamounts. Journal of Biogeography, 36(6): 1111-1128.
  • TUBIVES, 2004. Turkish Plants Data Service. http://194.27.225.161/yasin/tubives/index.php?sayfa=1&tax_id=2438, Erişim: 14.10.2019.
  • Türkeş, M., 2008. Küresel iklim değişikliği nedir? Temel kavramlar, nedenleri, gözlenen ve öngörülen değişiklikler. İklim Değişikliği ve Çevre, 1(1): 26-37.
  • Türkiye Bitkileri, 2019. Adenocarpus complicatus, Photo Gallery, https://www.turkiyebitkileri.com/en/photo-gallery/view-album/2970.html?start=0, Erişim: 06.09.2020.
  • Usta Baykal, N., 2019. Determining potential niche competition regions between Kazdagi fir (Abies Nordmanniana Subsp. Equi-Trojani) & Anatolian black pine (Pinus Nigra Subsp. Pallasiana) and conservation priority areas under climate change scenarios by using maxent algorithm. Master Thesis, Middle East Technical University, The Graduate School of Natural and Applied Sciences, Ankara.
  • Wang, J., He, G., Fang, H., Han, Y., 2020. Climate change impacts on the topography and ecological environment of the wetlands in the middle reaches of the Yarlung Zangbo-Brahmaputra River. Journal of Hydrology, 590: 1-13.
  • Wang, Y.S., Xie, B.Y., Wan, F.H., Xiao, Q.M., Dai, L.Y., 2007. The potential geographic distribution of Radopholus similis in China. Agricultural Sciences in China, 6: 1444-1449.
  • Ward, D.F., 2007. Modelling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions, 9: 723-735.
  • Williams, J.N., Seo, C., Thorne, J., Nelson, J.K., Erwin, S., O’Brien, J.M., Schwartz, M.W., 2009. Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions, 15: 565-576.
  • Wollan, A.K., Bakkestuen, V., Kauserud, H., Gulden, G., Halvorsen, R., 2008. Modelling and predicting fungal distribution patterns using herbarium data. Journal of Biogeography, 35(12): 2298-2310.
  • WorldClim, 2019. WorldClim - Global Climate Data. www.worldclim.org, Erişim: 20.08.2019.
  • Yaltırık, F., 1984. Bazı Yapraklı Ağaç ve Çalıların Kışın Tanınması. İstanbul Üniversitesi Yayınları, İstanbul.
  • Yi, Y.J., Cheng, X., Yang, Z.F., Zhang, S.H., 2016. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, 92: 260-269.
  • Yılmaz, H., Tuttu, G., 2008. Flora of Çamucu forest enterprice area (Balya, Balıkesir/Turkey). Biological Diversity and Conservation, 9: 10-24.
  • Yuan, H.S., Wei, Y.L., Wang, X.G., 2015. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecology, 17: 140-145.
  • Zhang, K., Yao, L., Meng, J., Tao, J., 2018. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 634: 1326-1334.

Prediction of present and future spread of Adenocarpus complicatus (L.) Gay species according to climate variables

Yıl 2020, Cilt: 21 Sayı: 4, 498 - 508, 29.12.2020
https://doi.org/10.18182/tjf.779776

Öz

Analyzing how the vegetative material, which is the most important design element of Turkey and the most important design element of the Landscape Architecture profession, will be affected by climate change, is of great importance in order to plan the future use of these species in planting studies. The article consists of two main sections. Firstly, the presence data of Adenocarpus complicatus (L.) Gay and WorldClim 2.1 version of 19 bioclimatic variables at 2.5 minutes (approximately 20 km2) spatial resolution were used to estimate the potential distribution area of the species in today's conditions. In the next stage, in order to determine how the range of the species will be affected by climate change, the 6th IPCC report was created based on the IPSL-CM6A-LR climate change model, which is one of the paired model comparison Project (CMIP6) models. The potential distribution area of the species for the periods 2041-2060 and 2081-2100 was modeled according to the SSP2 4.5 and SSP5 8.5 scenarios. In addition, the spatial and spatial differences between the present and future distribution areas of the species were revealed by analysis of change. According to the findings, the areas that are considered suitable and very suitable in the current distribution area are calculated as 63.695 km2.The spread of the species will decrease according to the model results. According to SSP5 8.5 scenario ~2090, it will predicted not seen the kind in Turkey.

