Araştırma Makalesi
BibTex RIS Kaynak Göster

Kiraz Domatesinde (Solanum lycopersicum L. var. cerasiforme) in vitro ve ex vitro koşullardaki mutasyon dozunun belirlenmesi

Yıl 2025, Cilt: 38 Sayı: 2, 21 - 30, 31.12.2025

Öz

Bu çalışmada, kiraz domatesi (Solanum lycopersicum L. var. cerasiforme) tohumlarının farklı çimlenme koşullarında (in vitro ve ex vitro) gama ışınına maruz bırakılması sonucu oluşan biyolojik reaksiyonlar değerlendirilerek etkili mutasyon dozu (EMD₅₀) belirlenmiştir. İn vitro denemede, tohumlar 0–80 Gy aralığında gama ışınlarıyla ışınlanmış ve herhangi bir bitki büyüme düzenleyicisi içermeyen Murashige ve Skoog (MS) besiyerinde çimlendirilmiştir. Ex vitro koşullarda ise tohumlar 0–600 Gy arasında değişen dozlarda ışınlanarak toprak karışımıyla doldurulmuş saksılara ekilmiştir. Işınlamadan sonraki ilk 10 günde tohum çimlenmesi ve toplamda 30 günlük inkübasyon süresinin sonunda fidelerde sürgün uzunluğu, yaş ve kuru ağırlık gibi parametreler ölçülmüştür. Yapılan regresyon analizleri sonucunda, in vitro koşullarda EMD₅₀ değeri 39.08 Gy, ex vitro koşullarda ise 608.6 Gy olarak hesaplanmıştır. Elde edilen bulgular, in vitro ve in vivo koşullarda yapılan ışınlama dozunun ışınlama koşullarına bağlı olarak değiştiğini göstermiştir. Bu sonuçlar, mutasyon ıslahı çalışmalarında uygun ışınlama dozunun seçilmesinde eksplantın kültüre alınacağı ortama bağlı olarak dikkate alınması gerektiğinin önemini ortaya koymaktadır.

Etik Beyan

Bu çalışmada herhangi bir insan veya hayvan deneyi gerçekleştirilmemiştir. Araştırmada kullanılan tüm veriler etik ilkelere uygun olarak elde edilmiş olup çalışma bilimsel etik standartlara uygun şekilde yürütülmüştür. Etik kurul onayı gerektiren herhangi bir durum bulunmamaktadır.

Destekleyen Kurum

Türkiye Enerji, Nükleer ve Maden Araştırmaları Kurumu

Teşekkür

Bu çalışma, Türkiye Enerji, Nükleer ve Maden Araştırma Kurumu (TENMAK) Nükleer Enerji Araştırma Enstitüsü(NÜKEN) tarafından sağlanan destekle gerçekleştirilmiştir. Değerli katkılarından dolayı TENMAK NÜKEN yetkililerine ve araştırma süreci boyunca sürekli destek veren tarım ve gıda araştırma grubu üyelerinin tümüne teşekkürlerimizi sunarız.

