Kiraz Domatesinde (Solanum lycopersicum L. var. cerasiforme) in vitro ve ex vitro koşullardaki mutasyon dozunun belirlenmesi
Yıl 2025,
Cilt: 38 Sayı: 2, 21 - 30, 31.12.2025
Irmak Çakın
,
Kadriye Yaprak Kantoğlu
,
Erhan Aksu
Öz
Bu çalışmada, kiraz domatesi (Solanum lycopersicum L. var. cerasiforme) tohumlarının farklı çimlenme koşullarında (in vitro ve ex vitro) gama ışınına maruz bırakılması sonucu oluşan biyolojik reaksiyonlar değerlendirilerek etkili mutasyon dozu (EMD₅₀) belirlenmiştir. İn vitro denemede, tohumlar 0–80 Gy aralığında gama ışınlarıyla ışınlanmış ve herhangi bir bitki büyüme düzenleyicisi içermeyen Murashige ve Skoog (MS) besiyerinde çimlendirilmiştir. Ex vitro koşullarda ise tohumlar 0–600 Gy arasında değişen dozlarda ışınlanarak toprak karışımıyla doldurulmuş saksılara ekilmiştir. Işınlamadan sonraki ilk 10 günde tohum çimlenmesi ve toplamda 30 günlük inkübasyon süresinin sonunda fidelerde sürgün uzunluğu, yaş ve kuru ağırlık gibi parametreler ölçülmüştür. Yapılan regresyon analizleri sonucunda, in vitro koşullarda EMD₅₀ değeri 39.08 Gy, ex vitro koşullarda ise 608.6 Gy olarak hesaplanmıştır. Elde edilen bulgular, in vitro ve in vivo koşullarda yapılan ışınlama dozunun ışınlama koşullarına bağlı olarak değiştiğini göstermiştir. Bu sonuçlar, mutasyon ıslahı çalışmalarında uygun ışınlama dozunun seçilmesinde eksplantın kültüre alınacağı ortama bağlı olarak dikkate alınması gerektiğinin önemini ortaya koymaktadır.
Etik Beyan
Bu çalışmada herhangi bir insan veya hayvan deneyi gerçekleştirilmemiştir. Araştırmada kullanılan tüm veriler etik ilkelere uygun olarak elde edilmiş olup çalışma bilimsel etik standartlara uygun şekilde yürütülmüştür. Etik kurul onayı gerektiren herhangi bir durum bulunmamaktadır.
Destekleyen Kurum
Türkiye Enerji, Nükleer ve Maden Araştırmaları Kurumu
Teşekkür
Bu çalışma, Türkiye Enerji, Nükleer ve Maden Araştırma Kurumu (TENMAK) Nükleer Enerji Araştırma Enstitüsü(NÜKEN) tarafından sağlanan destekle gerçekleştirilmiştir. Değerli katkılarından dolayı TENMAK NÜKEN yetkililerine ve araştırma süreci boyunca sürekli destek veren tarım ve gıda araştırma grubu üyelerinin tümüne teşekkürlerimizi sunarız.
Kaynakça
-
Çelik, Ö., Ayan, A., Meriç, S., & Atak, Ç. (2021).
Comparison of tolerance related proteomic profiles
of two drought tolerant tomato mutants improved by
gamma radiation. Journal of Biotechnology, 330, 35-44.
https://doi.org/10.1016/j.jbiotec.2021.02.012.
-
Klunklin, W., & Savage, G. P. (2017). Effect of gamma
irradiation on the physical and chemical properties of
cherry tomatoes. Food Chemistry, 229, 417-424. https://
doi.org/10.1016/j.foodchem.2017.02.099.
-
Paduchuri, R., Reddy, K. R., & Reddy, C. S. (2010).
Gamma irradiation induced genetic variability in tomato
(Solanum lycopersicum L.). Journal of Plant Breeding
and Crop Science, 2(5), 89-92.
-
Story, R. N., Smith, R. H., & Jones, D. R. (2010). Influence
of gamma irradiation on the shelf life and quality of
tomatoes. Postharvest Biology and Technology, 56(1),
Çakın, I. et. al / TJNS 38(2), 21 - 30, 2025
74-78.
Food and Agriculture Organization of the United Nations.