Kaynakça

  • Adhikari, D., Barik, S., Upadhaya, K., 2012. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecological Engineering, 40: 37-43.
  • Akkemik, Ü., 2018. Türkiye’nin Doğal-Egzotik Ağaç ve Çalıları. Orman Genel Müdürlüğü Yayınları, Ankara.
  • Arslan, E.S., 2019. İklim değişimi senaryoları ve tür dağılım modeline göre kentsel yol ağaçlarının ekosistem hizmetleri bağlamında değerlendirilmesi: Robinia pseudoacacia L. örneği. Türkiye Ormancılık Dergisi, 20: 142-148.
  • Ashraf, U., Ali, H., Chaudry, M.N., Ashraf, I., Batool, A., Saqib, Z., 2016. Predicting the potential distribution of Olea Ferruginea in Pakistan incorporating climate change by using MaxEnt model. Sustainability, 8(8): 722.
  • Avcı, M., 2014. Türkiye’nin bitki çeşitliliği ve coğrafi açıdan değerlendirmesi. türkiye’nin doğal-egzotik ağaç ve çalıları (Ed: Akkemik, Ü.), Orman Genel Müdürlüğü Yayınları, Ankara, s. 28-53.
  • Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O., Swartz, B., Quental, T.B., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C., 2011. Has the earth’s sixth mass extinction already arrived? Nature, 471: 51-57.
  • Berber, A., Zengin, G., Aktumsek, A., Sanda, M.A., Uysal, T., 2014. Antioxidant capacity and fatty acid composition of different parts of Adenocarpus complicatus (Fabaceae) from Turkey. Revista de Biología Tropical, 62: 349-358.
  • Bertrand, R., Lenoir, J., Piedallu, C., Riofrío-Dillon, G., de Ruffray, P., Vidal, C., Pierrat, J.C., Gégout, J.C. J.N., 2011. Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479(7374): 517-520.
  • Cobben, M., Van Treuren, R., Castañeda-Álvarez, N.P., Khoury, C. K., Kik, C., van Hintum, T.J., 2015. Robustness and accuracy of maxent niche modelling for lactuca species distributions in light of collecting expeditions. Plant Genetic Resources, 13: 153-161.
  • Çoban, H.O., Örücü, Ö.K., Arslan, E.S., 2020. MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani olivier. Sustainability, 12: 2671.
  • Davis, P.H., 1972. Flora of Turkey and the East Aegean Islands. Vol. 3, Edinburgh University Press, Edinburg.
  • Duman, H., Aytaç, Z., Karavelioğulları, U.F., 2000. Gevne Vadisi Florası. Kırsal Çevre ve Ormancılık Sorunları Araştırma Derneği, Ankara.
  • Dülgeroğlu, C., Aksoy, A., 2018. Küresel iklim değişikliğinin Origanum minutiflorum Schwarz & PH Davis’in coğrafi dağılımına etkisinin maximum entropi algoritması ile tahmini. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11: 182-190.
  • Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37: 4302-4315.
  • Field, A., 2013. Discovering Statistics Using IBM SPSS Statistics. SAGE Publications Ltd, London. Fitzpatrick, M.C., Gove, A.D., Sanders, N.J., Dunn, R.R., 2008. Climate change, plant migration and range collapse in a global biodiversity hotspot: The banksia (Proteaceae) of western Australia. Global Change Biology, 14: 1337-1352.
  • Gassó, N., Thuiller, W., Pino, J., Vilà, M., 2012. Potential distribution range of invasive plant species in Spain. NeoBiota, 12: 25-40.
  • Gaston, K.J., 1996. Species Richness: Measure and Measurement. Blackwell Science Ltd, London.
  • GBIF, 2019. Global Biodiversity Information Facility. https://www.gbif.org/, Erişim: 01.02.2020.
  • Gibbs, P., 1970. Adenocarpus DC. Flora of Turkey and the East Aegean Islands (Ed: Davis, P.H.), Vol. 3, Edinburg Press, Edinburg.
  • Güner, Ö., Akçiçek, E., 2013. Ulus Dağı’nın florası Balıkesir/Türkiye. Biyolojik Çeşitlilik ve Koruma, 6: 101-113.
  • Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 1965-1978.
  • Hosmer, Jr, D.W., Lemeshow, S., Sturdivant, R.X., 2013. Applied Logistic Regression. Vol. 392, John Wiley & Sons, New York.
  • IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change P. R.K.veM. A.L., Geneva, Switzerland,151 p. Jaynes, E.T., 1957. Information Theory and Statistical Mechanics. II. Physical review, 108(2): 171-190.
  • Lawler, J.J., Shafer, S.L., White, D., Kareiva, P., Maurer, E.P., Blaustein, A.R., Bartlein, P.J., 2009. Projected climate‐induced faunal change in the western Hemisphere. Ecology, 90: 588-597.
  • Lenoir, J., Gégout, J.C., Marquet, P., De Ruffray, P., Brisse, H.J.S., 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science, 320: 1768-1771.
  • Liu, X., Zhu, X., Li, S., Liu, Y., Pan, Y., 2015. Changes in growing season vegetation and their associated driving forces in China during 2001–2012. Remote sensing, 7: 15517-15535.
  • Meyer, F.G., 1959. Plant Explorations: Ornamentals in Italy, Southern France, Spain, Portugal, England, and Scotland. Forgotten Books, London.
  • Ok, T., 2018. Adenocarpus DC. Türkiye'nin Doğal Egzotik Ağaç ve Çalıları (Ed: Akkemik, Ü.), Orman Genel Müdürlüğü Yayınları, Ankara.
  • Örücü, Ö.K., 2019. Phoenix theophrasti Gr.’nin iklim değişimine bağlı günümüz ve gelecekteki yayılış alanlarının MaxEnt modeli ile tahmini ve bitkisel tasarımda kullanımı. Türkiye Ormancılık Dergisi, 20: 274-283.
