Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı mol oranlarıyla sentezlenen üre reçinelerinin yüksek yoğunlukta lif levhaların (HDF) fiziksel özelliklerine ve formaldehit emisyonuna etkisi

Yıl 2021, Cilt: 22 Sayı: 1, 49 - 55, 26.03.2021
https://doi.org/10.18182/tjf.758505

Öz

Yaşam alanlarının vazgeçilmez ürünü yüksek yoğunlukta lif levha (HDF) bazlı ve türevi ürünlerin (laminant parke türevleri vb.) hammaddesi HDF levhalarıdır. HDF levhalarının fiziksel test değerleri ilgili standart değerlerde ve formaldehit emisyonun E1 veya E0 olması hedeflenmiştir. Bu çalışmada, yüksek yoğunlukta lif levha üretim hattında %50 sarıçam (Pinus sylvestres L.), %30 göknar (Abies nordmanniana L.), %20 kayın (Fagus orientalis L.). Üretim hattında üç farklı mol üre-formaldehit reçinesi (R; 1.17, X; 0.98 ve Y; 0.88) kullanılarak 7.7mmx2100mmx2440mm HDF levhalar üretildi. Proseste üretim parametreleri sabit kalmıştır. Tek değişken üç farklı mol oranlarında kullanılan üre formaldehit tutkalı olmuştur. Sıcak pres parametrelerinden pres hızını 950 mm/sn ve pres sıcaklığını 215ºC ve 60 saniye presleme süresi parametrelerinde üretim gerçekleşmiştir. Üretilen R, X, Y HDF levhaların; fiziksel testlerine (kalınlığına, yoğunluğu, levha rutubetine, 24 saat suda kalınlığına şişme ve 24 saat su alma) ve formaldehit gaz emisyonuna bakılmıştır. Her bir test grubundan beş levha ölçülmüştür. HDF levhalarının fiziksel özellikleri, özgül ağırlığı R;874 kg/m³, X;881 kg/m³ ve Y;860 kg/m³, kalınlığına suda şişmesi 24 saat R; %17.79, X; %19.65 ve Y; %19.08, 24 saat su alma R; %19.65, X; %19.09 VE Y; %22.42 ölçülmüştür. Formaldehit gaz emisyon değerleri R; 14.96, mg/100g. X; 8.28 mg/100g ve Y; 6.79 mg/100g analiz edilmiştir. Çalışmanın sonucunda (R;1.17, X;0.98 ve Y;0.88) mol üre formaldehit kullanarak üretilen HDF levhalarına hem fiziksel test sonuçları hemde formaldehit gaz emisyonu sonuçlarına göre farklılıklar ortaya konulmuştur.

Teşekkür

Kastamonu Entegre Ağaç Sanayi Tic. A.Ş, Kastamonu-Samsun Fabrikalar Direktörü Enüs KOÇ’a, Tutkal üretim müdürü Uğur ÇELİK’e yardımlarından dolayı teşekkür ediyorum.