Kaynakça

  • Çelik, Ö., Ayan, A., Meriç, S., & Atak, Ç. (2021). Comparison of tolerance related proteomic profiles of two drought tolerant tomato mutants improved by gamma radiation. Journal of Biotechnology, 330, 35-44. https://doi.org/10.1016/j.jbiotec.2021.02.012.
  • Klunklin, W., & Savage, G. P. (2017). Effect of gamma irradiation on the physical and chemical properties of cherry tomatoes. Food Chemistry, 229, 417-424. https:// doi.org/10.1016/j.foodchem.2017.02.099.
  • Paduchuri, R., Reddy, K. R., & Reddy, C. S. (2010). Gamma irradiation induced genetic variability in tomato (Solanum lycopersicum L.). Journal of Plant Breeding and Crop Science, 2(5), 89-92.
  • Story, R. N., Smith, R. H., & Jones, D. R. (2010). Influence of gamma irradiation on the shelf life and quality of tomatoes. Postharvest Biology and Technology, 56(1), Çakın, I. et. al / TJNS 38(2), 21 - 30, 2025 74-78. Food and Agriculture Organization of the United Nations. (2023). The State of Food and Agriculture 2023: Revealing the true cost of food to transform agrifood systems. FAO. https://www.fao.org/3/cc7724en/online/ cc7724en.html
  • T.C. Tarım ve Orman Bakanlığı, Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü (TEPGE). (2025). Domates Ürün Raporu 2024 (TEPGE Yayın No. 396, s. 30). https://arastirma.tarimorman.gov.tr/tepge/
  • Giuliano, G. (2014). Plant carotenoids: Genomics meets multi-gene engineering. Current Opinion in Plant Biology, 19, 111-117. https://doi.org/10.1016/j.pbi.2014.05.006
  • Ilić, Z. S., Kapoulas, N., & Šunić, L. (2014). Tomato fruit quality from organic and conventional production. In V. Pilipavicius (Ed.), Organic agriculture towards sustainability (pp. 147-169). InTechOpen. https://doi. org/10.5772/58239
  • Mizil, S. N., Al-Shammary, M. Z., & ElKaaby, E. A. (2023). Employment of in vitro and gamma mutation for micropropagation of Golden Sunrise cherry tomato (Solanum lycopersicum var. cerasiforme). Journal of Survey in Fisheries Sciences, 10(3S), 3233-3244.
  • Story, E. N., Kopec, R. E., Schwartz, S. J., & Harris, G. K. (2010). An update on the health effects of tomato lycopene. Annual Review of Food Science and Technology, 1(1), 189-210. https://doi.org/10.1146/ annurev.food.102308.124120
  • Hwang, E.-S., & Bowen, P. E. (2002). Can the consumption of tomatoes or lycopene reduce cancer risk? Integrative Cancer Therapies, 1(2), 121-132. https://doi.org/10.1177/153473540200100203
  • Distefano, G., Caruso, M., La Malfa, S., Gentile, A., & Las Casas, G. (2021). Radiogenetic effects of gamma- and fast neutron irradiation on different ontogenetic stages of the tomato. Radiation Physics and Chemistry, 11(3), 215-223. https://doi.org/10.1016/j.radbot.2021.03.005
  • Distefano, G., Caruso, M., La Malfa, S., Gentile, A., & Las Casas, G. (2022). Gamma irradiation delays tomato (Solanum lycopersicum) ripening by inducing transcriptional changes. Journal of the Science of Food and Agriculture, 102(5), 2345-2354. https://doi. org/10.1002/jsfa.12760
  • Fonseca, R., Micol-Ponce, R., Ozuna, C. V., Castañeda, L., Capel, C., Fernández-Lozano, A., Ortiz-Atienza, A., Bretones, S., Pérez-Jiménez, J. M., Quevedo- Colmena, A. S., López-Fábregas, J. D., Barragán- Lozano, T., Lebrón, R., Faura, C., Capel, J., Angosto, T., Egea, I., Yuste-Lisbona, F. J., & Lozano, R. (2022). Resilient response to combined heat and drought stress conditions of a tomato germplasm collection, including natural and ethyl methanesulfonate induced variants. Horticulturae, 10(6),552. https://doi.org/10.3390/ horticulturae10060552.
  • Chun, J. I., Kim, H., Jo, Y. D., Kim, J. B., & Kang, J. H. (2020). Development of a mutant population of Micro- Tom tomato using gamma-irradiation. Plant Breeding and Biotechnology, 8(4), 307-315.