(2023). The State of Food and Agriculture 2023:
Revealing the true cost of food to transform agrifood
systems. FAO. https://www.fao.org/3/cc7724en/online/
cc7724en.html
-
T.C. Tarım ve Orman Bakanlığı, Tarımsal Ekonomi ve
Politika Geliştirme Enstitüsü (TEPGE). (2025). Domates
Ürün Raporu 2024 (TEPGE Yayın No. 396, s. 30).
https://arastirma.tarimorman.gov.tr/tepge/
-
Giuliano, G. (2014). Plant carotenoids: Genomics meets
multi-gene engineering. Current Opinion in Plant Biology,
19, 111-117. https://doi.org/10.1016/j.pbi.2014.05.006
-
Ilić, Z. S., Kapoulas, N., & Šunić, L. (2014). Tomato
fruit quality from organic and conventional production.
In V. Pilipavicius (Ed.), Organic agriculture towards
sustainability (pp. 147-169). InTechOpen. https://doi.
org/10.5772/58239
-
Mizil, S. N., Al-Shammary, M. Z., & ElKaaby, E. A.
(2023). Employment of in vitro and gamma mutation
for micropropagation of Golden Sunrise cherry tomato
(Solanum lycopersicum var. cerasiforme). Journal of
Survey in Fisheries Sciences, 10(3S), 3233-3244.
-
Story, E. N., Kopec, R. E., Schwartz, S. J., & Harris,
G. K. (2010). An update on the health effects of
tomato lycopene. Annual Review of Food Science and
Technology, 1(1), 189-210. https://doi.org/10.1146/
annurev.food.102308.124120
-
Hwang, E.-S., & Bowen, P. E. (2002). Can the
consumption of tomatoes or lycopene reduce cancer
risk? Integrative Cancer Therapies, 1(2), 121-132.
https://doi.org/10.1177/153473540200100203
-
Distefano, G., Caruso, M., La Malfa, S., Gentile, A., & Las
Casas, G. (2021). Radiogenetic effects of gamma- and
fast neutron irradiation on different ontogenetic stages
of the tomato. Radiation Physics and Chemistry, 11(3),
215-223. https://doi.org/10.1016/j.radbot.2021.03.005
-
Distefano, G., Caruso, M., La Malfa, S., Gentile, A.,
& Las Casas, G. (2022). Gamma irradiation delays
tomato (Solanum lycopersicum) ripening by inducing
transcriptional changes. Journal of the Science of
Food and Agriculture, 102(5), 2345-2354. https://doi.
org/10.1002/jsfa.12760
-
Fonseca, R., Micol-Ponce, R., Ozuna, C. V., Castañeda,
L., Capel, C., Fernández-Lozano, A., Ortiz-Atienza,
A., Bretones, S., Pérez-Jiménez, J. M., Quevedo-
Colmena, A. S., López-Fábregas, J. D., Barragán-
Lozano, T., Lebrón, R., Faura, C., Capel, J., Angosto,
T., Egea, I., Yuste-Lisbona, F. J., & Lozano, R. (2022).
Resilient response to combined heat and drought stress
conditions of a tomato germplasm collection, including
natural and ethyl methanesulfonate induced variants.
Horticulturae, 10(6),552. https://doi.org/10.3390/
horticulturae10060552.
-
Chun, J. I., Kim, H., Jo, Y. D., Kim, J. B., & Kang, J. H.
(2020). Development of a mutant population of Micro-
Tom tomato using gamma-irradiation. Plant Breeding
and Biotechnology, 8(4), 307-315.
-
Sikder, S., Biswas, P., Hazra, P., Akhtar, S.,
Chattopadhyay, A., Badigannavar, A. M., & D’Souza,
S. F. (2013). Induction of mutation in tomato (Solanum
lycopersicum L.) by gamma irradiation and EMS. Indian
Journal of Genetics and Plant Breeding, 73(4), 392-399.
-
Kantoğlu, K. Y., İç, E., Özmen, D., Bulut, F. Ş., Ergun,
E., Kantoğlu, Ö., & Özçoban, M. (2023). Gamma rays
induced enhancement in the phytonutrient capacities
of tomato (Solanum lycopersicum L.). Frontiers in
Horticulture, 2, 1190145. https://doi.org/10.3389/
fhort.2023.1190145.
-
Sherpa, R., Devadas, R., Bolbhat, S. N., Nikam, T.
D., & Penna, S. (2022). Gamma Radiation Induced
In-Vitro Mutagenesis and Isolation of Mutants for
Early Flowering and Phytomorphological Variations in
Dendrobium ‘Emma White’. Plants, 11(22), 3168. https://
doi.org/10.3390/plants11223168.