Kaynakça

  • Alpar, T., Faczan, T., Racz, I., Katoli, G., 2010. MDF/HDF production from plantation wood species. Drvna Industrıja, 61(3): 183-191.
  • Angelatos, A.S., 2004. NMR structural elucidation of amino resins. Journal of Applied Polymer Science, 91(6): 3504–3512. DOI:10.1002/app.13538.
  • ASTM D 6007–02, 2002. Standard test method for determining formaldehyde concentration in air from wood products using a small–scale chamber. ASTM Standarts, USA.
  • Boran, S., Usta, M., 2010. Odun esaslı panellerde açığa çıkan formaldehit ve formaldehit sınırları hakkında bilgiler. III. Ulusal Karadeniz Ormancılık Kongresi, 20-22 Mayıs, Artvin, s. 1968-1975.
  • Boran, S., Usta, M., Gümüşkaya, E., 2011. Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin. International Journal of Adhesion&Adhesive, 31: 674-678.
  • CARB, 2007. Proposed Airborne Toxic Control Measure (ATCM) to reduce formaldehyde emission from composite wood products. http://www.arb.ca.gov/sites/default/files/classic //toxics/compwood/consumer_faq.pdf. Accesed: 30.09.2020.
  • Costa, N., Pereira, J., Ferra, J., Cruz, P., Martins, J., Magalhaes, F., Mendes, A., Carvalho, L., 2013. Soduium metabisülfite as scavenger of air pollutions in wood based building materials. International Wood Products Journal, 4(4): 242-247. doi:10.1179/2042645313Y.0000000037.
  • Dazmiri, M,K., Kiamahalleh, M,V., Dorieh, A., Pizzi, A., 2019. Effect of the initial F/U molar ratio in urea-formaldehyde resins synthesis and its ınfluence on the performance of medium density fiberboard bonded with them. International Journal of Adhesion and Adhesives, 95: 102440. DOI: 10.1016/j.ijadhadh.
  • Despres, A., Pizzi, A., Vu, C., Delmotte, L., 2010. Colourless formaldehyde-free urea resin adhesives for wood panels. Eurepean Journal Wood Product, 68(1): 13–20.
  • EN 717–1, 2004. Wood based panels–determination of formaldehyde release–Part 1: formaldehyde emission by the chamber method. European Standard.
  • EN 717–2, 1994. Wood based panels–determination of formaldehyde release–Part 2: formaldehyde release by the gas analysis method. European Standard.
  • Eroğlu, H., Usta, M., 2000. Lif Levha Üretim Teknolojisi. Karadeniz Teknik Üniversitesi, Orman Fakültesi, Genel Yayın No: 200, Fakülte Yayın No: 30, Trabzon.
  • Faostat, 2020. Forestry production and trade. Food and Agriculture Organization of the United, Nations, http://www.fao.org/ faostat/en/#data/FO, Accessed: 24.01.2020.
  • Grigsby, W., McDonald, A.G., Thumm, A., Loxton, C., 2004. X-ray photoelectron spectroscopy determination of urea formaldehyde resin coverage on MDF fibre. Holz als Roh- und Werkstoff: European Journal of Wood and Wood Industries, 62(5): 358-364.
  • Grigsby, W.J., Carpenter, J.E.P., Sargent, R., 2014. Investigating the extent of urea formaldehyde resin cure in medium density fiberboard: Resin extractability and fiber effects. Journal of Wood Chemistry and Techology, 34(3): 225-238. https://doi.org/10.1080/02773813.2013.861850.
  • Grigsby, W.J., Thumm, A., 2012. Resin and wax distribution and mobility during medium density fibreboard manufacture. European Journal of Wood and Wood Products, 70(1–3): 337–348. DOI: 10.1007/s00107-011-0560-0.
  • Jann, O., Deppe H.J., 1990. Zur Beru¨cksichtigung der aterialfeuchte bei der Formaldehydmessung vonSpanplatten. Holz Roh-Werkst 48:365–368
  • JIS A–5908, 1994. Japanese industrial standard. JIS standard specification for particleboard.
  • Johnsson, B., Engström, B., Roffael, E., 2011. Influence of molar ratio in aminoplastic resins on the dependence of the measured perforator values on the moisture content of wood-based panels. Wood Science Technology, 45: 389–398.
  • Kim, S., 2009. The reduction of indoor air pollutant from wood-based composite by adding pozzolan for building materials. Construction and Building Materials, 23(6): 2319-2323.
  • Kim, S., Kim, H.J., 2005. Comparison of standard of methods and gas chromatography method in determination of dormaldehyde emission from MDF bonded with formaldehyde based resins. Bioresource Technology, 96(13): 1457-1464.
  • Louis Cyr, P., Riedl, B., Wang, X.M., 2008. Investigation of urea-melamine-formaldehyde (UMF) resin penetration in Medium-Density Fiberboard (MDF) by high resolution confocal laser scanning microscopy. Holz als Roh- und Werkstoff: European Journal of Wood and Wood Products, 66(2): 129-134.
  • Mansouri, H.M., Pizzi, A., 2006. Urea-formaldehyde-propionaldehyde physical gelation resins for improved swelling in water. Journal of Applied Polymer Science, 102(6): 5131-5136.
  • Mantanis, G.I., Athanassiadou, E.T., Barbu, M.C., Wijnendaele, K., 2018. Adhesive systems used in the European particleboard MDF and OSB industries. Wood Material Science & Engineering, 13(2): 104-116. DOI:10.1080/17480272.2017. 1396622.
  • Mao, A., Kim, M.G., 2013. Low mole ratio urea–melamine–formaldehyde resins entailing increased methylene-ether group contents and their formaldehyde emission potentials of wood composite boards. BioResources, 8(3): 4659-4675. Martins, J., Coelho, C., Ferra, J., Cruz, P., Carvalho, L., 2012. Low formaldehyde emission MDF overlaid with wood veneer: Bonding problems assessment. International Wood Products Journal, 3(1): 1-31.
  • Park, B.D., Jeong, H.W., 2011. Hydrolytic stability and crystallinity of cured ureaformaldehyde resin adhesives with different formaldehyde-urea mole ratios. International Journal of Adhesion and Adhesives, 31(6): 524–529. DOI: 10.1016/j.ijadhadh.2011.05.001.
  • Park, B.D., Lee, S.M., Roh, J.K., 2009. Effects of formaldehyde/urea mole ratio and melamine content on the hydrolytic stability of cured urea-melamine-formaldehyde resin. European Journal of Wood and Wood Products, 67(1): 121–123. DOI: 10.1007/s00107-008-0277-x.
  • Roffael, E., Behn, C., 2012. On the influence of binder content in particleboards bonded with resins of high and low molar ratio on the formaldehyde release measured by the perforator method. European Journal of Wood and Wood Products, 70(6): 819–822.
  • Salem, M.Z.M., Bohm, M., Srba, J., Berankova, J., 2012. Evaluation of formaldehyde emission from different types of wood-based panels and flooring materials using different standard test methods. Building Environment, 49: 86–96.
  • TS 4894 EN 120, 1999. Ahşap esaslı levhalar, formaldehit miktarının tayini, ekstraksiyon metodu ile ayırma. TSE, Ankara.
  • TS 64-1 EN 622-1, 2005. Lif levhalar özellikler-bölüm 1: genel özellikler. TSE, Ankara.
  • TS 642-ISO 554, 1997. Kondisyonlama ve-veya deney için standart atmosfer – özellikler. TSE, Ankara.
  • TS-EN 316, 2011. Odundan mamul lif levhalar-tarifler, sınıflandırma ve semboller. TSE, Ankara.
  • TS-EN 317, 1999. Yonga levhalar ve lif levhalar-su içerisine daldırma işleminden sonra kalınlığına şişme tayini. TSE, Ankara.
  • TS-EN 323, 1999. Ahşap esaslı levhalar-birim hacim ağırlığının tayini. TSE, Ankara.
  • TS-EN 324-1, 1999. Ahşap esaslı levhalar-levha boyutlarının tayini-bölüm 1: kalınlık, genişlik ve uzunluğun tayini. TSE, Ankara.
  • TS-EN 325, 2008. Ahşap esaslı levhalar-deney numunelerinin boyutlarının tayini. TSE, Ankara.
  • TS-EN 326-1, 1999. Ahşap esaslı levhalar-numune alma kesme ve muayene bölüm 1: deney numunelerinin seçimi, kesimi ve deney sonuçlarının gösterilmesi. TSE, Ankara.
  • Xing, C., Riedl, B., Cloutier, A., He, G., 2004. The effect of urea-formaldehyde resin pre-cure on the internal bond of medium density fiberboard. Holz als Roh- und Werkstoff, 62(6): 439–444.