  • Sikder, S., Biswas, P., Hazra, P., Akhtar, S., Chattopadhyay, A., Badigannavar, A. M., & D’Souza, S. F. (2013). Induction of mutation in tomato (Solanum lycopersicum L.) by gamma irradiation and EMS. Indian Journal of Genetics and Plant Breeding, 73(4), 392-399.
  • Kantoğlu, K. Y., İç, E., Özmen, D., Bulut, F. Ş., Ergun, E., Kantoğlu, Ö., & Özçoban, M. (2023). Gamma rays induced enhancement in the phytonutrient capacities of tomato (Solanum lycopersicum L.). Frontiers in Horticulture, 2, 1190145. https://doi.org/10.3389/ fhort.2023.1190145.
  • Sherpa, R., Devadas, R., Bolbhat, S. N., Nikam, T. D., & Penna, S. (2022). Gamma Radiation Induced In-Vitro Mutagenesis and Isolation of Mutants for Early Flowering and Phytomorphological Variations in Dendrobium ‘Emma White’. Plants, 11(22), 3168. https:// doi.org/10.3390/plants11223168.
  • Nahiyan, A. S. M., Rahman, L., Raiyan, S., Mehraj, H., & Uddin, A. F. M. J. (2014). Selection of EMS-induced tomato variants through TILLING for point mutation. Bangladesh Research Publication Journal, 10(2), 214- 222. Access link: https://ssrn.com/abstract=3601452.
  • Matsukura, C., Yamaguchi, I., Inamura, M., Ban, Y., Kobayashi, Y., Yin, Y. G., Saito, T., Kuwata, C., Imanishi, S., & Nishimura, S. (2007). Generation of gamma irradiation-induced mutant lines of the miniature tomato (Solanum lycopersicum L.) cultivar 'Micro-Tom'. Plant Biotechnology, 24(1), 39-44. https://doi.org/10.5511/ plantbiotechnology.24.39.
  • Till, B. J., Cooper, J., Tai, T. H., Colowit, P., Greene, E. A., Henikoff, S., ... & Comai, L. (2007). Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biology, 7, 19. https://doi. org/10.1186/1471-2229-7-19.
  • Watanabe, S., Mizoguchi, T., Aoki, K., Kubo, Y., Mori, H., Imanishi, S., Yamazaki, Y., Shibata, D., & Ezura, H. (2007). Ethylmethanesulfonate (EMS) mutagenesis of Solanum lycopersicum cv. Micro-Tom for large-scale mutant screens. Plant Biotechnology, 24(1), 33-38. https://doi.org/10.5511/plantbiotechnology.24.33.
  • Lee, G. J., Chung, S. J., Park, I. S., Lee, J. S., Kim, J. B., Kim, D. S., & Lee, I. S. (2008). Variation in the phenotypic features and transcripts of color mutants of chrysanthemum (Dendranthema grandiflorum) derived from gamma ray mutagenesis. Journal of Plant Biology, 51(6), 418-423. https://doi.org/10.1007/BF03036162.
  • Chen, L., Duan, L., Sun, M., Yang, Z., Li, H., Hu, K., Yang, H., & Liu, L. (2023). Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development. Frontiers in Plant Science, 13, 1052569. https://doi.org/10.3389/ fpls.2022.1052569.
  • Sağel, Z., Tutluer, M. İ., & Peşkircioğlu, H. (2002). Bitki ıslahında mutasyon ve doku kültürü teknikleri (Kurs notları). Türkiye Atom Enerjisi Kurumu, ANTHAM Nükleer Tarım Radyobiyoloji Bölümü, Ankara 75p.
  • Simco, B. A., Kantoğlu, K. Y., & Sağel, Z. (2014). Mutasyon ıslahı ile geliştirilen domates hatlarının verim ve kalite özellikleri. Uluslararası Mezopotamya Tarım Kongresi, 22-25 Eylül 2014, Diyarbakır, Türkiye..
  • Karaca, M. (2018). Yeni nesil bitki ıslahı yöntemleri 29 Çakın, I. et. al / TJNS 38(2), 21 - 30, 2025 (moleküler bitki ıslahı) bazı avantaj ve dezavantajları. Research Journal of Agricultural Sciences, 11(1), 39-49. https://doi.org/10.33462/tabad.41479
  • Kayın, N., & Turan, F. (2023). Bitki Doku Kültürünün Biyoteknolojik Olarak Kullanımı. Journal of Agricultural Biotechnology, 4(1), 1-10. https://dergipark.org.tr/en/ pub/joinabt/issue/78158/1300369.
  • Kodym, A., & Afza, R. (2003). Physical and chemical mutagenesis. In Plant Mutation Breeding and Biotechnology (pp. 155-170). FAO/IAEA.
  • Roy, S., Banerjee, A., & Basu, S. (2021). Mutation breeding in plants: Concept, methods and applications. Journal of Genetic Engineering and Biotechnology, 19(1), 128. https://doi.org/10.1186/s43141-021-00218-1.