-
Nahiyan, A. S. M., Rahman, L., Raiyan, S., Mehraj, H.,
& Uddin, A. F. M. J. (2014). Selection of EMS-induced
tomato variants through TILLING for point mutation.
Bangladesh Research Publication Journal, 10(2), 214-
222. Access link: https://ssrn.com/abstract=3601452.
-
Matsukura, C., Yamaguchi, I., Inamura, M., Ban, Y.,
Kobayashi, Y., Yin, Y. G., Saito, T., Kuwata, C., Imanishi,
S., & Nishimura, S. (2007). Generation of gamma
irradiation-induced mutant lines of the miniature tomato
(Solanum lycopersicum L.) cultivar 'Micro-Tom'. Plant
Biotechnology, 24(1), 39-44. https://doi.org/10.5511/
plantbiotechnology.24.39.
-
Till, B. J., Cooper, J., Tai, T. H., Colowit, P.,
Greene, E. A., Henikoff, S., ... & Comai, L. (2007).
Discovery of chemically induced mutations in rice
by TILLING. BMC Plant Biology, 7, 19. https://doi.
org/10.1186/1471-2229-7-19.
-
Watanabe, S., Mizoguchi, T., Aoki, K., Kubo, Y., Mori,
H., Imanishi, S., Yamazaki, Y., Shibata, D., & Ezura, H.
(2007). Ethylmethanesulfonate (EMS) mutagenesis of
Solanum lycopersicum cv. Micro-Tom for large-scale
mutant screens. Plant Biotechnology, 24(1), 33-38.
https://doi.org/10.5511/plantbiotechnology.24.33.
-
Lee, G. J., Chung, S. J., Park, I. S., Lee, J. S., Kim,
J. B., Kim, D. S., & Lee, I. S. (2008). Variation in the
phenotypic features and transcripts of color mutants of
chrysanthemum (Dendranthema grandiflorum) derived
from gamma ray mutagenesis. Journal of Plant Biology,
51(6), 418-423. https://doi.org/10.1007/BF03036162.
-
Chen, L., Duan, L., Sun, M., Yang, Z., Li, H., Hu, K.,
Yang, H., & Liu, L. (2023). Current trends and insights
on EMS mutagenesis application to studies on plant
abiotic stress tolerance and development. Frontiers in
Plant Science, 13, 1052569. https://doi.org/10.3389/
fpls.2022.1052569.
-
Sağel, Z., Tutluer, M. İ., & Peşkircioğlu, H. (2002).
Bitki ıslahında mutasyon ve doku kültürü teknikleri
(Kurs notları). Türkiye Atom Enerjisi Kurumu, ANTHAM
Nükleer Tarım Radyobiyoloji Bölümü, Ankara 75p.
-
Simco, B. A., Kantoğlu, K. Y., & Sağel, Z. (2014).
Mutasyon ıslahı ile geliştirilen domates hatlarının verim
ve kalite özellikleri. Uluslararası Mezopotamya Tarım
Kongresi, 22-25 Eylül 2014, Diyarbakır, Türkiye..
-
Karaca, M. (2018). Yeni nesil bitki ıslahı yöntemleri
29
Çakın, I. et. al / TJNS 38(2), 21 - 30, 2025
(moleküler bitki ıslahı) bazı avantaj ve dezavantajları.
Research Journal of Agricultural Sciences, 11(1), 39-49.
https://doi.org/10.33462/tabad.41479
-
Kayın, N., & Turan, F. (2023). Bitki Doku Kültürünün
Biyoteknolojik Olarak Kullanımı. Journal of Agricultural
Biotechnology, 4(1), 1-10. https://dergipark.org.tr/en/
pub/joinabt/issue/78158/1300369.
-
Kodym, A., & Afza, R. (2003). Physical and chemical
mutagenesis. In Plant Mutation Breeding and
Biotechnology (pp. 155-170). FAO/IAEA.
-
Roy, S., Banerjee, A., & Basu, S. (2021). Mutation
breeding in plants: Concept, methods and applications.
Journal of Genetic Engineering and Biotechnology,
19(1), 128. https://doi.org/10.1186/s43141-021-00218-1.
-
Franco, M. R., Piotto, F. A., Tulmann-Neto, A., &
Nogueira, D. G. (2015). Rapid screening for selection
of heavy metal-tolerant plants. Crop Breeding and
Applied Biotechnology, 15(2), 88-94. https://doi.
org/10.1590/1984-70332015v15n2a16.