The effect of urea resins synthesized with different mole ratios on physical properties of high density fiberboards (HDF) and formaldehyde emission

Yıl 2021, Cilt: 22 Sayı: 1, 49 - 55, 26.03.2021
https://doi.org/10.18182/tjf.758505

Öz

The indispensable product of living spaces, the raw material of high density fiberboard (HDF) based derivative products (laminate flooring derivatives, etc.) are HDF boards. The test values (physical and formaldehyde emission properties ) of HDF boards are targeted both physical properties and formaldehyde emission E1 or E0 standard. In this study, 50% yellow pine (Pinus sylvestres L), 30% fir (Abies nordmanniana L), 20% beech (Fagus orientalis L) were used biomass. HDF boards of 7.7mmx2100mmx2440mm were produced on the production line which using three different moles of urea-formaldehyde resins (R; 1.17, X; 0.98 and Y; 0.88). Production parameters remained constant in the HDF line process and the only variable were urea formaldehyde resins used in three different molar ratios. The productions were manufactured in pressing speed of 950 mm/second and pressing temperature 215ºC and 60 seconds pressing time in the continue hot press. R, X, Y HDF boards produced; physical tests (thickness, density, board moisture, 24 hours Thickness-swelling and 24 hours water absorption) and formaldehyde gas emissions were analysed which was five boards were measured from each test group. Physical properties of HDF boards were measured which was the density of boards (R; 874 kg/m³, X; 881 kg/m³ and Y; 860 kg/m³) Thickness swelling of boards at 24 hours (R; 17.79%, X; 19.65% and Y; 19.08%) water absorption of boards at 24 hours (R; 19.65%, X; 19.09% and Y; 22.42%). Formaldehyde gas emission result of HDF boards were analysed (R; 14.96, mg/100g. X; 8.28 mg/100g and Y; 6.79 mg/100g). As a result of the study, differences were determined according to both physical test results and formaldehyde gas emission results for HDF boards produced.

