Araştırma Makalesi
BibTex RIS Kaynak Göster

Doğal karaçam meşcereleri için yöresel karışık etkili çap-boy modellerinin geliştirilmesi

Yıl 2024, Cilt: 25 Sayı: 4, 399 - 407, 28.12.2024
https://doi.org/10.18182/tjf.1564710

Öz

Bu çalışmada, Isparta-Eğirdir Yöresi doğal karaçam (Pinus nigra J. F. Arnold.) meşcereleri için doğrusal karışık etkili çap-boy modelleri geliştirilmiştir. 2021-2022 yılları arasında 135 örnek alandan elde edilen toplam 4271 adet örnek ağaç verisi, modelin parametre tahmini ve kalibrasyon testleri için kullanılmıştır. Model geliştirme grubunda çap ortalaması 34,35 cm, boy ortalaması 15,40 m olarak belirlenirken; test grubunda bu değerler sırasıyla 31,26 cm ve 14,07 m olarak hesaplanmıştır. Farklı kalibrasyon alternatifleri, tahmin performansını artırmak amacıyla 1 ila 10 ağaç kullanılarak test edilmiştir. Sonuçlar, özellikle 5 ve 10 ağaç kalibrasyonu ile modelin tahmin doğruluğunun arttığını göstermiştir. Sabit etkili modele kıyasla karışık etkili modelin hata kareler ortalamasının karekökü (RMSE) değeri %32 oranında daha düşük bulunmuştur. Çalışma, önerilen modelin orman envanter çalışmalarında karaçam meşcerelerinin ağaç boyu tahmininde etkili bir şekilde kullanılabileceğini ortaya koymaktadır.