  • Franco, M. R., Piotto, F. A., Tulmann-Neto, A., & Nogueira, D. G. (2015). Rapid screening for selection of heavy metal-tolerant plants. Crop Breeding and Applied Biotechnology, 15(2), 88-94. https://doi. org/10.1590/1984-70332015v15n2a16.
  • International Atomic Energy Agency. (1977). Manual on mutation breeding (Technical Report Series No. 119). Vienna: IAEA.
  • International Atomic Energy Agency (IAEA). (2018). Manual on mutation breeding (3rd ed.; IAEA TECDOC-1426; IAEA TECDOC-1615). IAEA..
  • Das, P., Islam, M. M., Kabir, M. H., Islam, M., Islam, S. A. M., Islam, R., Jahan, M. T., Roy, P. K., Halder, R., Roy, P. K., Mamun, A. N. K., & Hossain, M. L. (2021). Study on the effect of γ-irradiation (Co-60) on seed germination and agronomic traits in tomato plants (Lycopersicon esculentum L.). Notulae Scientia Biologicae, 13(4), Article 11061. https://doi.org/10.15835/nsb13411061
  • Zafar, S. A., Aslam, M., Albaqami, M., Ashraf, A., Hassan, A., Iqbal, J., Maqbool, A., Naeem, M., Al-Yahyai, R., & Tan Kee Zuan, A. (2022). Gamma rays induced genetic variability in tomato (Solanum lycopersicum L.) germplasm. Saudi Journal of Biological Sciences, 29(5), 3300-3307. https://doi.org/10.1016/j.sjbs.2022.02.008.
  • Büyükdinc, D. T., Kantoglu, K. Y., Karatas, A., Ipek, A., & Ellialtıoglu, S. S. (2019). Determination of effective mutagen dose for carrot (Daucus carota ssp sativus var atrorubens alef and D. carota) callus culture. International Journal of Science and Technology Research, 5(3), 15-23.
  • Britt, A. B. (1999). Molecular genetics of DNA repair in higher plants. Trends in Plant Science, 4(1), 20-25. https://doi.org/10.1016/S1360-1385(98)01354-5.
  • Kovács, E., & Keresztes, Á. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199- 210. https://doi.org/10.1016/S0968-4328(01)00011-9.
  • De Micco, V., & Aronne, G. (2012). Morpho-anatomical traits for plant adaptation to drought. Plant Responses to Drought Stress, 37-61.
  • Chong, S. P., Ahmad, Z., Bahari, N., & Shamsudin, S. (2023). Radiosensitivity test of in vitro regeneration tomato (Solanum lycopersicum) in radiation mutation. In Proceedings of the National Instrumentation and Technology Conference (NITC) 2023 (Abstract No. 30 PG-07). Nuklear Malaysia / NITC.
  • Yamaguchi, H., Degi, K., & Morishita, T. (2008). Effects of ion beam irradiation on mutation induction and nuclear DNA content in chrysanthemum. Scientia Horticulturae, 118(1), 108-112.https://doi.org/10.1016/j. scienta.2008.05.005.
  • Zaka, H. F., Lyle, J. M., & Kovalchuk, I. (2002). Radiobiological aspects of mutation breeding in plants. Mutation Research, 510(1-2), 141-152. https://doi. org/10.1016/S0027 5107(02)00017-6.
  • Wi, S. G., Chung, B. Y., Kim, J. S., Kim, J. H., Baek, M. H., Lee, J. W., & Kim, Y. S. (2007). Effects of gamma irradiation on morphological changes and biological responses in plants. Micron, 38(6), 553-564. https://doi. org/10.1016/j.micron.2006.11.002.
  • Kim, J. H., Baek, M. H., Chung, B. Y., Wi, S. G., & Kim, J. S. (2004). Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds. Journal of Plant Biology, 47(4), 314-321. https://doi. org/10.1007/BF03030542.
  • Kantoğlu, K. Y., Çakın, I., Çetintaş, A. O., Göktuğ, A., & Laouini, M. (2025). Determining the effective mutation dose and impacts of irradiation for some vegetable species. Agriculture and Forestry, 71(2), 7-20. https:// doi.org/10.17707/AgricultForest.71.2.03.
  • Mba, C., Afza, R., Bado, S., & Shu, Q. Y. (2010). Mutagenic radiations: Molecular mechanisms and applications in crop improvement. In Q. Y. Shu (Ed.), Induced plant mutations in the genomics era (pp. 1-17). FAO/IAEA..
  • Shu, Q. Y., Forster, B. P., & Nakagawa, H. (2012). Plant mutation breeding and biotechnology. CABI.
  • Chinnusamy, V., & Zhu, J. K. (2009). Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 12(2), 133-139. https://doi. org/10.1016/j.pbi.2008.12.006.