Kaynakça

  • Alpar, T., Faczan, T., Racz, I., Katoli, G., 2010. MDF/HDF production from plantation wood species. Drvna Industrıja, 61(3): 183-191.
  • Angelatos, A.S., 2004. NMR structural elucidation of amino resins. Journal of Applied Polymer Science, 91(6): 3504–3512. DOI:10.1002/app.13538.
  • ASTM D 6007–02, 2002. Standard test method for determining formaldehyde concentration in air from wood products using a small–scale chamber. ASTM Standarts, USA.
  • Boran, S., Usta, M., 2010. Odun esaslı panellerde açığa çıkan formaldehit ve formaldehit sınırları hakkında bilgiler. III. Ulusal Karadeniz Ormancılık Kongresi, 20-22 Mayıs, Artvin, s. 1968-1975.
  • Boran, S., Usta, M., Gümüşkaya, E., 2011. Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin. International Journal of Adhesion&Adhesive, 31: 674-678.
  • CARB, 2007. Proposed Airborne Toxic Control Measure (ATCM) to reduce formaldehyde emission from composite wood products. http://www.arb.ca.gov/sites/default/files/classic //toxics/compwood/consumer_faq.pdf. Accesed: 30.09.2020.
  • Costa, N., Pereira, J., Ferra, J., Cruz, P., Martins, J., Magalhaes, F., Mendes, A., Carvalho, L., 2013. Soduium metabisülfite as scavenger of air pollutions in wood based building materials. International Wood Products Journal, 4(4): 242-247. doi:10.1179/2042645313Y.0000000037.
  • Dazmiri, M,K., Kiamahalleh, M,V., Dorieh, A., Pizzi, A., 2019. Effect of the initial F/U molar ratio in urea-formaldehyde resins synthesis and its ınfluence on the performance of medium density fiberboard bonded with them. International Journal of Adhesion and Adhesives, 95: 102440. DOI: 10.1016/j.ijadhadh.
  • Despres, A., Pizzi, A., Vu, C., Delmotte, L., 2010. Colourless formaldehyde-free urea resin adhesives for wood panels. Eurepean Journal Wood Product, 68(1): 13–20.
  • EN 717–1, 2004. Wood based panels–determination of formaldehyde release–Part 1: formaldehyde emission by the chamber method. European Standard.
  • EN 717–2, 1994. Wood based panels–determination of formaldehyde release–Part 2: formaldehyde release by the gas analysis method. European Standard.
  • Eroğlu, H., Usta, M., 2000. Lif Levha Üretim Teknolojisi. Karadeniz Teknik Üniversitesi, Orman Fakültesi, Genel Yayın No: 200, Fakülte Yayın No: 30, Trabzon.
  • Faostat, 2020. Forestry production and trade. Food and Agriculture Organization of the United, Nations, http://www.fao.org/ faostat/en/#data/FO, Accessed: 24.01.2020.
  • Grigsby, W., McDonald, A.G., Thumm, A., Loxton, C., 2004. X-ray photoelectron spectroscopy determination of urea formaldehyde resin coverage on MDF fibre. Holz als Roh- und Werkstoff: European Journal of Wood and Wood Industries, 62(5): 358-364.
  • Grigsby, W.J., Carpenter, J.E.P., Sargent, R., 2014. Investigating the extent of urea formaldehyde resin cure in medium density fiberboard: Resin extractability and fiber effects. Journal of Wood Chemistry and Techology, 34(3): 225-238. https://doi.org/10.1080/02773813.2013.861850.
  • Grigsby, W.J., Thumm, A., 2012. Resin and wax distribution and mobility during medium density fibreboard manufacture. European Journal of Wood and Wood Products, 70(1–3): 337–348. DOI: 10.1007/s00107-011-0560-0.
  • Jann, O., Deppe H.J., 1990. Zur Beru¨cksichtigung der aterialfeuchte bei der Formaldehydmessung vonSpanplatten. Holz Roh-Werkst 48:365–368
  • JIS A–5908, 1994. Japanese industrial standard. JIS standard specification for particleboard.
  • Johnsson, B., Engström, B., Roffael, E., 2011. Influence of molar ratio in aminoplastic resins on the dependence of the measured perforator values on the moisture content of wood-based panels. Wood Science Technology, 45: 389–398.
  • Kim, S., 2009. The reduction of indoor air pollutant from wood-based composite by adding pozzolan for building materials. Construction and Building Materials, 23(6): 2319-2323.