-
International Atomic Energy Agency. (1977). Manual on
mutation breeding (Technical Report Series No. 119).
Vienna: IAEA.
-
International Atomic Energy Agency (IAEA). (2018).
Manual on mutation breeding (3rd ed.; IAEA
TECDOC-1426; IAEA TECDOC-1615). IAEA..
-
Das, P., Islam, M. M., Kabir, M. H., Islam, M., Islam, S. A.
M., Islam, R., Jahan, M. T., Roy, P. K., Halder, R., Roy, P.
K., Mamun, A. N. K., & Hossain, M. L. (2021). Study on
the effect of γ-irradiation (Co-60) on seed germination
and agronomic traits in tomato plants (Lycopersicon
esculentum L.). Notulae Scientia Biologicae, 13(4),
Article 11061. https://doi.org/10.15835/nsb13411061
-
Zafar, S. A., Aslam, M., Albaqami, M., Ashraf, A.,
Hassan, A., Iqbal, J., Maqbool, A., Naeem, M., Al-Yahyai,
R., & Tan Kee Zuan, A. (2022). Gamma rays induced
genetic variability in tomato (Solanum lycopersicum L.)
germplasm. Saudi Journal of Biological Sciences, 29(5),
3300-3307. https://doi.org/10.1016/j.sjbs.2022.02.008.
-
Büyükdinc, D. T., Kantoglu, K. Y., Karatas, A., Ipek, A.,
& Ellialtıoglu, S. S. (2019). Determination of effective
mutagen dose for carrot (Daucus carota ssp sativus
var atrorubens alef and D. carota) callus culture.
International Journal of Science and Technology
Research, 5(3), 15-23.
-
Britt, A. B. (1999). Molecular genetics of DNA repair
in higher plants. Trends in Plant Science, 4(1), 20-25.
https://doi.org/10.1016/S1360-1385(98)01354-5.
-
Kovács, E., & Keresztes, Á. (2002). Effect of gamma
and UV-B/C radiation on plant cells. Micron, 33(2), 199-
210. https://doi.org/10.1016/S0968-4328(01)00011-9.
-
De Micco, V., & Aronne, G. (2012). Morpho-anatomical
traits for plant adaptation to drought. Plant Responses
to Drought Stress, 37-61.
-
Chong, S. P., Ahmad, Z., Bahari, N., & Shamsudin, S.
(2023). Radiosensitivity test of in vitro regeneration
tomato (Solanum lycopersicum) in radiation mutation.
In Proceedings of the National Instrumentation and
Technology Conference (NITC) 2023 (Abstract No.
30
PG-07). Nuklear Malaysia / NITC.
-
Yamaguchi, H., Degi, K., & Morishita, T. (2008).
Effects of ion beam irradiation on mutation induction
and nuclear DNA content in chrysanthemum. Scientia
Horticulturae, 118(1), 108-112.https://doi.org/10.1016/j.
scienta.2008.05.005.
-
Zaka, H. F., Lyle, J. M., & Kovalchuk, I. (2002).
Radiobiological aspects of mutation breeding in plants.
Mutation Research, 510(1-2), 141-152. https://doi.
org/10.1016/S0027 5107(02)00017-6.
-
Wi, S. G., Chung, B. Y., Kim, J. S., Kim, J. H., Baek, M.
H., Lee, J. W., & Kim, Y. S. (2007). Effects of gamma
irradiation on morphological changes and biological
responses in plants. Micron, 38(6), 553-564. https://doi.
org/10.1016/j.micron.2006.11.002.
-
Kim, J. H., Baek, M. H., Chung, B. Y., Wi, S. G., & Kim,
J. S. (2004). Alterations in the photosynthetic pigments
and antioxidant machineries of red pepper (Capsicum
annuum L.) seedlings from gamma-irradiated seeds.
Journal of Plant Biology, 47(4), 314-321. https://doi.
org/10.1007/BF03030542.
-
Kantoğlu, K. Y., Çakın, I., Çetintaş, A. O., Göktuğ, A., &
Laouini, M. (2025). Determining the effective mutation
dose and impacts of irradiation for some vegetable
species. Agriculture and Forestry, 71(2), 7-20. https://
doi.org/10.17707/AgricultForest.71.2.03.
-
Mba, C., Afza, R., Bado, S., & Shu, Q. Y. (2010).
Mutagenic radiations: Molecular mechanisms and
applications in crop improvement. In Q. Y. Shu (Ed.),
Induced plant mutations in the genomics era (pp. 1-17).