Mutation dose determination of cherry tomato (Solanum lycopersicum L. cerasiforme) under in vitro and ex vitro conditionsions

Yıl 2025, Cilt: 38 Sayı: 2, 21 - 30, 31.12.2025

Öz

In this study, biological responses resulting from gamma irradiation of cherry tomato (Solanum lycopersicum L. var. cerasiforme) seeds under different germination conditions (in vitro and ex vitro) were evaluated, and the effective mutation dose (EMD₅₀) was determined. In the in vitro experiment, seeds were irradiated with gamma rays at doses ranging from 0 to 80 Gy and germinated on Murashige and Skoog (MS) medium without any plant growth regulators. In the ex vitro conditions, seeds were exposed to doses between 0 and 600 Gy and sown in pots filled with a soil mixture. Seed germination was monitored during the first 10 days post-irradiation, and parameters such as shoot length, fresh weight, and dry weight of seedlings were measured at the end of a 30-day incubation period. Regression analyses revealed an EMD₅₀ value of 39.08 Gy under in vitro conditions and 608.6 Gy under ex vitro conditions. The findings demonstrate that the effective irradiation dose varies depending on the irradiation conditions (in vitro vs. ex vitro). These results emphasize the importance of considering the culture conditions when selecting the appropriate irradiation dose in mutation breeding programs in cherry tomato.

Etik Beyan

No human or animal experiments were conducted in this study. All data used in the research were obtained in accordance with ethical principles, and the study was carried out in compliance with scientific ethical standards. There was no situation requiring approval from an ethics committee.

Destekleyen Kurum

Turkish Energy, Nuclear and Mineral Research Agency (TENMAK)

Teşekkür

This study was carried out with the support provided by the Nuclear Energy Research Institute of the Turkish Energy, Nuclear and Mineral Research Agency (TENMAK NÜKEN). We would like to express our gratitude to the officials of TENMAK NÜKEN for their valuable contributions, and to all members of the agriculture and food research group for their continuous support throughout the research process.

