Araştırma Makalesi
BibTex RIS Kaynak Göster

Forest fire impacts on water quality: Taşköprü case

Yıl 2025, Cilt: 26 Sayı: 3, 342 - 352, 30.09.2025

Öz

Wildfires can significantly influence surface water quality by altering soil structure, vegetation cover, and hydrological processes. This study examines the physicochemical effects of a surface and crown fire that occurred in 2020 within a 1,508-hectare pure black pine (Pinus nigra Arnold) forest in the Taşköprü district of Kastamonu, Türkiye, on stream water quality. Over a 12-month monitoring period, water samples were collected biweekly from both fire-affected and control streams. Key water quality parameters were analyzed. The results revealed statistically significant differences in pH, electrical conductivity (EC), total dissolved solids (TDS), and turbidity between the two sites (p<0.05), while DO did not differ significantly. Notably, turbidity was markedly higher in the fire-affected site (9.48 NTU) compared to the control site (5.23 NTU). Conversely, EC and TDS values were lower in the fire-affected stream (211.7 µS/cm and 105.9 mg/L, respectively) than in the control stream (255.3 µS/cm and 127.7 mg/L). A very strong positive correlation was found between EC and TDS (r > 0.98) at both sites, while significant positive correlations were also observed between pH and EC/TDS in the fire-affected stream The increase in turbidity and shifts in solute concentrations indicate that wildfire-induced vegetation loss and surface runoff contributed to sediment and nutrient loading. These findings underscore the importance of water and land management practices in post-wildfire conditions and contribute to the existing literature on fire-induced changes in water quality in Türkiye.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

TÜBİTAK 2209A-1919B012106780

Teşekkür

This study was supported by TÜBİTAK "2209-A Research Project Support Programme for Undergraduate Students” with the project number of 1919B012106780.