FAO/IAEA..
-
Shu, Q. Y., Forster, B. P., & Nakagawa, H. (2012). Plant
mutation breeding and biotechnology. CABI.
-
Chinnusamy, V., & Zhu, J. K. (2009). Epigenetic
regulation of stress responses in plants. Current
Opinion in Plant Biology, 12(2), 133-139. https://doi.
org/10.1016/j.pbi.2008.12.006.
Mutation dose determination of cherry tomato (Solanum lycopersicum L. cerasiforme) under in vitro and ex vitro conditionsions
Yıl 2025,
Cilt: 38 Sayı: 2, 21 - 30, 31.12.2025
Irmak Çakın
,
Kadriye Yaprak Kantoğlu
,
Erhan Aksu
Öz
In this study, biological responses resulting from gamma irradiation of cherry tomato (Solanum lycopersicum L. var. cerasiforme) seeds under different germination conditions (in vitro and ex vitro) were evaluated, and the effective mutation dose (EMD₅₀) was determined. In the in vitro experiment, seeds were irradiated with gamma rays at doses ranging from 0 to 80 Gy and germinated on Murashige and Skoog (MS) medium without any plant growth regulators. In the ex vitro conditions, seeds were exposed to doses between 0 and 600 Gy and sown in pots filled with a soil mixture. Seed germination was monitored during the first 10 days post-irradiation, and parameters such as shoot length, fresh weight, and dry weight of seedlings were measured at the end of a 30-day incubation period. Regression analyses revealed an EMD₅₀ value of 39.08 Gy under in vitro conditions and 608.6 Gy under ex vitro conditions. The findings demonstrate that the effective irradiation dose varies depending on the irradiation conditions (in vitro vs. ex vitro). These results emphasize the importance of considering the culture conditions when selecting the appropriate irradiation dose in mutation breeding programs in cherry tomato.
Etik Beyan
No human or animal experiments were conducted in this study. All data used in the research were obtained in accordance with ethical principles, and the study was carried out in compliance with scientific ethical standards. There was no situation requiring approval from an ethics committee.
Destekleyen Kurum
Turkish Energy, Nuclear and Mineral Research Agency (TENMAK)
Teşekkür
This study was carried out with the support provided by the Nuclear Energy Research Institute of the Turkish Energy, Nuclear and Mineral Research Agency (TENMAK NÜKEN). We would like to express our gratitude to the officials of TENMAK NÜKEN for their valuable contributions, and to all members of the agriculture and food research group for their continuous support throughout the research process.
Kaynakça
-
Çelik, Ö., Ayan, A., Meriç, S., & Atak, Ç. (2021).
Comparison of tolerance related proteomic profiles
of two drought tolerant tomato mutants improved by
gamma radiation. Journal of Biotechnology, 330, 35-44.
https://doi.org/10.1016/j.jbiotec.2021.02.012.
-
Klunklin, W., & Savage, G. P. (2017). Effect of gamma
irradiation on the physical and chemical properties of
cherry tomatoes. Food Chemistry, 229, 417-424. https://
doi.org/10.1016/j.foodchem.2017.02.099.
-
Paduchuri, R., Reddy, K. R., & Reddy, C. S. (2010).
Gamma irradiation induced genetic variability in tomato
(Solanum lycopersicum L.). Journal of Plant Breeding
and Crop Science, 2(5), 89-92.
-
Story, R. N., Smith, R. H., & Jones, D. R. (2010). Influence
of gamma irradiation on the shelf life and quality of
tomatoes. Postharvest Biology and Technology, 56(1),
Çakın, I. et. al / TJNS 38(2), 21 - 30, 2025
74-78.
Food and Agriculture Organization of the United Nations.
(2023). The State of Food and Agriculture 2023:
Revealing the true cost of food to transform agrifood
systems. FAO. https://www.fao.org/3/cc7724en/online/
cc7724en.html
-
T.C. Tarım ve Orman Bakanlığı, Tarımsal Ekonomi ve
Politika Geliştirme Enstitüsü (TEPGE). (2025). Domates
Ürün Raporu 2024 (TEPGE Yayın No. 396, s. 30).
https://arastirma.tarimorman.gov.tr/tepge/
-
Giuliano, G. (2014). Plant carotenoids: Genomics meets
multi-gene engineering. Current Opinion in Plant Biology,
19, 111-117. https://doi.org/10.1016/j.pbi.2014.05.006
-
Ilić, Z. S., Kapoulas, N., & Šunić, L. (2014). Tomato
fruit quality from organic and conventional production.