Kaynakça

  • Çelik, Ö., Ayan, A., Meriç, S., & Atak, Ç. (2021). Comparison of tolerance related proteomic profiles of two drought tolerant tomato mutants improved by gamma radiation. Journal of Biotechnology, 330, 35-44. https://doi.org/10.1016/j.jbiotec.2021.02.012.
  • Klunklin, W., & Savage, G. P. (2017). Effect of gamma irradiation on the physical and chemical properties of cherry tomatoes. Food Chemistry, 229, 417-424. https:// doi.org/10.1016/j.foodchem.2017.02.099.
  • Paduchuri, R., Reddy, K. R., & Reddy, C. S. (2010). Gamma irradiation induced genetic variability in tomato (Solanum lycopersicum L.). Journal of Plant Breeding and Crop Science, 2(5), 89-92.
  • Story, R. N., Smith, R. H., & Jones, D. R. (2010). Influence of gamma irradiation on the shelf life and quality of tomatoes. Postharvest Biology and Technology, 56(1), Çakın, I. et. al / TJNS 38(2), 21 - 30, 2025 74-78. Food and Agriculture Organization of the United Nations. (2023). The State of Food and Agriculture 2023: Revealing the true cost of food to transform agrifood systems. FAO. https://www.fao.org/3/cc7724en/online/ cc7724en.html
  • T.C. Tarım ve Orman Bakanlığı, Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü (TEPGE). (2025). Domates Ürün Raporu 2024 (TEPGE Yayın No. 396, s. 30). https://arastirma.tarimorman.gov.tr/tepge/
  • Giuliano, G. (2014). Plant carotenoids: Genomics meets multi-gene engineering. Current Opinion in Plant Biology, 19, 111-117. https://doi.org/10.1016/j.pbi.2014.05.006
  • Ilić, Z. S., Kapoulas, N., & Šunić, L. (2014). Tomato fruit quality from organic and conventional production. In V. Pilipavicius (Ed.), Organic agriculture towards sustainability (pp. 147-169). InTechOpen. https://doi. org/10.5772/58239
  • Mizil, S. N., Al-Shammary, M. Z., & ElKaaby, E. A. (2023). Employment of in vitro and gamma mutation for micropropagation of Golden Sunrise cherry tomato (Solanum lycopersicum var. cerasiforme). Journal of Survey in Fisheries Sciences, 10(3S), 3233-3244.
  • Story, E. N., Kopec, R. E., Schwartz, S. J., & Harris, G. K. (2010). An update on the health effects of tomato lycopene. Annual Review of Food Science and Technology, 1(1), 189-210. https://doi.org/10.1146/ annurev.food.102308.124120
  • Hwang, E.-S., & Bowen, P. E. (2002). Can the consumption of tomatoes or lycopene reduce cancer risk? Integrative Cancer Therapies, 1(2), 121-132. https://doi.org/10.1177/153473540200100203
  • Distefano, G., Caruso, M., La Malfa, S., Gentile, A., & Las Casas, G. (2021). Radiogenetic effects of gamma- and fast neutron irradiation on different ontogenetic stages of the tomato. Radiation Physics and Chemistry, 11(3), 215-223. https://doi.org/10.1016/j.radbot.2021.03.005
  • Distefano, G., Caruso, M., La Malfa, S., Gentile, A., & Las Casas, G. (2022). Gamma irradiation delays tomato (Solanum lycopersicum) ripening by inducing transcriptional changes. Journal of the Science of Food and Agriculture, 102(5), 2345-2354. https://doi. org/10.1002/jsfa.12760
  • Fonseca, R., Micol-Ponce, R., Ozuna, C. V., Castañeda, L., Capel, C., Fernández-Lozano, A., Ortiz-Atienza, A., Bretones, S., Pérez-Jiménez, J. M., Quevedo- Colmena, A. S., López-Fábregas, J. D., Barragán- Lozano, T., Lebrón, R., Faura, C., Capel, J., Angosto, T., Egea, I., Yuste-Lisbona, F. J., & Lozano, R. (2022). Resilient response to combined heat and drought stress conditions of a tomato germplasm collection, including natural and ethyl methanesulfonate induced variants. Horticulturae, 10(6),552. https://doi.org/10.3390/ horticulturae10060552.