  • Kim, S., Kim, H.J., 2005. Comparison of standard of methods and gas chromatography method in determination of dormaldehyde emission from MDF bonded with formaldehyde based resins. Bioresource Technology, 96(13): 1457-1464.
  • Louis Cyr, P., Riedl, B., Wang, X.M., 2008. Investigation of urea-melamine-formaldehyde (UMF) resin penetration in Medium-Density Fiberboard (MDF) by high resolution confocal laser scanning microscopy. Holz als Roh- und Werkstoff: European Journal of Wood and Wood Products, 66(2): 129-134.
  • Mansouri, H.M., Pizzi, A., 2006. Urea-formaldehyde-propionaldehyde physical gelation resins for improved swelling in water. Journal of Applied Polymer Science, 102(6): 5131-5136.
  • Mantanis, G.I., Athanassiadou, E.T., Barbu, M.C., Wijnendaele, K., 2018. Adhesive systems used in the European particleboard MDF and OSB industries. Wood Material Science & Engineering, 13(2): 104-116. DOI:10.1080/17480272.2017. 1396622.
  • Mao, A., Kim, M.G., 2013. Low mole ratio urea–melamine–formaldehyde resins entailing increased methylene-ether group contents and their formaldehyde emission potentials of wood composite boards. BioResources, 8(3): 4659-4675. Martins, J., Coelho, C., Ferra, J., Cruz, P., Carvalho, L., 2012. Low formaldehyde emission MDF overlaid with wood veneer: Bonding problems assessment. International Wood Products Journal, 3(1): 1-31.
  • Park, B.D., Jeong, H.W., 2011. Hydrolytic stability and crystallinity of cured ureaformaldehyde resin adhesives with different formaldehyde-urea mole ratios. International Journal of Adhesion and Adhesives, 31(6): 524–529. DOI: 10.1016/j.ijadhadh.2011.05.001.
  • Park, B.D., Lee, S.M., Roh, J.K., 2009. Effects of formaldehyde/urea mole ratio and melamine content on the hydrolytic stability of cured urea-melamine-formaldehyde resin. European Journal of Wood and Wood Products, 67(1): 121–123. DOI: 10.1007/s00107-008-0277-x.
  • Roffael, E., Behn, C., 2012. On the influence of binder content in particleboards bonded with resins of high and low molar ratio on the formaldehyde release measured by the perforator method. European Journal of Wood and Wood Products, 70(6): 819–822.
  • Salem, M.Z.M., Bohm, M., Srba, J., Berankova, J., 2012. Evaluation of formaldehyde emission from different types of wood-based panels and flooring materials using different standard test methods. Building Environment, 49: 86–96.
  • TS 4894 EN 120, 1999. Ahşap esaslı levhalar, formaldehit miktarının tayini, ekstraksiyon metodu ile ayırma. TSE, Ankara.
  • TS 64-1 EN 622-1, 2005. Lif levhalar özellikler-bölüm 1: genel özellikler. TSE, Ankara.
  • TS 642-ISO 554, 1997. Kondisyonlama ve-veya deney için standart atmosfer – özellikler. TSE, Ankara.
  • TS-EN 316, 2011. Odundan mamul lif levhalar-tarifler, sınıflandırma ve semboller. TSE, Ankara.
  • TS-EN 317, 1999. Yonga levhalar ve lif levhalar-su içerisine daldırma işleminden sonra kalınlığına şişme tayini. TSE, Ankara.
  • TS-EN 323, 1999. Ahşap esaslı levhalar-birim hacim ağırlığının tayini. TSE, Ankara.
  • TS-EN 324-1, 1999. Ahşap esaslı levhalar-levha boyutlarının tayini-bölüm 1: kalınlık, genişlik ve uzunluğun tayini. TSE, Ankara.
  • TS-EN 325, 2008. Ahşap esaslı levhalar-deney numunelerinin boyutlarının tayini. TSE, Ankara.
  • TS-EN 326-1, 1999. Ahşap esaslı levhalar-numune alma kesme ve muayene bölüm 1: deney numunelerinin seçimi, kesimi ve deney sonuçlarının gösterilmesi. TSE, Ankara.
  • Xing, C., Riedl, B., Cloutier, A., He, G., 2004. The effect of urea-formaldehyde resin pre-cure on the internal bond of medium density fiberboard. Holz als Roh- und Werkstoff, 62(6): 439–444.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Orijinal Araştırma Makalesi
Yazarlar