In V. Pilipavicius (Ed.), Organic agriculture towards
sustainability (pp. 147-169). InTechOpen. https://doi.
org/10.5772/58239
-
Mizil, S. N., Al-Shammary, M. Z., & ElKaaby, E. A.
(2023). Employment of in vitro and gamma mutation
for micropropagation of Golden Sunrise cherry tomato
(Solanum lycopersicum var. cerasiforme). Journal of
Survey in Fisheries Sciences, 10(3S), 3233-3244.
-
Story, E. N., Kopec, R. E., Schwartz, S. J., & Harris,
G. K. (2010). An update on the health effects of
tomato lycopene. Annual Review of Food Science and
Technology, 1(1), 189-210. https://doi.org/10.1146/
annurev.food.102308.124120
-
Hwang, E.-S., & Bowen, P. E. (2002). Can the
consumption of tomatoes or lycopene reduce cancer
risk? Integrative Cancer Therapies, 1(2), 121-132.
https://doi.org/10.1177/153473540200100203
-
Distefano, G., Caruso, M., La Malfa, S., Gentile, A., & Las
Casas, G. (2021). Radiogenetic effects of gamma- and
fast neutron irradiation on different ontogenetic stages
of the tomato. Radiation Physics and Chemistry, 11(3),
215-223. https://doi.org/10.1016/j.radbot.2021.03.005
-
Distefano, G., Caruso, M., La Malfa, S., Gentile, A.,
& Las Casas, G. (2022). Gamma irradiation delays
tomato (Solanum lycopersicum) ripening by inducing
transcriptional changes. Journal of the Science of
Food and Agriculture, 102(5), 2345-2354. https://doi.
org/10.1002/jsfa.12760
-
Fonseca, R., Micol-Ponce, R., Ozuna, C. V., Castañeda,
L., Capel, C., Fernández-Lozano, A., Ortiz-Atienza,
A., Bretones, S., Pérez-Jiménez, J. M., Quevedo-
Colmena, A. S., López-Fábregas, J. D., Barragán-
Lozano, T., Lebrón, R., Faura, C., Capel, J., Angosto,
T., Egea, I., Yuste-Lisbona, F. J., & Lozano, R. (2022).
Resilient response to combined heat and drought stress
conditions of a tomato germplasm collection, including
natural and ethyl methanesulfonate induced variants.
Horticulturae, 10(6),552. https://doi.org/10.3390/
horticulturae10060552.
-
Chun, J. I., Kim, H., Jo, Y. D., Kim, J. B., & Kang, J. H.
(2020). Development of a mutant population of Micro-
Tom tomato using gamma-irradiation. Plant Breeding
and Biotechnology, 8(4), 307-315.
-
Sikder, S., Biswas, P., Hazra, P., Akhtar, S.,
Chattopadhyay, A., Badigannavar, A. M., & D’Souza,
S. F. (2013). Induction of mutation in tomato (Solanum
lycopersicum L.) by gamma irradiation and EMS. Indian
Journal of Genetics and Plant Breeding, 73(4), 392-399.
-
Kantoğlu, K. Y., İç, E., Özmen, D., Bulut, F. Ş., Ergun,
E., Kantoğlu, Ö., & Özçoban, M. (2023). Gamma rays
induced enhancement in the phytonutrient capacities
of tomato (Solanum lycopersicum L.). Frontiers in
Horticulture, 2, 1190145. https://doi.org/10.3389/
fhort.2023.1190145.
-
Sherpa, R., Devadas, R., Bolbhat, S. N., Nikam, T.
D., & Penna, S. (2022). Gamma Radiation Induced
In-Vitro Mutagenesis and Isolation of Mutants for
Early Flowering and Phytomorphological Variations in
Dendrobium ‘Emma White’. Plants, 11(22), 3168. https://
doi.org/10.3390/plants11223168.
-
Nahiyan, A. S. M., Rahman, L., Raiyan, S., Mehraj, H.,
& Uddin, A. F. M. J. (2014). Selection of EMS-induced
tomato variants through TILLING for point mutation.