  • Chun, J. I., Kim, H., Jo, Y. D., Kim, J. B., & Kang, J. H. (2020). Development of a mutant population of Micro- Tom tomato using gamma-irradiation. Plant Breeding and Biotechnology, 8(4), 307-315.
  • Sikder, S., Biswas, P., Hazra, P., Akhtar, S., Chattopadhyay, A., Badigannavar, A. M., & D’Souza, S. F. (2013). Induction of mutation in tomato (Solanum lycopersicum L.) by gamma irradiation and EMS. Indian Journal of Genetics and Plant Breeding, 73(4), 392-399.
  • Kantoğlu, K. Y., İç, E., Özmen, D., Bulut, F. Ş., Ergun, E., Kantoğlu, Ö., & Özçoban, M. (2023). Gamma rays induced enhancement in the phytonutrient capacities of tomato (Solanum lycopersicum L.). Frontiers in Horticulture, 2, 1190145. https://doi.org/10.3389/ fhort.2023.1190145.
  • Sherpa, R., Devadas, R., Bolbhat, S. N., Nikam, T. D., & Penna, S. (2022). Gamma Radiation Induced In-Vitro Mutagenesis and Isolation of Mutants for Early Flowering and Phytomorphological Variations in Dendrobium ‘Emma White’. Plants, 11(22), 3168. https:// doi.org/10.3390/plants11223168.
  • Nahiyan, A. S. M., Rahman, L., Raiyan, S., Mehraj, H., & Uddin, A. F. M. J. (2014). Selection of EMS-induced tomato variants through TILLING for point mutation. Bangladesh Research Publication Journal, 10(2), 214- 222. Access link: https://ssrn.com/abstract=3601452.
  • Matsukura, C., Yamaguchi, I., Inamura, M., Ban, Y., Kobayashi, Y., Yin, Y. G., Saito, T., Kuwata, C., Imanishi, S., & Nishimura, S. (2007). Generation of gamma irradiation-induced mutant lines of the miniature tomato (Solanum lycopersicum L.) cultivar 'Micro-Tom'. Plant Biotechnology, 24(1), 39-44. https://doi.org/10.5511/ plantbiotechnology.24.39.
  • Till, B. J., Cooper, J., Tai, T. H., Colowit, P., Greene, E. A., Henikoff, S., ... & Comai, L. (2007). Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biology, 7, 19. https://doi. org/10.1186/1471-2229-7-19.
  • Watanabe, S., Mizoguchi, T., Aoki, K., Kubo, Y., Mori, H., Imanishi, S., Yamazaki, Y., Shibata, D., & Ezura, H. (2007). Ethylmethanesulfonate (EMS) mutagenesis of Solanum lycopersicum cv. Micro-Tom for large-scale mutant screens. Plant Biotechnology, 24(1), 33-38. https://doi.org/10.5511/plantbiotechnology.24.33.
  • Lee, G. J., Chung, S. J., Park, I. S., Lee, J. S., Kim, J. B., Kim, D. S., & Lee, I. S. (2008). Variation in the phenotypic features and transcripts of color mutants of chrysanthemum (Dendranthema grandiflorum) derived from gamma ray mutagenesis. Journal of Plant Biology, 51(6), 418-423. https://doi.org/10.1007/BF03036162.
  • Chen, L., Duan, L., Sun, M., Yang, Z., Li, H., Hu, K., Yang, H., & Liu, L. (2023). Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development. Frontiers in Plant Science, 13, 1052569. https://doi.org/10.3389/ fpls.2022.1052569.
  • Sağel, Z., Tutluer, M. İ., & Peşkircioğlu, H. (2002). Bitki ıslahında mutasyon ve doku kültürü teknikleri (Kurs notları). Türkiye Atom Enerjisi Kurumu, ANTHAM Nükleer Tarım Radyobiyoloji Bölümü, Ankara 75p.
  • Simco, B. A., Kantoğlu, K. Y., & Sağel, Z. (2014). Mutasyon ıslahı ile geliştirilen domates hatlarının verim ve kalite özellikleri. Uluslararası Mezopotamya Tarım Kongresi, 22-25 Eylül 2014, Diyarbakır, Türkiye..