Proje Numarası

TÜBİTAK 120R080 ve TÜBİTAK 122R010

Kaynakça

  • Adame, P., del Río, M., Canellas, I., 2008. A mixed nonlinear height–diameter model for pyrenean oak (Quercus pyrenaica Willd.).Forest ecology and management, 256(1-2): 88-98.
  • Alkan, O., Ozçelik, R., 2022. Eğirdir yöresi doğal karaçam meşcereleri için çap-boy modeli: Kantil regresyon yaklaşımı. Turkish Journal of Forestry, 23(3): 187-195.
  • Arabatzis, A.A., Burkhart, H.E., 1992. An evaluation of sampling methods and model forms for estimating height-diameter relationships in loblolly pine plantations. Forest Science, 38(1): 192-198.
  • Baskerville, G.L., 1972. Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research, 2(1): 49-53.
  • Bolat, F., Ürker, O., Günlü, A., 2022. Nonlinear height-diameter models for Hungarian oak (Quercus frainetto Ten.) in Dumanlı Forest Planning Unit, Çanakkale/Turkey. Austrian Journal of Forest Science, 139(3): 199–220.
  • Bronisz, K., Mehtätalo, L., 2020. Seemingly unrelated mixed-effects biomass models for young silver birch stands on post-agricultural lands. Forests, 11(4): 381.
  • Calama, R., Montero, G., 2004. Interregional nonlinear height diameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research, 34(1): 150-163.
  • Carus, S., Çatal, Y., 2017. Comparison of some diameter-height models for brutian pine (Pinus brutia Ten.) afforestations in Ağlasun region. Turkish Journal of Forestry, 18(2): 94-101.
  • Castedo-Dorado, F., Diéguez-Aranda, U., Anta, M.B., Rodríguez, M.S., von Gadow, K., 2006. A generalized height–diameter model including random components for radiata pine plantations in northwestern Spain. Forest Ecology and Management, 229(1-3): 202-213.
  • Ciceu, A., Chakraborty, D., Ledermann, T., 2023. Examining the transferability of height–diameter model calibration strategies across studies. Forestry: An International Journal of Forest Research, cpad063.
  • Ciceu, A., García-Duro, J., Seceleanu, I., Badea, O., 2020. A generalized nonlinear mixed-effects height–diameter model for Norway spruce in mixed-uneven aged stands. Forest Ecology and Management, 477: 118507.
  • Crecente-Campo, F., Alboreca, A.R., Diéguez-Aranda, U., 2009. A merchantable volume system for Pinus sylvestris L. in the major mountain ranges of Spain. Annals of forest science, 66(8): 808.
  • Çatal, Y., Carus, S. 2018. A height-diameter model for brutian pine (Pinus brutia Ten.) plantations in Southwestern Turkey. Applied Ecology & Environmental Research, 6(2): 1445-1459.
  • Çatal, Y., 2012. Göller yöresinde Yalancı akasya, Anadolu karaçamı ve Toros sediri ağaç türleri için çap-boy modeli. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 13(2): 92-96.
  • Diamantopoulou, M. J., Özçelik, R., Koparan, B., Alkan, O. 2023. Artificial intelligence as an alternative modelling strategy for reliable height-diameter predictions of mixed-oaks species. Turkish Journal of Agriculture and Forestry, 47(2): 228-241.
  • Gómez-García, E., Diéguez-Aranda, U., Cunha, M., Rodríguez-Soalleiro, R. 2016. Comparison of harvest-related removal of aboveground biomass, carbon and nutrients in pedunculate oak stands and in fast-growing tree stands in NW Spain. Forest Ecology and Management, 365: 119-127.
  • Gomez-García, E., Fonseca, T.F., Crecente-Campo, F., Almeida, L. R., Dieguez-Aranda, U., Huang, S., Marques, C.P.; 2015. Height-diameter models for maritime pine in Portugal: a comparison of basic, generalized and mixed-effects models. iForest-Biogeosciences and Forestry, 9(1): 72.
  • Huang, S., Titus, S.J., 1994. An age-independent individual tree height prediction model for boreal spruce–aspen stands in Alberta. Canadian Journal of Forest Research, 24(7): 1295-1301. Huang, S., Wiens, D.P., Yang, Y., Meng, S.X., Vanderschaaf, C.L., 2009. Assessing the impacts of species composition, top height and density on individual tree height prediction of quaking aspen in boreal mixedwoods. Forest ecology and management, 258(7): 1235-1247.
  • Kalbi, S., Fallah, A., Bettinger, P., Shataee, S., Yousefpour, R., 2018. Mixed-effects modeling for tree height prediction models of Oriental beech in the Hyrcanian forests. Journal of Forestry Research, 29: 1195-1204.
  • Lappi, J,. 1991. Calibration of height and volume equations with random parameters. Forest Science, 37(3): 781-801.
  • Mehtätalo, L., de-Miguel, S., Gregoire, T.G., 2015. Modeling height-diameter curves for prediction. Canadian Journal of Forest Research, 45(7): 826-837.
  • Newton, P.F., Amponsah, I.G., 2007. Comparative evaluation of five height–diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability. Forest Ecology and Management, 247(1-3): 149-166.
  • Ogana, F.N., Gorgoso-Varela, J.J., 2020. A nonlinear mixed-effects tree height prediction model: Application to Pinus pinaster Ait in Northwest Spain. Trees, Forests and People, 1: 100003.
  • Özçelik, R., Cao, Q. V., Kurnaz, E., Koparan, B., 2022. Modeling diameter distributions of mixed-oak stands in Northwestern Turkey. CERNE, 28: e102991.
  • Özçelik, R., Diamantopoulou, M.J., Crecente-Campo, F., Eler, U., 2013. Estimating Crimean juniper tree height using nonlinear regression and artificial neural network models. Forest Ecology and Management, 306: 52-60.
  • Özçelik, R., Cao, Q.V., Trincado, G., Göçer, N., 2018. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey. Forest Ecology and Management, 419: 240-248.
  • Özçelik, R., Koparan, B., Fonseca, T.J.F., Baş, B., 2023. Characterization of the variability of the diameter distribution of natural Taurus cedar stands in Türkiye using Johnson's Sb distribution. Cerne, 29: e-103265.
  • Peng, C., Zhang, L., Liu, J., 2001. Developing and validating nonlinear height–diameter models for major tree species of Ontario's boreal forests. Northern Journal of Applied Forestry, 18(3): 87-94.
  • Poudel, K.P., Cao, Q.V., 2013. Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. Forest Science, 59(2). 243-252.
  • Raptis, D.I., Kazana, V., Kazaklis, A., Stamatiou, C., 2021. Mixed-effects height–diameter models for black pine (Pinus nigra Arn.) forest management. Trees, 35: 1167-1183.
  • Sağlam, F., Sakıcı, O.E., 2024. Ecoregional height–diameter models for Scots pine in Turkiye. Journal of Forestry Research, 35(1): 103.
  • SAS Institute., 2011. Sas/ETS 9.1 User's Guide. SAS Institute, Cary, NC, USA
  • Seki, M., Sakıcı, O.E. 2022. Ecoregion-based height-diameter models for Crimean pine. Journal of Forest Research, 27(1): 36-44.
  • Seki, M., 2022. Height–diameter allometry of two commercial pine species located in low productive forest stands of northwestern Türkiye. Austrian Journal of Forest Science, 139(4): 265–288.
  • Sharma, M., Parton, J., 2009. Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis. Forest Science, 55(3): 268-282.
  • Temesgen, H., Monleon, V.J., Hann, D.W., 2008. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests. Canadian Journal of Forest Research, 38(3): 553-565.
  • Temesgen, H., v Gadow, K., 2004. Generalized height diameter models an application for major tree species in complex stands of interior British Columbia. European Journal of Forest Research, 123: 45-51. Temesgen, H., Zhang, C. H., Zhao, X.H., 2014. Modelling tree height–diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China. Forest Ecology and Management, 316: 78-89.
  • Teshome, M., Braz, E.M., Torres, C.M.M.E., Raptis, D.I., de Mattos, P.P., Temesgen, H., Sileshi, G.W., 2024. Mixed-effects height prediction model for Juniperus procera trees from a dry afromontane forest in Ethiopia. Forests, 15(3): 443.
  • Trincado, G., VanderSchaaf, C.L., Burkhart, H.E., 2007. Regional mixed-effects height–diameter models for loblolly pine (Pinus taeda L.) plantations. European Journal of Forest Research, 126: 253-262.
  • VanderSchaaf, C.L., 2012. Mixed-effects height-diameter models for commercially and ecologically important conifers in Minnesota. Northern Journal of Applied Forestry, 29(1): 15-20.
  • VanderSchaaf, C.L., 2013. Mixed-effects height-diameter models for commercially and ecologically important hardwoods in Minnesota. Northern Journal of Applied Forestry, 30(1): 37-42.
  • VanderSchaaf, C.L., 2014. Mixed-effects height–diameter models for ten conifers in the inland Northwest, USA. Southern Forests: a Journal of Forest Science, 76(1): 1-9.
  • Wang, Z., Wang, H., Wang, S., Lu, S., Saporta, G., 2020. Linear mixed-effects model for longitudinal complex data with diversified characteristics. Journal of Management Science and Engineering, 5(2): 105-124.
  • Wykoff, W., Crookston, N.L., Stage, A.R., 1982. User's guide to the stand prognosis model (Vol. 133). US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA.
  • Xie, L., Widagdo, F.R.A., Miao, Z., Dong, L., Li, F., 2022. Evaluation of the mixed-effects model and quantile regression approaches for predicting tree height in larch (Larix olgensis) plantations in northeastern China. Canadian Journal of Forest Research, 52(3): 309-319.