Bangladesh Research Publication Journal, 10(2), 214-
222. Access link: https://ssrn.com/abstract=3601452.
-
Matsukura, C., Yamaguchi, I., Inamura, M., Ban, Y.,
Kobayashi, Y., Yin, Y. G., Saito, T., Kuwata, C., Imanishi,
S., & Nishimura, S. (2007). Generation of gamma
irradiation-induced mutant lines of the miniature tomato
(Solanum lycopersicum L.) cultivar 'Micro-Tom'. Plant
Biotechnology, 24(1), 39-44. https://doi.org/10.5511/
plantbiotechnology.24.39.
-
Till, B. J., Cooper, J., Tai, T. H., Colowit, P.,
Greene, E. A., Henikoff, S., ... & Comai, L. (2007).
Discovery of chemically induced mutations in rice
by TILLING. BMC Plant Biology, 7, 19. https://doi.
org/10.1186/1471-2229-7-19.
-
Watanabe, S., Mizoguchi, T., Aoki, K., Kubo, Y., Mori,
H., Imanishi, S., Yamazaki, Y., Shibata, D., & Ezura, H.
(2007). Ethylmethanesulfonate (EMS) mutagenesis of
Solanum lycopersicum cv. Micro-Tom for large-scale
mutant screens. Plant Biotechnology, 24(1), 33-38.
https://doi.org/10.5511/plantbiotechnology.24.33.
-
Lee, G. J., Chung, S. J., Park, I. S., Lee, J. S., Kim,
J. B., Kim, D. S., & Lee, I. S. (2008). Variation in the
phenotypic features and transcripts of color mutants of
chrysanthemum (Dendranthema grandiflorum) derived
from gamma ray mutagenesis. Journal of Plant Biology,
51(6), 418-423. https://doi.org/10.1007/BF03036162.
-
Chen, L., Duan, L., Sun, M., Yang, Z., Li, H., Hu, K.,
Yang, H., & Liu, L. (2023). Current trends and insights
on EMS mutagenesis application to studies on plant
abiotic stress tolerance and development. Frontiers in
Plant Science, 13, 1052569. https://doi.org/10.3389/
fpls.2022.1052569.
-
Sağel, Z., Tutluer, M. İ., & Peşkircioğlu, H. (2002).
Bitki ıslahında mutasyon ve doku kültürü teknikleri
(Kurs notları). Türkiye Atom Enerjisi Kurumu, ANTHAM
Nükleer Tarım Radyobiyoloji Bölümü, Ankara 75p.
-
Simco, B. A., Kantoğlu, K. Y., & Sağel, Z. (2014).
Mutasyon ıslahı ile geliştirilen domates hatlarının verim
ve kalite özellikleri. Uluslararası Mezopotamya Tarım
Kongresi, 22-25 Eylül 2014, Diyarbakır, Türkiye..
-
Karaca, M. (2018). Yeni nesil bitki ıslahı yöntemleri
29
Çakın, I. et. al / TJNS 38(2), 21 - 30, 2025
(moleküler bitki ıslahı) bazı avantaj ve dezavantajları.
Research Journal of Agricultural Sciences, 11(1), 39-49.
https://doi.org/10.33462/tabad.41479
-
Kayın, N., & Turan, F. (2023). Bitki Doku Kültürünün
Biyoteknolojik Olarak Kullanımı. Journal of Agricultural
Biotechnology, 4(1), 1-10. https://dergipark.org.tr/en/
pub/joinabt/issue/78158/1300369.
-
Kodym, A., & Afza, R. (2003). Physical and chemical
mutagenesis. In Plant Mutation Breeding and
Biotechnology (pp. 155-170). FAO/IAEA.
-
Roy, S., Banerjee, A., & Basu, S. (2021). Mutation
breeding in plants: Concept, methods and applications.
Journal of Genetic Engineering and Biotechnology,
19(1), 128. https://doi.org/10.1186/s43141-021-00218-1.
-
Franco, M. R., Piotto, F. A., Tulmann-Neto, A., &
Nogueira, D. G. (2015). Rapid screening for selection
of heavy metal-tolerant plants. Crop Breeding and
Applied Biotechnology, 15(2), 88-94. https://doi.
org/10.1590/1984-70332015v15n2a16.
-
International Atomic Energy Agency. (1977). Manual on
mutation breeding (Technical Report Series No. 119).
Vienna: IAEA.
-
International Atomic Energy Agency (IAEA). (2018).
Manual on mutation breeding (3rd ed.; IAEA
TECDOC-1426; IAEA TECDOC-1615). IAEA..
-
Das, P., Islam, M. M., Kabir, M. H., Islam, M., Islam, S. A.