Kaynakça

  • Aközlü, A., Şen, G., 2023. Perceptions of log market actors on revisions to the regulations of the sale of standing tree. Turkish Journal of Forestry, 24(4), 378-389.
  • Alexander, S.J., Grace, M., McKelvie, I., 2004. Effect of bushfires on receiving waters, eastern Victoria. First interim report to the Department of Sustainability and Environment, May 2004, Water Studies Centre, School of Chemistry, Monash University, Australia.
  • Allan, J.D., Castillo, M.M., 2007. Stream ecology: Structure and function of running waters. Springer Science and Business Media.
  • Allen, E.W., Prepas, E.E., Gabos, S., Strachan, W., Chen, W., 2003. Surface water chemistry of burned and undisturbed watersheds on the boreal plain: An ecoregion approach. Journal of Environmental Engineering and Science, 2: S73–S86. https://doi.org/10.1139/s03-035
  • Almansouri, E.H., Aydın, M., Güneş Şen, S., 2020. Determination of soil, litter properties and carbon stock capacities of different stand types in western black sea region. International Journal of Scientific and Technological Research, 2 (12), 51-63. 10.7176/JSTR/6-12-06
  • Angeler, D.G., Rodriguez, M., Martin, S., Moreno, J.M., 2004. Assessment of application-rate dependent effects of a long-term fire retardant chemical (Fire Trol 934®) on Typha domingensis germination. Environment International, 30, 375–381. https://doi.org/10.1016/j.envint.2003.09.003
  • Angeler, D.G., Martín, S., Moreno, J.M., 2005. Daphnia emergence: A sensitive indicator of fire-retardant stress in temporary wetlands. Environment International, 31, 615–620. https://doi.org/10.1016/j.envint.2004.10.015
  • Angeler, D.G., Sanchez, B., Garcia, G., Moreno, J.M., 2006. Community ecotoxicology: Invertebrate emergence from Fire Trol 934 contaminated vernal pool and salt marsh sediments under contrasting photoperiod and temperature regimes. Aquatic Toxicology, 78, 167–175. https://doi.org/10.1016/j.aquatox.2006.02.030
  • Arianoutsou, M., Athanasakis, G., Kazanis, D., Christopoulou, A., 2024. Attica: A hot spot for forest fires in Greece. Fire, 7(12), 467. https://doi.org/10.3390/fire7120467
  • Arslan, K., 2024. Spss ile adım adım bağımsız örneklem t testi uygulama ve APA formatında raporlama. In F. Akça (ed.), Eğitim Bilimleri Alanında Araştırmalar ve Değerlendirmeler pp. 125–138. Gece Kitaplığı, Ankara.
  • Baba, F.A., Güneş Şen, S., Aydın, M., 2018. Solid waste management and public awareness on solid waste management in Libya–Benghazi. Conference: International Congress on Engineering and Life Science, Kastamonu, Turkey.
  • Baç, B., Güneş Şen, S., 2025. Impacts of recreational use on soil dynamics in kastamonu urban forest. MEMBA Water Sciences Journal, 11, (2) 249-262. https://doi.org/10.58626/memba.1711199
  • Baykalı, B., Şen, G., 2024. Determining urban and rural perceptions of forest ecosystem services. Bartın Orman Fakültesi Dergisi, 26(3), 177-195.
  • Bayley, S.E., Schindler, D.W., Parker, B.R., Stainton, M.P,Beaty, K.G., 1992. Effects of forest fire and drought on acidity of a base-poor boreal forest stream—Similarities between climatic warming and acidic precipitation. Biogeochemistry, 17, 191–204. https://doi.org/10.1007/bf00004041
  • Bilgin, A., Aybar, M., Sağlam, B., 2016. Effects of forest fires on water sources. Celal Bayar University Journal of Science, 12(2), 173-177.
  • Bladon, K.D., Emelko, M.B., Silins, U., Stone, M., 2014. Wildfire and the future of water supply. Environmental Science and Technology, 48, 8936–8943. https://doi.org/10.1021/es500130g
  • Bodí, M.B., Martin, D.A., Balfour, V.N., Santín, C., Doerr, S.H., Pereira, P., Cerdà, A., Mataix-Solera, J., 2014. Wildland fire ash: Production, composition and eco-hydrogeomorphic effects. Earth Science Reviews, 130, 103–127. https://doi.org/10.1016/j.earscirev.2013.12.007
  • Bölük, E., Eskioğlu, O., Çalık, Y., Yağan, S., 2023. Köppen iklim sınıflandırmasına göre Türkiye iklimi. T.C. Çevre Şehircilik ve İklim Değişikliği Bakanlığı Meteoroloji Genel Müdürlüğü, İklim ve Zirai Meteoroloji Dairesi Başkanlığı İklim ve İklim Değişikliği Şube Müdürlüğü. https://www.mgm.gov.tr/FILES/iklim/iklim_ siniflandirmalari/koppen.pdf. Accessed: 12.05.2025.
  • Burke, M. P., Hogue, T. S., Kinoshita, A. M., Barco, J., Wessel, C., Stein, E. D., 2013. Pre-and post-fire pollutant loads in an urban fringe watershed in Southern California. Environmental Monitoring and Assessment, 185(12), 10131-10145. https://doi.org/10.1007/s10661-013-3318-9
  • Burton, C.A., Hoefen, T.M., Plumlee, G.S., Baumberger, K.L., Backlin, A.R., Gallegos, E., Fisher, R.N., 2016. Trace elements in stormflow, ash, and burned soil following the 2009 Station Fire in Southern California. PLoS One, 11(5), e0153372. https://doi.org/10.1371/journal.pone.0153372
  • Campos, I., Abrantes, N., Pereira, P., Micaelo, A.C., Vale, C., Keizer, J.J., 2019. Forest fires as potential triggers for production and mobilization of polycyclic aromatic hydrocarbons to the terrestrial ecosystem. Land Degradation and Development, 30, 2360–2370. https://doi.org/10.1002/ldr.3427
  • Chanasyk, D.S., Whitson, I.R., Mapfumo, E., Burke, J.M., Prepas, E.E., 2003. The impacts of forest harvest and wildfire on soils and hydrology in temperate forests: A baseline to develop hypotheses for the boreal plain. Journal of Environmental Engineering and Science, 2, S51–S62.https://doi.org/10.1139/s03-034
  • Costa, M.R., Calvão, A.R., Aranha, J., 2014. Linking wildfire effects on soil and water chemistry of the Marão River watershed, Portugal, and biomass changes detected from Landsat imagery. Applied Geochemistry, 44, 93–102. https://doi.org/10.1016/j. apgeochem.2013.09.009
  • Crouch, R.L., Timmenga, H.J., Barber, T.R., Fuchsman, P.C., 2006. Post-fire surface water quality: Comparison of fire retardant versus wildfire-related effects. Chemosphere, 62, 874–889. https://doi.org/10.1016/j.chemosphere.2005.05.031
  • Cui, Y.B., Feng, J.G., Liao, L.G., Yu, R., Zhang, X., Liu, Y.H., Yang, L.Y., Zhao, J.F., Tan, Z.H., 2020. Controls of temporal variations on soil respiration in a tropical lowland rainforest in Hainan Island, China. Tropical Conservation Science, 13, 1–14. https://doi.org/10.1177/1940082920914902
  • Cunillera-Montcusi, D., Boix, D., Tornero, I., Sala, J., Nuria, A., Stephanie, G., Quintana, X.D., 2019. Direct and indirect impacts of wildfire on faunal communities of Mediterranean temporary ponds. Freshwater Biology, 64, 323–334. https://doi.org/10.1111/ fwb.13219
  • Dahm, C.N., Candelaria-Ley, R.I., Reale, C.S., Reale, J.K., Van Horn, D.J., 2015. Extreme water quality degradation following a catastrophic forest fire. Freshwater Biology, 60, 2584–2599. https://doi.org/10.1111/fwb.12548
  • Delpla, I., Jung, A.-V., Baures, E., Clement, M., Thomas, O., 2009. Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35, 1225–1233. https://doi.org/10.1016/j.envint.2009.07.001
  • Demircan, M., Gürkan, H., Eskioğlu, O., Arabaci, H., Coşkun, M., 2017. Climate change projections for Turkey: Three models and two scenarios. Turkish Journal of Water Science and Management, 1(1), 22–43. https://doi.org/10.31807/tjwsm.297183
  • Doerr, S.H., Shakesby, R.A., Walsh, R., 2000. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51(1–4), 33–65. https://doi.org/10.1016/ S0012-8252(00)00011-8
  • Doğanay, H., Doğanay, S. 2004. /Forest fires and measures to be taken in Turkey. Doğu Coğrafya Dergisi, 9(11), 31-48.
  • Ebel, B.A., Moody, J.A., Martin, D.A., 2012. Hydrologic conditions controlling runoff generation immediately after wildfire. Water Resources Research, 48. WO3529. https://doi.org/10.1029/ 2011WR011470
  • Ekhuemelo, D.O., Amonum, J.I., Usman, I.A., 2016. Importance of forest and trees in sustaining water supply and rainfall. Nigeria Journal of Education, Health and Technology Research. 8(1):273–280.
  • Emin, N., Mutlu, E., 2024. Akgöl Gölet havzasının (Sinop-Ayancık) su kalitesinin yerinde analizlerle tespiti ve ağır metal kirliliğinin araştırılması. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(3), 243-252.
  • Eraslan, İ., 1973. Türkiye’deki devlet ormanlarında idare amaçları tespitinin hukuki, teorik ve pratik esasları. İstanbul Üniversitesi Orman Fakültesi Yayını, (1843/194), 179. Evans, C.D., Malcolm, I.A., Shilland, E.M., Rose, N.L., Turner, S.D., Crilly, A., Norris, D., Granath, G., Monteith, D.T., 2017. Sustained biogeochemical impacts of wildfire in a mountain lake catchment. Ecosystems, 20, 813–829. https://doi.org/10.1007/ s10021-016-0064-1
  • Fajković, H., Ivanić, M., Nemet, I., Rončević, S., Kampić, Š., Vazdar, L.D., 2022. Heat-induced changes in soil properties: Fires as cause for remobilization of chemical elements. Journal of Hydrology and Hydromechanics, 70(4), 421–431. https://doi.org/10.2478/johh-2022-0024
  • Fernandez-Garcia, V., Marcos, E., Fule, P.Z., Reyes, O., Santana, V.M., Calvo, L., 2020. Fire regimes shape diversity and traits of vegetation under different climatic conditions. Science of the Total Environment, 716, 137137. https://doi.org/10.1016/ j.scitotenv.2020.137137
  • Ferrer, I., Thurman, E.M., 2023. Chemical tracers for wildfires—Analysis of runoff surface water by LC/Q-TOF-MS. Chemosphere, 339, 139747. https://doi.org/10.1016/j. chemosphere.2023.139747
  • Ferrer, I., Thurman, E.M., Zweigenbaum, J.A., Murphy, S.F., Webster, J.P., Rosario-Ortiz, F.L., 2021. Wildfires: Identification of a new suite of aromatic polycarboxylic acids in ash and surface water. Science of the Total Environment, 770, 144661. https://doi.org/10.1016/j.scitotenv.2020.144661
  • Fisher, R.A., 1915. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10(4), 507-521
  • Forbes, K., Bischetti, G., Brardinoni, F., Dykes, A., Gray, D.G., Imaizumi, F., Verbist, B., 2011. Forests and landslides: The role of trees and forests in the prevention of landslides and rehabilitation of landslide-affected areas in Asia. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific.
  • George, D., Mallery, M., 2010. SPSS for Windows step by step: A simple guide and reference, 17.0 update (10th ed.). Pearson, Boston.
  • Gorshkov, A.G., Izosimova, O.N., Kustova, O., Marinaite, I.I., Galachyants, Y.P., Sinyukovich, V.N., Khodzher, T., 2021. Wildfires as a source of PAHs in surface waters of background areas (Lake Baikal, Russia). Water, 13, 2636. https://doi.org/10.3390/w13192636
  • Güneş Şen, S., 2015. Farklı meşcere türlerinde ormanaltı yağış, gövdeden akış ve intersepsiyonun belirlenmesi. Master Dissertation, Kastamonu Unıversıty Instıtute Of Scıence Depaertment Of Envıronmental Engıneerıng.
  • Güneş Şen, S., 2021. Kastamonu yöresi ormancılık uygulamalarının su kalitesine etkisi. PhD Dissertation, Kastamonu Unıversıty Instıtute Of Scıence Depaertment Of Envıronmental Engıneerıng.
  • Güneş Şen, S., Aydın, M., 2024. Farklı Meşcere Türlerinde Ormanaltı Yağış, Gövdeden Akış Ve İntersepsiyonun Belirlenmesi. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(1), 115-123.
  • Güngör, E., Şen, G., 2024. Sustainable afforestation strategies: hybrid multi-criteria decision-making model in post-mining rehabilitation. Forests, 15(5), 783. https://doi.org/10. 3390/f15050783
  • Hampton, T.B., Lin, S., Basu, N.B., 2022. Forest fire effects on stream water quality at continental scales: A meta-analysis. Environmental Research Letters, 17(6), 064003.
  • Hoffman, R.J., Ferreira, R.F., 1976. A reconnaissance of the effects of a forest fire on water quality in Kings Canyon National Park, California. Open File Report 76–497. U.S. Department of the Interior, Geological Survey, Monlo Park, CA. https://doi.org/10.3133/ofr76497
  • Hohner, A.K., Rhoades, C.C., Wilkerson, P., Rosario-Ortiz, F.L., 2019. Wildfires alter forest watersheds and threaten drinking water quality. Accounts of Chemical Research, 52, 1234–1244. https://doi.org/10.1021/acs.accounts.8b00670
  • Horowitz, A.J., 1991. A primer on sediment-trace element chemistry. U.S.US Geological Survey, Open-File Report, 91-76, Reston, VA.
  • Horowitz, A.J., Elrick, K.A., 1987. The relation of stream sediment surface area, grain size and composition to trace element chemistry. Applied Geochemistry, 2(4), 437–451. IPCC 2013. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Jumps, N., Gray, A.B., Guilinger, J.J., Cowger, W.C., 2022. Wildfire impacts on the persistent suspended sediment dynamics of the Ventura River, California. Journal of Hydrology: Regional Studies, 41, 101096. https://doi.org/10.1016/j.ejrh.2022.101096
  • Kim, C., Han, H., 2024. Long-term effects of wildfires on river water quality: A comprehensive review of the variability of water quality in South Korea. Journal of Water and Health, 22(11), 2146–2159.
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.
  • Korsman, T., Segerstroem, U., 1998. Forest fire and lake-water acidity in a northern Swedish boreal area: Holocene changes in lake-water quality at Makkassjön. Journal of Ecology, 86, 113–124. https://doi.org/10.1046/j.1365-2745.1998.00239.x
  • Kutlu, B., Mutlu, E., 2024. Evaluation of the Şerefiye (Zara-Sivas) dam according to water quality indexes. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(2), 1-12.
  • Küçük, Ö., Aktepe, N., 2017. Effect of phenolic compounds on the flammability in forest fires. International Journal of Engineering Sciences and Research Technology, 6(4), 320–327.
  • Küçük, Ö., Bilgili, E., 2010. Estimation of carbon emissions from experimental fires in young Anatolian black pine (Pinus nigra Arnold) plantations. Fresenius Environmental Bulletin, 19(4a), 676–681.
  • Küçükosmanoğlu, A., 1995. Su kaynaklarının korunması-orman yangınları ilişkisi. Journal of the Faculty of Forestry Istanbul University (JFFIU), 45(1–2), 107–118.