Development of regional mixed-effects height–diameter models for natural black pine stands

Yıl 2024, Cilt: 25 Sayı: 4, 399 - 407, 28.12.2024
https://doi.org/10.18182/tjf.1564710

Öz

In this study, linear mixed-effects height-diameter models were developed for natural black pine (Pinus nigra J. F. Arnold.) stands in the Isparta-Eğirdir region. Data collected from 135 sample plots between 2021 and 2022, consisting of 4,271 sample trees, were used for parameter estimation and calibration testing. The mean diameter and height in the model development group were 34.35 cm and 15.40 m, respectively, while in the test group, these values were 31.26 cm and 14.07 m. Various calibration alternatives, utilizing 1 to 10 trees, were tested to improve prediction performance. The results showed significant improvements in prediction accuracy of the models, especially with calibrations involving 5 or 10 trees. Compared to the fixed-effects model, the mixed-effects model achieved a 32% reduction in the root mean square error (RMSE). The findings suggest that the proposed model is highly suitable for forest inventory studies to predict tree heights in black pine stands.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

TÜBİTAK 120R080 ve TÜBİTAK 122R010

Teşekkür

Bu çalışma, TÜBİTAK tarafından desteklenen 120R080 ve 122R010 numaralı projeler kapsamında elde edilen verilerle gerçekleştirilmiştir.