M., Islam, R., Jahan, M. T., Roy, P. K., Halder, R., Roy, P.
K., Mamun, A. N. K., & Hossain, M. L. (2021). Study on
the effect of γ-irradiation (Co-60) on seed germination
and agronomic traits in tomato plants (Lycopersicon
esculentum L.). Notulae Scientia Biologicae, 13(4),
Article 11061. https://doi.org/10.15835/nsb13411061
-
Zafar, S. A., Aslam, M., Albaqami, M., Ashraf, A.,
Hassan, A., Iqbal, J., Maqbool, A., Naeem, M., Al-Yahyai,
R., & Tan Kee Zuan, A. (2022). Gamma rays induced
genetic variability in tomato (Solanum lycopersicum L.)
germplasm. Saudi Journal of Biological Sciences, 29(5),
3300-3307. https://doi.org/10.1016/j.sjbs.2022.02.008.
-
Büyükdinc, D. T., Kantoglu, K. Y., Karatas, A., Ipek, A.,
& Ellialtıoglu, S. S. (2019). Determination of effective
mutagen dose for carrot (Daucus carota ssp sativus
var atrorubens alef and D. carota) callus culture.
International Journal of Science and Technology
Research, 5(3), 15-23.
-
Britt, A. B. (1999). Molecular genetics of DNA repair
in higher plants. Trends in Plant Science, 4(1), 20-25.
https://doi.org/10.1016/S1360-1385(98)01354-5.
-
Kovács, E., & Keresztes, Á. (2002). Effect of gamma
and UV-B/C radiation on plant cells. Micron, 33(2), 199-
210. https://doi.org/10.1016/S0968-4328(01)00011-9.
-
De Micco, V., & Aronne, G. (2012). Morpho-anatomical
traits for plant adaptation to drought. Plant Responses
to Drought Stress, 37-61.
-
Chong, S. P., Ahmad, Z., Bahari, N., & Shamsudin, S.
(2023). Radiosensitivity test of in vitro regeneration
tomato (Solanum lycopersicum) in radiation mutation.
In Proceedings of the National Instrumentation and
Technology Conference (NITC) 2023 (Abstract No.
30
PG-07). Nuklear Malaysia / NITC.
-
Yamaguchi, H., Degi, K., & Morishita, T. (2008).
Effects of ion beam irradiation on mutation induction
and nuclear DNA content in chrysanthemum. Scientia
Horticulturae, 118(1), 108-112.https://doi.org/10.1016/j.
scienta.2008.05.005.
-
Zaka, H. F., Lyle, J. M., & Kovalchuk, I. (2002).
Radiobiological aspects of mutation breeding in plants.
Mutation Research, 510(1-2), 141-152. https://doi.
org/10.1016/S0027 5107(02)00017-6.
-
Wi, S. G., Chung, B. Y., Kim, J. S., Kim, J. H., Baek, M.
H., Lee, J. W., & Kim, Y. S. (2007). Effects of gamma
irradiation on morphological changes and biological
responses in plants. Micron, 38(6), 553-564. https://doi.
org/10.1016/j.micron.2006.11.002.
-
Kim, J. H., Baek, M. H., Chung, B. Y., Wi, S. G., & Kim,
J. S. (2004). Alterations in the photosynthetic pigments
and antioxidant machineries of red pepper (Capsicum
annuum L.) seedlings from gamma-irradiated seeds.
Journal of Plant Biology, 47(4), 314-321. https://doi.
org/10.1007/BF03030542.
-
Kantoğlu, K. Y., Çakın, I., Çetintaş, A. O., Göktuğ, A., &
Laouini, M. (2025). Determining the effective mutation
dose and impacts of irradiation for some vegetable
species. Agriculture and Forestry, 71(2), 7-20. https://
doi.org/10.17707/AgricultForest.71.2.03.
-
Mba, C., Afza, R., Bado, S., & Shu, Q. Y. (2010).
Mutagenic radiations: Molecular mechanisms and
applications in crop improvement. In Q. Y. Shu (Ed.),
Induced plant mutations in the genomics era (pp. 1-17).
FAO/IAEA..
-
Shu, Q. Y., Forster, B. P., & Nakagawa, H. (2012). Plant
mutation breeding and biotechnology. CABI.
-
Chinnusamy, V., & Zhu, J. K. (2009). Epigenetic
regulation of stress responses in plants. Current
Opinion in Plant Biology, 12(2), 133-139. https://doi.
org/10.1016/j.pbi.2008.12.006.