  • Lane, P.N.J., Sheridan, G.J., Noske, P.J., Sherwin, C.B., 2008. Phosphorus and nitrogen exports from SE Australian forests following wildfire. Journal of Hydrology, 361, 186–198.
  • Larsen, I.J., MacDonald, L.H., Brown, E., Rough, D., Welsh, M.J., Pietraszek, J.H., Libohova, Z., de Dios Benavides-Solorio, J., Schaffrath, K., 2009. Causes of post-fire runoff and erosion: Roles of soil water repellency, surface cover, and soil sealing? Soil Science Society of America Journal, 73, 1393–1407.
  • Lathrop, R.G. Jr., 1994. Impacts of the 1988 wildfires on the water quality of Yellowstone and Lewis Lakes, Wyoming. International Journal of Wildland Fire, 4(3), 169–175. https://doi.org/10. 1071/wf9940169
  • Leak, M., Passuello, R., Tyler, B., 2003. I’ve seen fire. I’ve seen rain. I’ve seen muddy waters that I thought would never clear again. Waterworks, 6, 38–44.
  • Leveque, B., Burnet, J.-B., Dorner, S., Bichai, F., 2021. Impact of climate change on the vulnerability of drinking water intakes in a northern region. Sustainable Cities and Society, 66, 102656. https://doi.org/10.1016/j.scs.2020.102656
  • Lydersen, E., Hogberget, R., Moreno, C.E., Garmo, O.A., Hagen, P.C., 2014. The effects of wildfire on the water chemistry of dilute, acidic lakes in southern Norway. Biogeochemistry, 119, 109–124. https://doi.org/10.1007/s10533-014-9951-8
  • Lyon, J.P., O'Connor, J.P., 2008. Smoke on the water: Can riverine fish populations recover following a catastrophic fire‐related sediment slug? Austral Ecology, 33(6), 794–806.
  • Ma, B., Hu, C., Zhang, J., Ulbricht, M., Panglisch, S., 2022. Impact of climate change on drinking water safety. ACS ES&T Water, Volume 2, Issie 2, 259–261. https://doi.org/10.1021/acsestwater. 2c00004
  • Mansilha, C., Duarte, C.G., Melol, A., Ribeiro, J., Flores, D., Marques, J.E., 2019. Impact of wildfire on water quality in Caramulo Mountain ridge (Central Portugal). Sustainable Water Resources Management, 5, 319–331. https://doi.org/10.1007/s40899-017-0171-y
  • MGM, 2024. Türkiye Cumhuriyeti Çevre, Şehircilik ve İklim Değişikliği Bakanlığı Meteoroloji Genel Müdürlüğü, 2024 yılı iklim değerlendirmesi. İklim ve Zirai Meteoroloji Dairesi Başkanlığı, Araştırma Dairesi Başkanlığı, Ankara. https://www.mgm.gov.tr/ FILES/iklim/yillikiklim/2024-iklim-raporu.pdf. Accessed: 10.04.2025
  • Moody, J.A., Martin, D.A., 2001. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surface Processes and Landforms, 26, 1049–1070. https://doi.org/10.1002/esp.253
  • Moody, J. A., Martin, D. A., Haire, S. L., Kinner, D. A., 2008. Linking runoff response to burn severity after a wildfire. Hydrological Processes: An International Journal, 22(13), 2063-2074.
  • Moody, J.A., Martin, D.A., 2009. Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. International Journal of Wildland Fire, 18, 96–115.
  • Moody, J.A., Shakesby, R.A., Robichaud, P.R., Cannon, S.H., Martin, D.A., 2013. Current research issues related to post-wildfire runoff and erosion processes. Earth-Science Reviews, 122, 10–37.
  • Moya, D., De las Heras, J., López Serrano, F.R., 2007. Postfire management in Mediterranean forest: Researching to prevent global change. In IV. International Wildland Fire Conference, 13–17 May 2007, Sevilla, Spain.
  • Mutlu, E., Güzel, A. E., 2024. Tekirler Baraj Gölü (Nallıhan–Ankara) ‘nın Su Kalitesi Parametreleri Üzerine Araştırma. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(2), 105-114.
  • Murphy, S.F., McCleskey, R.B., Martin, D.A., Jeffrey, H.W., Ebel, B.A., 2018. Fire, flood, and drought: Extreme climate events alter flow paths and stream chemistry. Journal of Geophysical Research: Biogeosciences, 123, 2513–2526. https://doi.org/10.1029/ 2017jg004349
  • Nam, S., Yang, H., Lim, H., Kim, J., Li, Q., Moon, H., Choi, H.T., 2022. Short-term effects of forest fire on water quality along a headwater stream in the immediate post-fire period. Water, 15(1), 131. https://doi.org/10.3390/w15010131
  • Nyman, P., Sheridan, G.J., Smith, H.G., Lane, P.N., 2011. Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia. Geomorphology, 125(3), 383–401.
  • O’Dell, K., Hornbrook, R.S., Permar, W., Levin, E.J.T., Garofalo, L.A., Apel, E.C., Blake, N.J., Jarnot, A., Pothier, M.A., Farmer, D.K., Hu, L., Campos, T., Ford, B., Pierce, J.R., Fischer, E.V., 2020. Hazardous air pollutants in fresh and aged western US wildfire smoke and implications for long-term exposure. Environmental Science and Technology, 54, 11838–11847. https://doi.org/10.1021/acs.est.0c04497
  • OGM, 2023. Republic of Türkiye Ministry of Agriculture and Forestry, General Directorate of Forestry. Forestry statistics. https://www. ogm.gov.tr/. Accessed: 29.05.2025.
  • Ongley, E.D., Krishnappan, B.G., Droppo, G., Rao, S.S., Maguire, R.J., 1992. Cohesive sediment transport: Emerging issues for toxic chemical management. Hydrobiologia, 235, 177–187.
  • Önol, B., Bozkurt, D., Turuncoglu, U.U., Sen, O.L., Dalfes, H.N., 2014. Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Eastern Mediterranean–Black Sea region. Climate Dynamics, 42, 1949–1965.
  • Pacaldo, R.S., Aydin, M., Amarille, R.K., 2024. Soil respiration and controls in warmer winter: A snow manipulation study in postfire and undisturbed black pine forests. Ecology and Evolution, 14(3), e11075.
  • Pacaldo, R.S., Aydin, M., Amarille, R.K., 2025. Forest fire and aspects showed no significant effects on most mineral soil properties of black pine forests. Catena, 250, 108801.
  • Parliament of Victoria, 2008. Inquiry into the impact of public land management practices on bushfires in Victoria: Report of the Environment and Natural Resources Committee. Parliamentary Paper No. 116, Melbourne.
  • Paul, M.J., LeDuc, S.D., Lassiter, M.G., Moorhead, L.C., Noyes, P.D., Leibowitz, S.G., 2022. Wildfire induces changes in receiving waters: A review with considerations for water quality management. Water Resources Research, 58(9), e2021WR030699. https://doi.org/10.1029/2021WR030699
  • Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M., 2014. Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal. Hydrological Processes, 28(11), 3681–3690. https://doi.org/10.1002/hyp.9907
  • Pinedo-Gonzalez, P., Hellige, B., West, A.J., Sañudo-Wilhelmy, S.A., 2017. Changes in the size partitioning of metals in storm runoff following wildfires: Implications for the transport of bioactive trace metals. Applied Geochemistry, 83, 62–71. https://doi.org/10.1016/j. apgeochem.2016.07.016
  • Raoelison, O.D., Valenca, R., Lee, A., Karim, S., Webster, J.P., Poulin, B.A., Mohanty, S.K., 2023. Wildfire impacts on surface water quality parameters: Cause of data variability and reporting needs. Environmental Pollution, 317. https://doi.org/10.1016/j.envpol. 2022.120713
  • Reale, J.K., 2015. The effects of catastrophic wildfire on water quality along a river continuum. Freshwater Science, 34, 1426–1442. https://doi.org/10.1086/684001
  • Reneau, S.L., Katzman, D., Kuyumjian, G.A., Lavine, A., Malmon, D.V., 2007. Sediment delivery after a wildfire. Geology, 35(2), 151–154.
  • Rhoades, C.C., Entwistle, D., Butler, D., 2011. The influence of wildfire extent and severity on stream water chemistry, sediment, and temperature following the Hayman Fire, Colorado. International Journal of Wildland Fire, 20(3), 430–442. https://doi.org/10. 1071/wf09086
  • Richter, D.D., Ralston, C.W., Harms, W.R., 1982. Prescribed fire: Effects on water quality and forest nutrient cycling. Science, 215, 661–663. https://doi.org/10.1126/science.215.4533.661
  • Rodríguez-Jiménez, E., Cruz-Pérez, N., Koritnik, J., García-Gil, A., Marazuela, M.Á., Santamarta, J.C., 2024. Revealing the impact of wildfires on groundwater quality: Insights from Sierra de la Culebra (Spain). Chemosphere, 365, 143375.
  • Romero-Matos, J., Cánovas, C.R., Macías, F., Pérez-López, R., León, R., Millán-Becerro, R., Nieto, J.M., 2023. Wildfire effects on the hydrogeochemistry of a river severely polluted by acid mine drainage. Water Research, 233, 119791. https://doi.org/10.1016/j. watres.2023.119791
  • Rust, A.J., Hogue, T.S., Saxe, S., McCray, J.E., 2018. Post-fire water-quality response in the western United States. International Journal of Wildland Fire, 27(3), 203–216. https://doi.org/10.1071/WF17115
  • Samburova, V., Schneider, E., Rüger, C.P., Inouye, S., Sion, B., Axelrod, K., Moosmüller, H., 2023. Modification of soil hydroscopic and chemical properties caused by four recent California, USA megafires. Fire, 6(5), 186. https://doi.org/10.3390/fire6050186
  • Sazawa, K., Sugano, T., Kuramitz, H., 2020. High-heat effects on the physical and chemical properties of soil organic matter and its water-soluble components in Japan's forests: A comprehensive approach using multiple analytical methods. Analytical Sciences, 36(5), 601–609. https://doi.org/10.2116/analsci.20SBP14
  • Schneider, S.R., Lee, K., Santos, G., Abbatt, J.P.D., 2021. Air quality data approach for defining wildfire influence: Impacts on PM2.5, NO2, CO, and O-3 in Western Canadian cities. Environmental Science and Technology, 55, 13709–13717. https://doi.org/10.1021/ acs.est.1c04042
  • Shakesby, R., Doerr, S., 2006. Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews, 74(3–4), 269–307. https://doi.org/10.1016/j.earscirev.2005.10.006
  • Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611.
  • Sheridan, G., Lane, P., Noske, P., Feikema, P., Sherwin, C., Grayson, R., 2007a. Impact of the 2003 Alpine Bushfires on streamflow: Estimated changes in stream exports of sediment, phosphorus and nitrogen following the 2003 bushfires in Eastern Victoria. Murray-Darling Basin Commission, MDBC Publication No. 22/08, Canberra, Australia.
  • Sheridan, G., Lane, P., Noske, P., Feikema, P., Sherwin, C., Grayson, R., 2007b. Impact of the 2003 Alpine bushfires on streamflow: Estimated changes in stream exports of sediment, phosphorus and nitrogen following the 2003 bushfires in Eastern Victoria. Murray-Darling Basin Commission, Canberra.
  • Sherson, L.R., Van Horn, D.J., Gomez-Velez, J.D., Crossey, L.J., Dahm, C.N., 2015. Nutrient dynamics in an alpine headwater stream: Use of continuous water quality sensors to examine responses to wildfire and precipitation events. Hydrological Processes, 29(14), 3193–3207. https://doi.org/10.1002/hyp.10426
  • Smith, H.G., Sheridan, G.J., Lane, P.N., Nyman, P., Haydon, S., 2011. Wildfire effects on water quality in forest catchments: A review with implications for water supply. Journal of Hydrology, 396(1–2), 170–192.
  • Son, J.H., Kim, S., Carlson, K.H., 2015. Effects of wildfire on river water quality and riverbed sediment phosphorus. Water Air and Soil Pollution, 226, 26. https://doi.org/10.1007/s11270-014-2269-2
  • Spence, J.T., Cotton, J.W., Underwood, B.J., Duncan, C.P., 1990. Elementary statistics (5th ed.). Prentice-Hall, Englewood Cliffs, NJ.
  • Stankov Jovanovic, V.P., Ilic, M.D., Markovic, M.S., Mitic, V.D., Nikolic Mandic, S.D., Stojanovic, G.S., 2011. Wild fire impact on copper, zinc, lead and cadmium distribution in soil and relation with abundance in selected plants of Lamiaceae family from Vidlic Mountain (Serbia). Chemosphere, 84(11), 1584–1591. https://doi.org/10.1016/j.chemosphere.2011.05.048
  • Şen, G., 2024. Determining population movement-land use interactions for sustainable land management: Case of Türkiye. Memba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(1), 38-58.
  • Şen, G., 2025. Effects of urban sprawl due to migration on spatiotemporal land use-land cover change: a case study of Bartın in Türkiye. Scientific Reports, 15(1), 815.
  • Tabachnick, B.G., Fidell, L.S., 2013. Using Multivariate Statistics (6th ed.). Pearson, Boston.
  • Tecle, A., Neary, D., 2015. Water quality impacts of forest fires. Journal of Pollution Effects and Control, 3, 140.
  • Trenčiansky, M., Štěrbová, M., Výbošťok, J., Lieskovský, M., 2021. Impacts of forest cover on surface runoff quality in small catchments. BioResources, 16(4), 7830.
  • Turiel-Santos, S., Calvo, L., Kotze, D.J., Taboada, A., 2025. Long-term impact of an extreme wildfire and salvage logging legacies on ecosystem services provision: Decomposition and nutrient cycling in fire-prone Mediterranean pine forests. Forest Ecology and Management, 576, 122381. https://doi.org/10.1016/j. foreco.2024.122381
  • Türkeş, M., Turp, M.T., An, N., Ozturk, T., Kurnaz, M.L., 2020. Impacts of climate change on precipitation climatology and variability in Turkey. In: Water resources of Turkey (Eds: Harmancioglu, N., Altinbilek, D.), Springer, Cham, pp. 467–491.
  • Ulery, A.L., Graham, R.C., Amrhein, C., 1993. Wood-ash composition and soil pH following intense burning. Soil Science, 156(5), 358–364.
  • White, I., Wade, A., Worthy, M., Mueller, N., Daniell, T., Wasson, R., 2006. The vulnerability of water supply catchments to bushfires: Impacts of the January 2003 wildfires on the Australian Capital Territory. Australasian Journal of Water Resources, 10(2), 179–194.
  • Wilkinson, S.N., Wallbrink, P.J., Hancock, G.J., Blake, W.H., Shakesby, R.A., Doerr, S.H., 2009. Fallout radionuclide tracers identify a switch in sediment sources and transport-limited sediment yield following wildfire in a eucalypt forest. Geomorphology, 110, 140–151.
  • Westerling, A.L., Hidalgo, H.G., Cayan, D.R., Swetnam, T.W., 2006. Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940–943. https://doi.org/10.1126/ science.1128834
  • Zhang, Y., Xie, Y.Z., Ma, H.B., Zhang, J., Jing, L., Wang, Y.T., Li, J.P., 2021. The responses of soil respiration to changed precipitation and increased temperature in desert grassland in northern China. Journal of Arid Environments, 193, 104579. https://doi.org/10.1016/j. jaridenv.2021.104579