Kaynakça

  • Adame, P., del Río, M., Canellas, I., 2008. A mixed nonlinear height–diameter model for pyrenean oak (Quercus pyrenaica Willd.).Forest ecology and management, 256(1-2): 88-98.
  • Alkan, O., Ozçelik, R., 2022. Eğirdir yöresi doğal karaçam meşcereleri için çap-boy modeli: Kantil regresyon yaklaşımı. Turkish Journal of Forestry, 23(3): 187-195.
  • Arabatzis, A.A., Burkhart, H.E., 1992. An evaluation of sampling methods and model forms for estimating height-diameter relationships in loblolly pine plantations. Forest Science, 38(1): 192-198.
  • Baskerville, G.L., 1972. Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research, 2(1): 49-53.
  • Bolat, F., Ürker, O., Günlü, A., 2022. Nonlinear height-diameter models for Hungarian oak (Quercus frainetto Ten.) in Dumanlı Forest Planning Unit, Çanakkale/Turkey. Austrian Journal of Forest Science, 139(3): 199–220.
  • Bronisz, K., Mehtätalo, L., 2020. Seemingly unrelated mixed-effects biomass models for young silver birch stands on post-agricultural lands. Forests, 11(4): 381.
  • Calama, R., Montero, G., 2004. Interregional nonlinear height diameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research, 34(1): 150-163.
  • Carus, S., Çatal, Y., 2017. Comparison of some diameter-height models for brutian pine (Pinus brutia Ten.) afforestations in Ağlasun region. Turkish Journal of Forestry, 18(2): 94-101.
  • Castedo-Dorado, F., Diéguez-Aranda, U., Anta, M.B., Rodríguez, M.S., von Gadow, K., 2006. A generalized height–diameter model including random components for radiata pine plantations in northwestern Spain. Forest Ecology and Management, 229(1-3): 202-213.
  • Ciceu, A., Chakraborty, D., Ledermann, T., 2023. Examining the transferability of height–diameter model calibration strategies across studies. Forestry: An International Journal of Forest Research, cpad063.
  • Ciceu, A., García-Duro, J., Seceleanu, I., Badea, O., 2020. A generalized nonlinear mixed-effects height–diameter model for Norway spruce in mixed-uneven aged stands. Forest Ecology and Management, 477: 118507.
  • Crecente-Campo, F., Alboreca, A.R., Diéguez-Aranda, U., 2009. A merchantable volume system for Pinus sylvestris L. in the major mountain ranges of Spain. Annals of forest science, 66(8): 808.
  • Çatal, Y., Carus, S. 2018. A height-diameter model for brutian pine (Pinus brutia Ten.) plantations in Southwestern Turkey. Applied Ecology & Environmental Research, 6(2): 1445-1459.
  • Çatal, Y., 2012. Göller yöresinde Yalancı akasya, Anadolu karaçamı ve Toros sediri ağaç türleri için çap-boy modeli. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 13(2): 92-96.
  • Diamantopoulou, M. J., Özçelik, R., Koparan, B., Alkan, O. 2023. Artificial intelligence as an alternative modelling strategy for reliable height-diameter predictions of mixed-oaks species. Turkish Journal of Agriculture and Forestry, 47(2): 228-241.
  • Gómez-García, E., Diéguez-Aranda, U., Cunha, M., Rodríguez-Soalleiro, R. 2016. Comparison of harvest-related removal of aboveground biomass, carbon and nutrients in pedunculate oak stands and in fast-growing tree stands in NW Spain. Forest Ecology and Management, 365: 119-127.
  • Gomez-García, E., Fonseca, T.F., Crecente-Campo, F., Almeida, L. R., Dieguez-Aranda, U., Huang, S., Marques, C.P.; 2015. Height-diameter models for maritime pine in Portugal: a comparison of basic, generalized and mixed-effects models. iForest-Biogeosciences and Forestry, 9(1): 72.
  • Huang, S., Titus, S.J., 1994. An age-independent individual tree height prediction model for boreal spruce–aspen stands in Alberta. Canadian Journal of Forest Research, 24(7): 1295-1301. Huang, S., Wiens, D.P., Yang, Y., Meng, S.X., Vanderschaaf, C.L., 2009. Assessing the impacts of species composition, top height and density on individual tree height prediction of quaking aspen in boreal mixedwoods. Forest ecology and management, 258(7): 1235-1247.
  • Kalbi, S., Fallah, A., Bettinger, P., Shataee, S., Yousefpour, R., 2018. Mixed-effects modeling for tree height prediction models of Oriental beech in the Hyrcanian forests. Journal of Forestry Research, 29: 1195-1204.
  • Lappi, J,. 1991. Calibration of height and volume equations with random parameters. Forest Science, 37(3): 781-801.
  • Mehtätalo, L., de-Miguel, S., Gregoire, T.G., 2015. Modeling height-diameter curves for prediction. Canadian Journal of Forest Research, 45(7): 826-837.
  • Newton, P.F., Amponsah, I.G., 2007. Comparative evaluation of five height–diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability. Forest Ecology and Management, 247(1-3): 149-166.