  • Özkan, K., Senol, H., Gulsoy, S., Mert, A., Suel, H., Eser, Y., 2009. Vegetation‐environment relationships in Mediterranean mountain forests on limeless bedrocks of southern Anatolia, Turkey. Journal of Environmental Engineering and Landscape Management, 17: 154-163.
  • Pearson, R.G., Raxworthy, C.J., Nakamura, M., Townsend Peterson, A., 2007. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of biogeography, 34: 102-117.
  • Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., Blair, M.E., 2017. Opening the black box: An open-source release of MaxEnt. Ecography, 40: 887-893.
  • Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, 190: 231-259.
  • Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography, 31: 161-175.
  • Phillips, S.J., Elith, J., 2010. POC Plots: Calibrating species distribution models with presence‐only data. Ecology, 91: 2476-2484.
  • QGIS, 2019. QGIS 3.8 Zanzibar - A Free and Open GIS. https://qgis.org/tr/site/forusers/download.html, Erişim: 20.08.2019.
  • Remya, K., Ramachandran, A., Jayakumar, S., 2015. Predicting the current and future suitable habitat distribution of Myristica Dactyloides Gaertn. using MaxEnt model in the eastern Ghats, India. Ecological engineering, 82: 184-188.
  • Sağlam, C., 2014. Phytosociological features of Cicek Mountain and environs (Isparta, Turkey). Ekoloji Dergisi, 23: 19-37.
  • Sarıkaya, O., Karaceylan, I.B., Sen, I., 2018. Maximum entropy modeling (Maxent) of current and future distributions of Ips Mannsfeldi (Wachtl, 1879) (Curculionidae: Scolytinae) in Turkey. Applied Ecology and Environmental Research, 16: 2527-2535.
  • Satıl, R., Polat, F., 2010. Havran ve Burhaniye'de (Balıkesir) etnobotanik araştırmaları. Türkiye Bilimler Akademisi Kültür Envanteri Dergisi, 8: 65-100.
  • Sérgio, C., Figueira, R., Draper, D., Menezes, R., Sousa, A.J., 2007. Modelling bryophyte distribution based on ecological information for extent of occurrence assessment. Biological conservation, 135(3): 341-351.
  • Shcheglovitova, M., Anderson, R.P., 2013. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecological Modelling, 269: 9-17.
  • Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T., Prentice, I. C., 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences, 102: 8245-8250.
  • Tittensor, D.P., Baco, A.R., Brewin, P.E., Clark, M.R., Consalvey, M., Hall‐Spencer, J., Rowden, A.A., Schlacher, T., Stocks, K.I., Rogers, A.D., 2009. Predicting global habitat suitability for stony corals on seamounts. Journal of Biogeography, 36(6): 1111-1128.
  • TUBIVES, 2004. Turkish Plants Data Service. http://194.27.225.161/yasin/tubives/index.php?sayfa=1&tax_id=2438, Erişim: 14.10.2019.
  • Türkeş, M., 2008. Küresel iklim değişikliği nedir? Temel kavramlar, nedenleri, gözlenen ve öngörülen değişiklikler. İklim Değişikliği ve Çevre, 1(1): 26-37.
  • Türkiye Bitkileri, 2019. Adenocarpus complicatus, Photo Gallery, https://www.turkiyebitkileri.com/en/photo-gallery/view-album/2970.html?start=0, Erişim: 06.09.2020.
  • Usta Baykal, N., 2019. Determining potential niche competition regions between Kazdagi fir (Abies Nordmanniana Subsp. Equi-Trojani) & Anatolian black pine (Pinus Nigra Subsp. Pallasiana) and conservation priority areas under climate change scenarios by using maxent algorithm. Master Thesis, Middle East Technical University, The Graduate School of Natural and Applied Sciences, Ankara.
  • Wang, J., He, G., Fang, H., Han, Y., 2020. Climate change impacts on the topography and ecological environment of the wetlands in the middle reaches of the Yarlung Zangbo-Brahmaputra River. Journal of Hydrology, 590: 1-13.
  • Wang, Y.S., Xie, B.Y., Wan, F.H., Xiao, Q.M., Dai, L.Y., 2007. The potential geographic distribution of Radopholus similis in China. Agricultural Sciences in China, 6: 1444-1449.
  • Ward, D.F., 2007. Modelling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions, 9: 723-735.
  • Williams, J.N., Seo, C., Thorne, J., Nelson, J.K., Erwin, S., O’Brien, J.M., Schwartz, M.W., 2009. Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions, 15: 565-576.
  • Wollan, A.K., Bakkestuen, V., Kauserud, H., Gulden, G., Halvorsen, R., 2008. Modelling and predicting fungal distribution patterns using herbarium data. Journal of Biogeography, 35(12): 2298-2310.
  • WorldClim, 2019. WorldClim - Global Climate Data. www.worldclim.org, Erişim: 20.08.2019.
  • Yaltırık, F., 1984. Bazı Yapraklı Ağaç ve Çalıların Kışın Tanınması. İstanbul Üniversitesi Yayınları, İstanbul.
  • Yi, Y.J., Cheng, X., Yang, Z.F., Zhang, S.H., 2016. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, 92: 260-269.
  • Yılmaz, H., Tuttu, G., 2008. Flora of Çamucu forest enterprice area (Balya, Balıkesir/Turkey). Biological Diversity and Conservation, 9: 10-24.
  • Yuan, H.S., Wei, Y.L., Wang, X.G., 2015. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecology, 17: 140-145.
  • Zhang, K., Yao, L., Meng, J., Tao, J., 2018. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 634: 1326-1334.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Orijinal Araştırma Makalesi
Yazarlar