Orman yangınlarının su kalitesi üzerindeki etkileri: Taşköprü örneği

Yıl 2025, Cilt: 26 Sayı: 3, 342 - 352, 30.09.2025

Öz

Orman yangınları, toprak yapısını, bitki örtüsünü ve hidrolojik süreçleri değiştirerek yüzey suyu kalitesini önemli ölçüde etkileyebilir. Bu çalışma, 2020 yılında Türkiye’nin Kastamonu ili Taşköprü ilçesinde, 1508 hektarlık saf karaçam (Pinus nigra Arnold) ormanında meydana gelen yüzey yangını ve tepe yangınının dere suyu kalitesi üzerindeki fiziko-kimyasal etkilerini incelemektedir. On iki aylık izleme süresi boyunca, yangından etkilenmiş ve kontrol niteliğindeki akarsulardan iki haftada bir su örnekleri toplanmıştır. Temel su kalite parametreleri analiz edilmiştir. Elde edilen sonuçlar, pH, elektriksel iletkenlik (EC), toplam çözünmüş katılar (TDS) ve bulanıklık parametrelerinde iki istasyon arasında istatistiksel olarak anlamlı farklılıklar olduğunu göstermiştir (p < 0,05); çözünmüş oksijen (DO) açısından ise anlamlı bir fark gözlenmemiştir. Özellikle bulanıklık değeri yangın alanında 9.48 NTU ile kontrol alanındaki 5,23 NTU’ya kıyasla belirgin biçimde yüksek bulunmuştur. Buna karşılık, yangın alanında EC ve TDS ortalamaları sırasıyla 211,7 µS/cm ve 105,9 mg/L iken, kontrol alanında bu değerler 255,3 µS/cm ve 127,7 mg/L olarak ölçülmüştür. Her iki istasyonda da EC ile TDS arasında çok güçlü pozitif korelasyonlar (r > 0,98) belirlenmiş, ayrıca yangından etkilenen alanda pH ile EC/TDS arasında da anlamlı pozitif ilişkiler saptanmıştır. Bulanıklık değerlerindeki artış ve çözünen madde konsantrasyonlarındaki değişim, yangın sonrası bitki örtüsü kaybı ve yüzey akışı kaynaklı sediment ve besin maddesi yüklemesini işaret etmektedir. Bu bulgular, yangın sonrası koşullarda su ve arazi yönetimi uygulamalarının önemini vurgulamakta ve Türkiye’de yangın kaynaklı su kalitesi değişimleri konusundaki literatüre katkı sağlamaktadır.