Osman Çamlıbel 0000-0002-8766-1316

Yayımlanma Tarihi 26 Mart 2021
Kabul Tarihi 30 Eylül 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 22 Sayı: 1

Kaynak Göster

APA Çamlıbel, O. (2021). Farklı mol oranlarıyla sentezlenen üre reçinelerinin yüksek yoğunlukta lif levhaların (HDF) fiziksel özelliklerine ve formaldehit emisyonuna etkisi. Turkish Journal of Forestry, 22(1), 49-55. https://doi.org/10.18182/tjf.758505
AMA Çamlıbel O. Farklı mol oranlarıyla sentezlenen üre reçinelerinin yüksek yoğunlukta lif levhaların (HDF) fiziksel özelliklerine ve formaldehit emisyonuna etkisi. Turkish Journal of Forestry. Mart 2021;22(1):49-55. doi:10.18182/tjf.758505
Chicago Çamlıbel, Osman. “Farklı Mol oranlarıyla Sentezlenen üre reçinelerinin yüksek yoğunlukta Lif levhaların (HDF) Fiziksel özelliklerine Ve Formaldehit Emisyonuna Etkisi”. Turkish Journal of Forestry 22, sy. 1 (Mart 2021): 49-55. https://doi.org/10.18182/tjf.758505.
EndNote Çamlıbel O (01 Mart 2021) Farklı mol oranlarıyla sentezlenen üre reçinelerinin yüksek yoğunlukta lif levhaların (HDF) fiziksel özelliklerine ve formaldehit emisyonuna etkisi. Turkish Journal of Forestry 22 1 49–55.
IEEE O. Çamlıbel, “Farklı mol oranlarıyla sentezlenen üre reçinelerinin yüksek yoğunlukta lif levhaların (HDF) fiziksel özelliklerine ve formaldehit emisyonuna etkisi”, Turkish Journal of Forestry, c. 22, sy. 1, ss. 49–55, 2021, doi: 10.18182/tjf.758505.
ISNAD Çamlıbel, Osman. “Farklı Mol oranlarıyla Sentezlenen üre reçinelerinin yüksek yoğunlukta Lif levhaların (HDF) Fiziksel özelliklerine Ve Formaldehit Emisyonuna Etkisi”. Turkish Journal of Forestry 22/1 (Mart 2021), 49-55. https://doi.org/10.18182/tjf.758505.
JAMA Çamlıbel O. Farklı mol oranlarıyla sentezlenen üre reçinelerinin yüksek yoğunlukta lif levhaların (HDF) fiziksel özelliklerine ve formaldehit emisyonuna etkisi. Turkish Journal of Forestry. 2021;22:49–55.
MLA Çamlıbel, Osman. “Farklı Mol oranlarıyla Sentezlenen üre reçinelerinin yüksek yoğunlukta Lif levhaların (HDF) Fiziksel özelliklerine Ve Formaldehit Emisyonuna Etkisi”. Turkish Journal of Forestry, c. 22, sy. 1, 2021, ss. 49-55, doi:10.18182/tjf.758505.
Vancouver Çamlıbel O. Farklı mol oranlarıyla sentezlenen üre reçinelerinin yüksek yoğunlukta lif levhaların (HDF) fiziksel özelliklerine ve formaldehit emisyonuna etkisi. Turkish Journal of Forestry. 2021;22(1):49-55.