Almira Uzun 0000-0002-0863-5399

Ömer K. Örücü 0000-0002-2162-7553

Yayımlanma Tarihi 29 Aralık 2020
Kabul Tarihi 21 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 21 Sayı: 4

Kaynak Göster

APA Uzun, A., & Örücü, Ö. K. (2020). Adenocarpus complicatus (L.) Gay türünün iklim değişkenlerine bağlı günümüz ve gelecekteki yayılış alanlarının tahmini. Turkish Journal of Forestry, 21(4), 498-508. https://doi.org/10.18182/tjf.779776
AMA Uzun A, Örücü ÖK. Adenocarpus complicatus (L.) Gay türünün iklim değişkenlerine bağlı günümüz ve gelecekteki yayılış alanlarının tahmini. Turkish Journal of Forestry. Aralık 2020;21(4):498-508. doi:10.18182/tjf.779776
Chicago Uzun, Almira, ve Ömer K. Örücü. “Adenocarpus Complicatus (L.) Gay türünün Iklim değişkenlerine bağlı günümüz Ve Gelecekteki yayılış alanlarının Tahmini”. Turkish Journal of Forestry 21, sy. 4 (Aralık 2020): 498-508. https://doi.org/10.18182/tjf.779776.
EndNote Uzun A, Örücü ÖK (01 Aralık 2020) Adenocarpus complicatus (L.) Gay türünün iklim değişkenlerine bağlı günümüz ve gelecekteki yayılış alanlarının tahmini. Turkish Journal of Forestry 21 4 498–508.
IEEE A. Uzun ve Ö. K. Örücü, “Adenocarpus complicatus (L.) Gay türünün iklim değişkenlerine bağlı günümüz ve gelecekteki yayılış alanlarının tahmini”, Turkish Journal of Forestry, c. 21, sy. 4, ss. 498–508, 2020, doi: 10.18182/tjf.779776.
ISNAD Uzun, Almira - Örücü, Ömer K. “Adenocarpus Complicatus (L.) Gay türünün Iklim değişkenlerine bağlı günümüz Ve Gelecekteki yayılış alanlarının Tahmini”. Turkish Journal of Forestry 21/4 (Aralık 2020), 498-508. https://doi.org/10.18182/tjf.779776.
JAMA Uzun A, Örücü ÖK. Adenocarpus complicatus (L.) Gay türünün iklim değişkenlerine bağlı günümüz ve gelecekteki yayılış alanlarının tahmini. Turkish Journal of Forestry. 2020;21:498–508.
MLA Uzun, Almira ve Ömer K. Örücü. “Adenocarpus Complicatus (L.) Gay türünün Iklim değişkenlerine bağlı günümüz Ve Gelecekteki yayılış alanlarının Tahmini”. Turkish Journal of Forestry, c. 21, sy. 4, 2020, ss. 498-0, doi:10.18182/tjf.779776.
Vancouver Uzun A, Örücü ÖK. Adenocarpus complicatus (L.) Gay türünün iklim değişkenlerine bağlı günümüz ve gelecekteki yayılış alanlarının tahmini. Turkish Journal of Forestry. 2020;21(4):498-50.