Etik Beyan

Yazarlar; çalışmanın tüm süreçlerinin araştırma ve yayın etiğine uygun olduğu, etik kurallara ve bilimsel atıf gösterme ilkelerine uyduğunu beyan etmektedirler.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

TÜBİTAK 2209A-1919B012106780

Kaynakça

  • Aközlü, A., Şen, G., 2023. Perceptions of log market actors on revisions to the regulations of the sale of standing tree. Turkish Journal of Forestry, 24(4), 378-389.
  • Alexander, S.J., Grace, M., McKelvie, I., 2004. Effect of bushfires on receiving waters, eastern Victoria. First interim report to the Department of Sustainability and Environment, May 2004, Water Studies Centre, School of Chemistry, Monash University, Australia.
  • Allan, J.D., Castillo, M.M., 2007. Stream ecology: Structure and function of running waters. Springer Science and Business Media.
  • Allen, E.W., Prepas, E.E., Gabos, S., Strachan, W., Chen, W., 2003. Surface water chemistry of burned and undisturbed watersheds on the boreal plain: An ecoregion approach. Journal of Environmental Engineering and Science, 2: S73–S86. https://doi.org/10.1139/s03-035
  • Almansouri, E.H., Aydın, M., Güneş Şen, S., 2020. Determination of soil, litter properties and carbon stock capacities of different stand types in western black sea region. International Journal of Scientific and Technological Research, 2 (12), 51-63. 10.7176/JSTR/6-12-06
  • Angeler, D.G., Rodriguez, M., Martin, S., Moreno, J.M., 2004. Assessment of application-rate dependent effects of a long-term fire retardant chemical (Fire Trol 934®) on Typha domingensis germination. Environment International, 30, 375–381. https://doi.org/10.1016/j.envint.2003.09.003
  • Angeler, D.G., Martín, S., Moreno, J.M., 2005. Daphnia emergence: A sensitive indicator of fire-retardant stress in temporary wetlands. Environment International, 31, 615–620. https://doi.org/10.1016/j.envint.2004.10.015
  • Angeler, D.G., Sanchez, B., Garcia, G., Moreno, J.M., 2006. Community ecotoxicology: Invertebrate emergence from Fire Trol 934 contaminated vernal pool and salt marsh sediments under contrasting photoperiod and temperature regimes. Aquatic Toxicology, 78, 167–175. https://doi.org/10.1016/j.aquatox.2006.02.030
  • Arianoutsou, M., Athanasakis, G., Kazanis, D., Christopoulou, A., 2024. Attica: A hot spot for forest fires in Greece. Fire, 7(12), 467. https://doi.org/10.3390/fire7120467
  • Arslan, K., 2024. Spss ile adım adım bağımsız örneklem t testi uygulama ve APA formatında raporlama. In F. Akça (ed.), Eğitim Bilimleri Alanında Araştırmalar ve Değerlendirmeler pp. 125–138. Gece Kitaplığı, Ankara.
  • Baba, F.A., Güneş Şen, S., Aydın, M., 2018. Solid waste management and public awareness on solid waste management in Libya–Benghazi. Conference: International Congress on Engineering and Life Science, Kastamonu, Turkey.
  • Baç, B., Güneş Şen, S., 2025. Impacts of recreational use on soil dynamics in kastamonu urban forest. MEMBA Water Sciences Journal, 11, (2) 249-262. https://doi.org/10.58626/memba.1711199
  • Baykalı, B., Şen, G., 2024. Determining urban and rural perceptions of forest ecosystem services. Bartın Orman Fakültesi Dergisi, 26(3), 177-195.
  • Bayley, S.E., Schindler, D.W., Parker, B.R., Stainton, M.P,Beaty, K.G., 1992. Effects of forest fire and drought on acidity of a base-poor boreal forest stream—Similarities between climatic warming and acidic precipitation. Biogeochemistry, 17, 191–204. https://doi.org/10.1007/bf00004041
  • Bilgin, A., Aybar, M., Sağlam, B., 2016. Effects of forest fires on water sources. Celal Bayar University Journal of Science, 12(2), 173-177.
  • Bladon, K.D., Emelko, M.B., Silins, U., Stone, M., 2014. Wildfire and the future of water supply. Environmental Science and Technology, 48, 8936–8943. https://doi.org/10.1021/es500130g
  • Bodí, M.B., Martin, D.A., Balfour, V.N., Santín, C., Doerr, S.H., Pereira, P., Cerdà, A., Mataix-Solera, J., 2014. Wildland fire ash: Production, composition and eco-hydrogeomorphic effects. Earth Science Reviews, 130, 103–127. https://doi.org/10.1016/j.earscirev.2013.12.007
  • Bölük, E., Eskioğlu, O., Çalık, Y., Yağan, S., 2023. Köppen iklim sınıflandırmasına göre Türkiye iklimi. T.C. Çevre Şehircilik ve İklim Değişikliği Bakanlığı Meteoroloji Genel Müdürlüğü, İklim ve Zirai Meteoroloji Dairesi Başkanlığı İklim ve İklim Değişikliği Şube Müdürlüğü. https://www.mgm.gov.tr/FILES/iklim/iklim_ siniflandirmalari/koppen.pdf. Accessed: 12.05.2025.
  • Burke, M. P., Hogue, T. S., Kinoshita, A. M., Barco, J., Wessel, C., Stein, E. D., 2013. Pre-and post-fire pollutant loads in an urban fringe watershed in Southern California. Environmental Monitoring and Assessment, 185(12), 10131-10145. https://doi.org/10.1007/s10661-013-3318-9
  • Burton, C.A., Hoefen, T.M., Plumlee, G.S., Baumberger, K.L., Backlin, A.R., Gallegos, E., Fisher, R.N., 2016. Trace elements in stormflow, ash, and burned soil following the 2009 Station Fire in Southern California. PLoS One, 11(5), e0153372. https://doi.org/10.1371/journal.pone.0153372
  • Campos, I., Abrantes, N., Pereira, P., Micaelo, A.C., Vale, C., Keizer, J.J., 2019. Forest fires as potential triggers for production and mobilization of polycyclic aromatic hydrocarbons to the terrestrial ecosystem. Land Degradation and Development, 30, 2360–2370. https://doi.org/10.1002/ldr.3427
  • Chanasyk, D.S., Whitson, I.R., Mapfumo, E., Burke, J.M., Prepas, E.E., 2003. The impacts of forest harvest and wildfire on soils and hydrology in temperate forests: A baseline to develop hypotheses for the boreal plain. Journal of Environmental Engineering and Science, 2, S51–S62.https://doi.org/10.1139/s03-034
  • Costa, M.R., Calvão, A.R., Aranha, J., 2014. Linking wildfire effects on soil and water chemistry of the Marão River watershed, Portugal, and biomass changes detected from Landsat imagery. Applied Geochemistry, 44, 93–102. https://doi.org/10.1016/j. apgeochem.2013.09.009
  • Crouch, R.L., Timmenga, H.J., Barber, T.R., Fuchsman, P.C., 2006. Post-fire surface water quality: Comparison of fire retardant versus wildfire-related effects. Chemosphere, 62, 874–889. https://doi.org/10.1016/j.chemosphere.2005.05.031
  • Cui, Y.B., Feng, J.G., Liao, L.G., Yu, R., Zhang, X., Liu, Y.H., Yang, L.Y., Zhao, J.F., Tan, Z.H., 2020. Controls of temporal variations on soil respiration in a tropical lowland rainforest in Hainan Island, China. Tropical Conservation Science, 13, 1–14. https://doi.org/10.1177/1940082920914902
  • Cunillera-Montcusi, D., Boix, D., Tornero, I., Sala, J., Nuria, A., Stephanie, G., Quintana, X.D., 2019. Direct and indirect impacts of wildfire on faunal communities of Mediterranean temporary ponds. Freshwater Biology, 64, 323–334. https://doi.org/10.1111/ fwb.13219
  • Dahm, C.N., Candelaria-Ley, R.I., Reale, C.S., Reale, J.K., Van Horn, D.J., 2015. Extreme water quality degradation following a catastrophic forest fire. Freshwater Biology, 60, 2584–2599. https://doi.org/10.1111/fwb.12548
  • Delpla, I., Jung, A.-V., Baures, E., Clement, M., Thomas, O., 2009. Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35, 1225–1233. https://doi.org/10.1016/j.envint.2009.07.001
  • Demircan, M., Gürkan, H., Eskioğlu, O., Arabaci, H., Coşkun, M., 2017. Climate change projections for Turkey: Three models and two scenarios. Turkish Journal of Water Science and Management, 1(1), 22–43. https://doi.org/10.31807/tjwsm.297183
  • Doerr, S.H., Shakesby, R.A., Walsh, R., 2000. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51(1–4), 33–65. https://doi.org/10.1016/ S0012-8252(00)00011-8
  • Doğanay, H., Doğanay, S. 2004. /Forest fires and measures to be taken in Turkey. Doğu Coğrafya Dergisi, 9(11), 31-48.
  • Ebel, B.A., Moody, J.A., Martin, D.A., 2012. Hydrologic conditions controlling runoff generation immediately after wildfire. Water Resources Research, 48. WO3529. https://doi.org/10.1029/ 2011WR011470
  • Ekhuemelo, D.O., Amonum, J.I., Usman, I.A., 2016. Importance of forest and trees in sustaining water supply and rainfall. Nigeria Journal of Education, Health and Technology Research. 8(1):273–280.
  • Emin, N., Mutlu, E., 2024. Akgöl Gölet havzasının (Sinop-Ayancık) su kalitesinin yerinde analizlerle tespiti ve ağır metal kirliliğinin araştırılması. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(3), 243-252.
  • Eraslan, İ., 1973. Türkiye’deki devlet ormanlarında idare amaçları tespitinin hukuki, teorik ve pratik esasları. İstanbul Üniversitesi Orman Fakültesi Yayını, (1843/194), 179. Evans, C.D., Malcolm, I.A., Shilland, E.M., Rose, N.L., Turner, S.D., Crilly, A., Norris, D., Granath, G., Monteith, D.T., 2017. Sustained biogeochemical impacts of wildfire in a mountain lake catchment. Ecosystems, 20, 813–829. https://doi.org/10.1007/ s10021-016-0064-1
  • Fajković, H., Ivanić, M., Nemet, I., Rončević, S., Kampić, Š., Vazdar, L.D., 2022. Heat-induced changes in soil properties: Fires as cause for remobilization of chemical elements. Journal of Hydrology and Hydromechanics, 70(4), 421–431. https://doi.org/10.2478/johh-2022-0024
  • Fernandez-Garcia, V., Marcos, E., Fule, P.Z., Reyes, O., Santana, V.M., Calvo, L., 2020. Fire regimes shape diversity and traits of vegetation under different climatic conditions. Science of the Total Environment, 716, 137137. https://doi.org/10.1016/ j.scitotenv.2020.137137