  • Ogana, F.N., Gorgoso-Varela, J.J., 2020. A nonlinear mixed-effects tree height prediction model: Application to Pinus pinaster Ait in Northwest Spain. Trees, Forests and People, 1: 100003.
  • Özçelik, R., Cao, Q. V., Kurnaz, E., Koparan, B., 2022. Modeling diameter distributions of mixed-oak stands in Northwestern Turkey. CERNE, 28: e102991.
  • Özçelik, R., Diamantopoulou, M.J., Crecente-Campo, F., Eler, U., 2013. Estimating Crimean juniper tree height using nonlinear regression and artificial neural network models. Forest Ecology and Management, 306: 52-60.
  • Özçelik, R., Cao, Q.V., Trincado, G., Göçer, N., 2018. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey. Forest Ecology and Management, 419: 240-248.
  • Özçelik, R., Koparan, B., Fonseca, T.J.F., Baş, B., 2023. Characterization of the variability of the diameter distribution of natural Taurus cedar stands in Türkiye using Johnson's Sb distribution. Cerne, 29: e-103265.
  • Peng, C., Zhang, L., Liu, J., 2001. Developing and validating nonlinear height–diameter models for major tree species of Ontario's boreal forests. Northern Journal of Applied Forestry, 18(3): 87-94.
  • Poudel, K.P., Cao, Q.V., 2013. Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. Forest Science, 59(2). 243-252.
  • Raptis, D.I., Kazana, V., Kazaklis, A., Stamatiou, C., 2021. Mixed-effects height–diameter models for black pine (Pinus nigra Arn.) forest management. Trees, 35: 1167-1183.
  • Sağlam, F., Sakıcı, O.E., 2024. Ecoregional height–diameter models for Scots pine in Turkiye. Journal of Forestry Research, 35(1): 103.
  • SAS Institute., 2011. Sas/ETS 9.1 User's Guide. SAS Institute, Cary, NC, USA
  • Seki, M., Sakıcı, O.E. 2022. Ecoregion-based height-diameter models for Crimean pine. Journal of Forest Research, 27(1): 36-44.
  • Seki, M., 2022. Height–diameter allometry of two commercial pine species located in low productive forest stands of northwestern Türkiye. Austrian Journal of Forest Science, 139(4): 265–288.
  • Sharma, M., Parton, J., 2009. Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis. Forest Science, 55(3): 268-282.
  • Temesgen, H., Monleon, V.J., Hann, D.W., 2008. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests. Canadian Journal of Forest Research, 38(3): 553-565.
  • Temesgen, H., v Gadow, K., 2004. Generalized height diameter models an application for major tree species in complex stands of interior British Columbia. European Journal of Forest Research, 123: 45-51. Temesgen, H., Zhang, C. H., Zhao, X.H., 2014. Modelling tree height–diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China. Forest Ecology and Management, 316: 78-89.
  • Teshome, M., Braz, E.M., Torres, C.M.M.E., Raptis, D.I., de Mattos, P.P., Temesgen, H., Sileshi, G.W., 2024. Mixed-effects height prediction model for Juniperus procera trees from a dry afromontane forest in Ethiopia. Forests, 15(3): 443.
  • Trincado, G., VanderSchaaf, C.L., Burkhart, H.E., 2007. Regional mixed-effects height–diameter models for loblolly pine (Pinus taeda L.) plantations. European Journal of Forest Research, 126: 253-262.
  • VanderSchaaf, C.L., 2012. Mixed-effects height-diameter models for commercially and ecologically important conifers in Minnesota. Northern Journal of Applied Forestry, 29(1): 15-20.
  • VanderSchaaf, C.L., 2013. Mixed-effects height-diameter models for commercially and ecologically important hardwoods in Minnesota. Northern Journal of Applied Forestry, 30(1): 37-42.
  • VanderSchaaf, C.L., 2014. Mixed-effects height–diameter models for ten conifers in the inland Northwest, USA. Southern Forests: a Journal of Forest Science, 76(1): 1-9.
  • Wang, Z., Wang, H., Wang, S., Lu, S., Saporta, G., 2020. Linear mixed-effects model for longitudinal complex data with diversified characteristics. Journal of Management Science and Engineering, 5(2): 105-124.
  • Wykoff, W., Crookston, N.L., Stage, A.R., 1982. User's guide to the stand prognosis model (Vol. 133). US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA.
  • Xie, L., Widagdo, F.R.A., Miao, Z., Dong, L., Li, F., 2022. Evaluation of the mixed-effects model and quantile regression approaches for predicting tree height in larch (Larix olgensis) plantations in northeastern China. Canadian Journal of Forest Research, 52(3): 309-319.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Orman Biyometrisi
Bölüm Orijinal Araştırma Makalesi
Yazarlar