  • Ferrer, I., Thurman, E.M., 2023. Chemical tracers for wildfires—Analysis of runoff surface water by LC/Q-TOF-MS. Chemosphere, 339, 139747. https://doi.org/10.1016/j. chemosphere.2023.139747
  • Ferrer, I., Thurman, E.M., Zweigenbaum, J.A., Murphy, S.F., Webster, J.P., Rosario-Ortiz, F.L., 2021. Wildfires: Identification of a new suite of aromatic polycarboxylic acids in ash and surface water. Science of the Total Environment, 770, 144661. https://doi.org/10.1016/j.scitotenv.2020.144661
  • Fisher, R.A., 1915. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10(4), 507-521
  • Forbes, K., Bischetti, G., Brardinoni, F., Dykes, A., Gray, D.G., Imaizumi, F., Verbist, B., 2011. Forests and landslides: The role of trees and forests in the prevention of landslides and rehabilitation of landslide-affected areas in Asia. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific.
  • George, D., Mallery, M., 2010. SPSS for Windows step by step: A simple guide and reference, 17.0 update (10th ed.). Pearson, Boston.
  • Gorshkov, A.G., Izosimova, O.N., Kustova, O., Marinaite, I.I., Galachyants, Y.P., Sinyukovich, V.N., Khodzher, T., 2021. Wildfires as a source of PAHs in surface waters of background areas (Lake Baikal, Russia). Water, 13, 2636. https://doi.org/10.3390/w13192636
  • Güneş Şen, S., 2015. Farklı meşcere türlerinde ormanaltı yağış, gövdeden akış ve intersepsiyonun belirlenmesi. Master Dissertation, Kastamonu Unıversıty Instıtute Of Scıence Depaertment Of Envıronmental Engıneerıng.
  • Güneş Şen, S., 2021. Kastamonu yöresi ormancılık uygulamalarının su kalitesine etkisi. PhD Dissertation, Kastamonu Unıversıty Instıtute Of Scıence Depaertment Of Envıronmental Engıneerıng.
  • Güneş Şen, S., Aydın, M., 2024. Farklı Meşcere Türlerinde Ormanaltı Yağış, Gövdeden Akış Ve İntersepsiyonun Belirlenmesi. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(1), 115-123.
  • Güngör, E., Şen, G., 2024. Sustainable afforestation strategies: hybrid multi-criteria decision-making model in post-mining rehabilitation. Forests, 15(5), 783. https://doi.org/10. 3390/f15050783
  • Hampton, T.B., Lin, S., Basu, N.B., 2022. Forest fire effects on stream water quality at continental scales: A meta-analysis. Environmental Research Letters, 17(6), 064003.
  • Hoffman, R.J., Ferreira, R.F., 1976. A reconnaissance of the effects of a forest fire on water quality in Kings Canyon National Park, California. Open File Report 76–497. U.S. Department of the Interior, Geological Survey, Monlo Park, CA. https://doi.org/10.3133/ofr76497
  • Hohner, A.K., Rhoades, C.C., Wilkerson, P., Rosario-Ortiz, F.L., 2019. Wildfires alter forest watersheds and threaten drinking water quality. Accounts of Chemical Research, 52, 1234–1244. https://doi.org/10.1021/acs.accounts.8b00670
  • Horowitz, A.J., 1991. A primer on sediment-trace element chemistry. U.S.US Geological Survey, Open-File Report, 91-76, Reston, VA.
  • Horowitz, A.J., Elrick, K.A., 1987. The relation of stream sediment surface area, grain size and composition to trace element chemistry. Applied Geochemistry, 2(4), 437–451. IPCC 2013. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Jumps, N., Gray, A.B., Guilinger, J.J., Cowger, W.C., 2022. Wildfire impacts on the persistent suspended sediment dynamics of the Ventura River, California. Journal of Hydrology: Regional Studies, 41, 101096. https://doi.org/10.1016/j.ejrh.2022.101096
  • Kim, C., Han, H., 2024. Long-term effects of wildfires on river water quality: A comprehensive review of the variability of water quality in South Korea. Journal of Water and Health, 22(11), 2146–2159.
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.
  • Korsman, T., Segerstroem, U., 1998. Forest fire and lake-water acidity in a northern Swedish boreal area: Holocene changes in lake-water quality at Makkassjön. Journal of Ecology, 86, 113–124. https://doi.org/10.1046/j.1365-2745.1998.00239.x
  • Kutlu, B., Mutlu, E., 2024. Evaluation of the Şerefiye (Zara-Sivas) dam according to water quality indexes. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(2), 1-12.
  • Küçük, Ö., Aktepe, N., 2017. Effect of phenolic compounds on the flammability in forest fires. International Journal of Engineering Sciences and Research Technology, 6(4), 320–327.
  • Küçük, Ö., Bilgili, E., 2010. Estimation of carbon emissions from experimental fires in young Anatolian black pine (Pinus nigra Arnold) plantations. Fresenius Environmental Bulletin, 19(4a), 676–681.
  • Küçükosmanoğlu, A., 1995. Su kaynaklarının korunması-orman yangınları ilişkisi. Journal of the Faculty of Forestry Istanbul University (JFFIU), 45(1–2), 107–118.
  • Lane, P.N.J., Sheridan, G.J., Noske, P.J., Sherwin, C.B., 2008. Phosphorus and nitrogen exports from SE Australian forests following wildfire. Journal of Hydrology, 361, 186–198.
  • Larsen, I.J., MacDonald, L.H., Brown, E., Rough, D., Welsh, M.J., Pietraszek, J.H., Libohova, Z., de Dios Benavides-Solorio, J., Schaffrath, K., 2009. Causes of post-fire runoff and erosion: Roles of soil water repellency, surface cover, and soil sealing? Soil Science Society of America Journal, 73, 1393–1407.
  • Lathrop, R.G. Jr., 1994. Impacts of the 1988 wildfires on the water quality of Yellowstone and Lewis Lakes, Wyoming. International Journal of Wildland Fire, 4(3), 169–175. https://doi.org/10. 1071/wf9940169
  • Leak, M., Passuello, R., Tyler, B., 2003. I’ve seen fire. I’ve seen rain. I’ve seen muddy waters that I thought would never clear again. Waterworks, 6, 38–44.
  • Leveque, B., Burnet, J.-B., Dorner, S., Bichai, F., 2021. Impact of climate change on the vulnerability of drinking water intakes in a northern region. Sustainable Cities and Society, 66, 102656. https://doi.org/10.1016/j.scs.2020.102656
  • Lydersen, E., Hogberget, R., Moreno, C.E., Garmo, O.A., Hagen, P.C., 2014. The effects of wildfire on the water chemistry of dilute, acidic lakes in southern Norway. Biogeochemistry, 119, 109–124. https://doi.org/10.1007/s10533-014-9951-8
  • Lyon, J.P., O'Connor, J.P., 2008. Smoke on the water: Can riverine fish populations recover following a catastrophic fire‐related sediment slug? Austral Ecology, 33(6), 794–806.
  • Ma, B., Hu, C., Zhang, J., Ulbricht, M., Panglisch, S., 2022. Impact of climate change on drinking water safety. ACS ES&T Water, Volume 2, Issie 2, 259–261. https://doi.org/10.1021/acsestwater. 2c00004
  • Mansilha, C., Duarte, C.G., Melol, A., Ribeiro, J., Flores, D., Marques, J.E., 2019. Impact of wildfire on water quality in Caramulo Mountain ridge (Central Portugal). Sustainable Water Resources Management, 5, 319–331. https://doi.org/10.1007/s40899-017-0171-y
  • MGM, 2024. Türkiye Cumhuriyeti Çevre, Şehircilik ve İklim Değişikliği Bakanlığı Meteoroloji Genel Müdürlüğü, 2024 yılı iklim değerlendirmesi. İklim ve Zirai Meteoroloji Dairesi Başkanlığı, Araştırma Dairesi Başkanlığı, Ankara. https://www.mgm.gov.tr/ FILES/iklim/yillikiklim/2024-iklim-raporu.pdf. Accessed: 10.04.2025
  • Moody, J.A., Martin, D.A., 2001. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surface Processes and Landforms, 26, 1049–1070. https://doi.org/10.1002/esp.253
  • Moody, J. A., Martin, D. A., Haire, S. L., Kinner, D. A., 2008. Linking runoff response to burn severity after a wildfire. Hydrological Processes: An International Journal, 22(13), 2063-2074.
  • Moody, J.A., Martin, D.A., 2009. Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. International Journal of Wildland Fire, 18, 96–115.
  • Moody, J.A., Shakesby, R.A., Robichaud, P.R., Cannon, S.H., Martin, D.A., 2013. Current research issues related to post-wildfire runoff and erosion processes. Earth-Science Reviews, 122, 10–37.
  • Moya, D., De las Heras, J., López Serrano, F.R., 2007. Postfire management in Mediterranean forest: Researching to prevent global change. In IV. International Wildland Fire Conference, 13–17 May 2007, Sevilla, Spain.
  • Mutlu, E., Güzel, A. E., 2024. Tekirler Baraj Gölü (Nallıhan–Ankara) ‘nın Su Kalitesi Parametreleri Üzerine Araştırma. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(2), 105-114.
  • Murphy, S.F., McCleskey, R.B., Martin, D.A., Jeffrey, H.W., Ebel, B.A., 2018. Fire, flood, and drought: Extreme climate events alter flow paths and stream chemistry. Journal of Geophysical Research: Biogeosciences, 123, 2513–2526. https://doi.org/10.1029/ 2017jg004349
  • Nam, S., Yang, H., Lim, H., Kim, J., Li, Q., Moon, H., Choi, H.T., 2022. Short-term effects of forest fire on water quality along a headwater stream in the immediate post-fire period. Water, 15(1), 131. https://doi.org/10.3390/w15010131
  • Nyman, P., Sheridan, G.J., Smith, H.G., Lane, P.N., 2011. Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia. Geomorphology, 125(3), 383–401.
  • O’Dell, K., Hornbrook, R.S., Permar, W., Levin, E.J.T., Garofalo, L.A., Apel, E.C., Blake, N.J., Jarnot, A., Pothier, M.A., Farmer, D.K., Hu, L., Campos, T., Ford, B., Pierce, J.R., Fischer, E.V., 2020. Hazardous air pollutants in fresh and aged western US wildfire smoke and implications for long-term exposure. Environmental Science and Technology, 54, 11838–11847. https://doi.org/10.1021/acs.est.0c04497
  • OGM, 2023. Republic of Türkiye Ministry of Agriculture and Forestry, General Directorate of Forestry. Forestry statistics. https://www. ogm.gov.tr/. Accessed: 29.05.2025.
  • Ongley, E.D., Krishnappan, B.G., Droppo, G., Rao, S.S., Maguire, R.J., 1992. Cohesive sediment transport: Emerging issues for toxic chemical management. Hydrobiologia, 235, 177–187.
  • Önol, B., Bozkurt, D., Turuncoglu, U.U., Sen, O.L., Dalfes, H.N., 2014. Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Eastern Mediterranean–Black Sea region. Climate Dynamics, 42, 1949–1965.
  • Pacaldo, R.S., Aydin, M., Amarille, R.K., 2024. Soil respiration and controls in warmer winter: A snow manipulation study in postfire and undisturbed black pine forests. Ecology and Evolution, 14(3), e11075.
  • Pacaldo, R.S., Aydin, M., Amarille, R.K., 2025. Forest fire and aspects showed no significant effects on most mineral soil properties of black pine forests. Catena, 250, 108801.
  • Parliament of Victoria, 2008. Inquiry into the impact of public land management practices on bushfires in Victoria: Report of the Environment and Natural Resources Committee. Parliamentary Paper No. 116, Melbourne.
  • Paul, M.J., LeDuc, S.D., Lassiter, M.G., Moorhead, L.C., Noyes, P.D., Leibowitz, S.G., 2022. Wildfire induces changes in receiving waters: A review with considerations for water quality management. Water Resources Research, 58(9), e2021WR030699. https://doi.org/10.1029/2021WR030699
  • Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M., 2014. Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal. Hydrological Processes, 28(11), 3681–3690. https://doi.org/10.1002/hyp.9907
  • Pinedo-Gonzalez, P., Hellige, B., West, A.J., Sañudo-Wilhelmy, S.A., 2017. Changes in the size partitioning of metals in storm runoff following wildfires: Implications for the transport of bioactive trace metals. Applied Geochemistry, 83, 62–71. https://doi.org/10.1016/j. apgeochem.2016.07.016
  • Raoelison, O.D., Valenca, R., Lee, A., Karim, S., Webster, J.P., Poulin, B.A., Mohanty, S.K., 2023. Wildfire impacts on surface water quality parameters: Cause of data variability and reporting needs. Environmental Pollution, 317. https://doi.org/10.1016/j.envpol. 2022.120713
  • Reale, J.K., 2015. The effects of catastrophic wildfire on water quality along a river continuum. Freshwater Science, 34, 1426–1442. https://doi.org/10.1086/684001
  • Reneau, S.L., Katzman, D., Kuyumjian, G.A., Lavine, A., Malmon, D.V., 2007. Sediment delivery after a wildfire. Geology, 35(2), 151–154.
  • Rhoades, C.C., Entwistle, D., Butler, D., 2011. The influence of wildfire extent and severity on stream water chemistry, sediment, and temperature following the Hayman Fire, Colorado. International Journal of Wildland Fire, 20(3), 430–442. https://doi.org/10. 1071/wf09086
  • Richter, D.D., Ralston, C.W., Harms, W.R., 1982. Prescribed fire: Effects on water quality and forest nutrient cycling. Science, 215, 661–663. https://doi.org/10.1126/science.215.4533.661
  • Rodríguez-Jiménez, E., Cruz-Pérez, N., Koritnik, J., García-Gil, A., Marazuela, M.Á., Santamarta, J.C., 2024. Revealing the impact of wildfires on groundwater quality: Insights from Sierra de la Culebra (Spain). Chemosphere, 365, 143375.
  • Romero-Matos, J., Cánovas, C.R., Macías, F., Pérez-López, R., León, R., Millán-Becerro, R., Nieto, J.M., 2023. Wildfire effects on the hydrogeochemistry of a river severely polluted by acid mine drainage. Water Research, 233, 119791. https://doi.org/10.1016/j. watres.2023.119791
  • Rust, A.J., Hogue, T.S., Saxe, S., McCray, J.E., 2018. Post-fire water-quality response in the western United States. International Journal of Wildland Fire, 27(3), 203–216. https://doi.org/10.1071/WF17115
  • Samburova, V., Schneider, E., Rüger, C.P., Inouye, S., Sion, B., Axelrod, K., Moosmüller, H., 2023. Modification of soil hydroscopic and chemical properties caused by four recent California, USA megafires. Fire, 6(5), 186. https://doi.org/10.3390/fire6050186
  • Sazawa, K., Sugano, T., Kuramitz, H., 2020. High-heat effects on the physical and chemical properties of soil organic matter and its water-soluble components in Japan's forests: A comprehensive approach using multiple analytical methods. Analytical Sciences, 36(5), 601–609. https://doi.org/10.2116/analsci.20SBP14
  • Schneider, S.R., Lee, K., Santos, G., Abbatt, J.P.D., 2021. Air quality data approach for defining wildfire influence: Impacts on PM2.5, NO2, CO, and O-3 in Western Canadian cities. Environmental Science and Technology, 55, 13709–13717. https://doi.org/10.1021/ acs.est.1c04042
  • Shakesby, R., Doerr, S., 2006. Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews, 74(3–4), 269–307. https://doi.org/10.1016/j.earscirev.2005.10.006
  • Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611.
  • Sheridan, G., Lane, P., Noske, P., Feikema, P., Sherwin, C., Grayson, R., 2007a. Impact of the 2003 Alpine Bushfires on streamflow: Estimated changes in stream exports of sediment, phosphorus and nitrogen following the 2003 bushfires in Eastern Victoria. Murray-Darling Basin Commission, MDBC Publication No. 22/08, Canberra, Australia.
  • Sheridan, G., Lane, P., Noske, P., Feikema, P., Sherwin, C., Grayson, R., 2007b. Impact of the 2003 Alpine bushfires on streamflow: Estimated changes in stream exports of sediment, phosphorus and nitrogen following the 2003 bushfires in Eastern Victoria. Murray-Darling Basin Commission, Canberra.
  • Sherson, L.R., Van Horn, D.J., Gomez-Velez, J.D., Crossey, L.J., Dahm, C.N., 2015. Nutrient dynamics in an alpine headwater stream: Use of continuous water quality sensors to examine responses to wildfire and precipitation events. Hydrological Processes, 29(14), 3193–3207. https://doi.org/10.1002/hyp.10426
  • Smith, H.G., Sheridan, G.J., Lane, P.N., Nyman, P., Haydon, S., 2011. Wildfire effects on water quality in forest catchments: A review with implications for water supply. Journal of Hydrology, 396(1–2), 170–192.
  • Son, J.H., Kim, S., Carlson, K.H., 2015. Effects of wildfire on river water quality and riverbed sediment phosphorus. Water Air and Soil Pollution, 226, 26. https://doi.org/10.1007/s11270-014-2269-2
  • Spence, J.T., Cotton, J.W., Underwood, B.J., Duncan, C.P., 1990. Elementary statistics (5th ed.). Prentice-Hall, Englewood Cliffs, NJ.
  • Stankov Jovanovic, V.P., Ilic, M.D., Markovic, M.S., Mitic, V.D., Nikolic Mandic, S.D., Stojanovic, G.S., 2011. Wild fire impact on copper, zinc, lead and cadmium distribution in soil and relation with abundance in selected plants of Lamiaceae family from Vidlic Mountain (Serbia). Chemosphere, 84(11), 1584–1591. https://doi.org/10.1016/j.chemosphere.2011.05.048
  • Şen, G., 2024. Determining population movement-land use interactions for sustainable land management: Case of Türkiye. Memba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(1), 38-58.
  • Şen, G., 2025. Effects of urban sprawl due to migration on spatiotemporal land use-land cover change: a case study of Bartın in Türkiye. Scientific Reports, 15(1), 815.
  • Tabachnick, B.G., Fidell, L.S., 2013. Using Multivariate Statistics (6th ed.). Pearson, Boston.
  • Tecle, A., Neary, D., 2015. Water quality impacts of forest fires. Journal of Pollution Effects and Control, 3, 140.
  • Trenčiansky, M., Štěrbová, M., Výbošťok, J., Lieskovský, M., 2021. Impacts of forest cover on surface runoff quality in small catchments. BioResources, 16(4), 7830.
  • Turiel-Santos, S., Calvo, L., Kotze, D.J., Taboada, A., 2025. Long-term impact of an extreme wildfire and salvage logging legacies on ecosystem services provision: Decomposition and nutrient cycling in fire-prone Mediterranean pine forests. Forest Ecology and Management, 576, 122381. https://doi.org/10.1016/j. foreco.2024.122381
  • Türkeş, M., Turp, M.T., An, N., Ozturk, T., Kurnaz, M.L., 2020. Impacts of climate change on precipitation climatology and variability in Turkey. In: Water resources of Turkey (Eds: Harmancioglu, N., Altinbilek, D.), Springer, Cham, pp. 467–491.
  • Ulery, A.L., Graham, R.C., Amrhein, C., 1993. Wood-ash composition and soil pH following intense burning. Soil Science, 156(5), 358–364.
  • White, I., Wade, A., Worthy, M., Mueller, N., Daniell, T., Wasson, R., 2006. The vulnerability of water supply catchments to bushfires: Impacts of the January 2003 wildfires on the Australian Capital Territory. Australasian Journal of Water Resources, 10(2), 179–194.
  • Wilkinson, S.N., Wallbrink, P.J., Hancock, G.J., Blake, W.H., Shakesby, R.A., Doerr, S.H., 2009. Fallout radionuclide tracers identify a switch in sediment sources and transport-limited sediment yield following wildfire in a eucalypt forest. Geomorphology, 110, 140–151.
  • Westerling, A.L., Hidalgo, H.G., Cayan, D.R., Swetnam, T.W., 2006. Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940–943. https://doi.org/10.1126/ science.1128834
  • Zhang, Y., Xie, Y.Z., Ma, H.B., Zhang, J., Jing, L., Wang, Y.T., Li, J.P., 2021. The responses of soil respiration to changed precipitation and increased temperature in desert grassland in northern China. Journal of Arid Environments, 193, 104579. https://doi.org/10.1016/j. jaridenv.2021.104579
Toplam 120 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ormancılık Yönetimi ve Çevre, Ormancılıkta Havza Yönetimi
Bölüm Orijinal Araştırma Makalesi
Yazarlar