Onur Alkan 0000-0001-5798-3421

Ramazan Ozçelik 0000-0003-2132-2589

Proje Numarası TÜBİTAK 120R080 ve TÜBİTAK 122R010
Yayımlanma Tarihi 28 Aralık 2024
Gönderilme Tarihi 10 Ekim 2024
Kabul Tarihi 12 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 25 Sayı: 4

Kaynak Göster

APA Alkan, O., & Ozçelik, R. (2024). Doğal karaçam meşcereleri için yöresel karışık etkili çap-boy modellerinin geliştirilmesi. Turkish Journal of Forestry, 25(4), 399-407. https://doi.org/10.18182/tjf.1564710
AMA Alkan O, Ozçelik R. Doğal karaçam meşcereleri için yöresel karışık etkili çap-boy modellerinin geliştirilmesi. Turkish Journal of Forestry. Aralık 2024;25(4):399-407. doi:10.18182/tjf.1564710
Chicago Alkan, Onur, ve Ramazan Ozçelik. “Doğal karaçam meşcereleri için yöresel karışık Etkili çap-Boy Modellerinin geliştirilmesi”. Turkish Journal of Forestry 25, sy. 4 (Aralık 2024): 399-407. https://doi.org/10.18182/tjf.1564710.
EndNote Alkan O, Ozçelik R (01 Aralık 2024) Doğal karaçam meşcereleri için yöresel karışık etkili çap-boy modellerinin geliştirilmesi. Turkish Journal of Forestry 25 4 399–407.
IEEE O. Alkan ve R. Ozçelik, “Doğal karaçam meşcereleri için yöresel karışık etkili çap-boy modellerinin geliştirilmesi”, Turkish Journal of Forestry, c. 25, sy. 4, ss. 399–407, 2024, doi: 10.18182/tjf.1564710.
ISNAD Alkan, Onur - Ozçelik, Ramazan. “Doğal karaçam meşcereleri için yöresel karışık Etkili çap-Boy Modellerinin geliştirilmesi”. Turkish Journal of Forestry 25/4 (Aralık 2024), 399-407. https://doi.org/10.18182/tjf.1564710.
JAMA Alkan O, Ozçelik R. Doğal karaçam meşcereleri için yöresel karışık etkili çap-boy modellerinin geliştirilmesi. Turkish Journal of Forestry. 2024;25:399–407.
MLA Alkan, Onur ve Ramazan Ozçelik. “Doğal karaçam meşcereleri için yöresel karışık Etkili çap-Boy Modellerinin geliştirilmesi”. Turkish Journal of Forestry, c. 25, sy. 4, 2024, ss. 399-07, doi:10.18182/tjf.1564710.
Vancouver Alkan O, Ozçelik R. Doğal karaçam meşcereleri için yöresel karışık etkili çap-boy modellerinin geliştirilmesi. Turkish Journal of Forestry. 2024;25(4):399-407.