Sırrı Çiloğlu 0009-0005-1262-8414

Senem Güneş Şen 0000-0001-5566-6676

Proje Numarası TÜBİTAK 2209A-1919B012106780
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 16 Haziran 2025
Kabul Tarihi 1 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 26 Sayı: 3

Kaynak Göster

APA Çiloğlu, S., & Güneş Şen, S. (2025). Forest fire impacts on water quality: Taşköprü case. Turkish Journal of Forestry, 26(3), 342-352. https://doi.org/10.18182/tjf.1720459
AMA Çiloğlu S, Güneş Şen S. Forest fire impacts on water quality: Taşköprü case. Turkish Journal of Forestry. Eylül 2025;26(3):342-352. doi:10.18182/tjf.1720459
Chicago Çiloğlu, Sırrı, ve Senem Güneş Şen. “Forest fire impacts on water quality: Taşköprü case”. Turkish Journal of Forestry 26, sy. 3 (Eylül 2025): 342-52. https://doi.org/10.18182/tjf.1720459.
EndNote Çiloğlu S, Güneş Şen S (01 Eylül 2025) Forest fire impacts on water quality: Taşköprü case. Turkish Journal of Forestry 26 3 342–352.
IEEE S. Çiloğlu ve S. Güneş Şen, “Forest fire impacts on water quality: Taşköprü case”, Turkish Journal of Forestry, c. 26, sy. 3, ss. 342–352, 2025, doi: 10.18182/tjf.1720459.
ISNAD Çiloğlu, Sırrı - Güneş Şen, Senem. “Forest fire impacts on water quality: Taşköprü case”. Turkish Journal of Forestry 26/3 (Eylül2025), 342-352. https://doi.org/10.18182/tjf.1720459.
JAMA Çiloğlu S, Güneş Şen S. Forest fire impacts on water quality: Taşköprü case. Turkish Journal of Forestry. 2025;26:342–352.
MLA Çiloğlu, Sırrı ve Senem Güneş Şen. “Forest fire impacts on water quality: Taşköprü case”. Turkish Journal of Forestry, c. 26, sy. 3, 2025, ss. 342-5, doi:10.18182/tjf.1720459.
Vancouver Çiloğlu S, Güneş Şen S. Forest fire impacts on water quality: Taşköprü case. Turkish Journal of Forestry. 2025;26(3):342-5.