  • Karaca, M. (2018). Yeni nesil bitki ıslahı yöntemleri 29 Çakın, I. et. al / TJNS 38(2), 21 - 30, 2025 (moleküler bitki ıslahı) bazı avantaj ve dezavantajları. Research Journal of Agricultural Sciences, 11(1), 39-49. https://doi.org/10.33462/tabad.41479
  • Kayın, N., & Turan, F. (2023). Bitki Doku Kültürünün Biyoteknolojik Olarak Kullanımı. Journal of Agricultural Biotechnology, 4(1), 1-10. https://dergipark.org.tr/en/ pub/joinabt/issue/78158/1300369.
  • Kodym, A., & Afza, R. (2003). Physical and chemical mutagenesis. In Plant Mutation Breeding and Biotechnology (pp. 155-170). FAO/IAEA.
  • Roy, S., Banerjee, A., & Basu, S. (2021). Mutation breeding in plants: Concept, methods and applications. Journal of Genetic Engineering and Biotechnology, 19(1), 128. https://doi.org/10.1186/s43141-021-00218-1.
  • Franco, M. R., Piotto, F. A., Tulmann-Neto, A., & Nogueira, D. G. (2015). Rapid screening for selection of heavy metal-tolerant plants. Crop Breeding and Applied Biotechnology, 15(2), 88-94. https://doi. org/10.1590/1984-70332015v15n2a16.
  • International Atomic Energy Agency. (1977). Manual on mutation breeding (Technical Report Series No. 119). Vienna: IAEA.
  • International Atomic Energy Agency (IAEA). (2018). Manual on mutation breeding (3rd ed.; IAEA TECDOC-1426; IAEA TECDOC-1615). IAEA..
  • Das, P., Islam, M. M., Kabir, M. H., Islam, M., Islam, S. A. M., Islam, R., Jahan, M. T., Roy, P. K., Halder, R., Roy, P. K., Mamun, A. N. K., & Hossain, M. L. (2021). Study on the effect of γ-irradiation (Co-60) on seed germination and agronomic traits in tomato plants (Lycopersicon esculentum L.). Notulae Scientia Biologicae, 13(4), Article 11061. https://doi.org/10.15835/nsb13411061
  • Zafar, S. A., Aslam, M., Albaqami, M., Ashraf, A., Hassan, A., Iqbal, J., Maqbool, A., Naeem, M., Al-Yahyai, R., & Tan Kee Zuan, A. (2022). Gamma rays induced genetic variability in tomato (Solanum lycopersicum L.) germplasm. Saudi Journal of Biological Sciences, 29(5), 3300-3307. https://doi.org/10.1016/j.sjbs.2022.02.008.
  • Büyükdinc, D. T., Kantoglu, K. Y., Karatas, A., Ipek, A., & Ellialtıoglu, S. S. (2019). Determination of effective mutagen dose for carrot (Daucus carota ssp sativus var atrorubens alef and D. carota) callus culture. International Journal of Science and Technology Research, 5(3), 15-23.
  • Britt, A. B. (1999). Molecular genetics of DNA repair in higher plants. Trends in Plant Science, 4(1), 20-25. https://doi.org/10.1016/S1360-1385(98)01354-5.
  • Kovács, E., & Keresztes, Á. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199- 210. https://doi.org/10.1016/S0968-4328(01)00011-9.
  • De Micco, V., & Aronne, G. (2012). Morpho-anatomical traits for plant adaptation to drought. Plant Responses to Drought Stress, 37-61.
  • Chong, S. P., Ahmad, Z., Bahari, N., & Shamsudin, S. (2023). Radiosensitivity test of in vitro regeneration tomato (Solanum lycopersicum) in radiation mutation. In Proceedings of the National Instrumentation and Technology Conference (NITC) 2023 (Abstract No. 30 PG-07). Nuklear Malaysia / NITC.
  • Yamaguchi, H., Degi, K., & Morishita, T. (2008). Effects of ion beam irradiation on mutation induction and nuclear DNA content in chrysanthemum. Scientia Horticulturae, 118(1), 108-112.https://doi.org/10.1016/j. scienta.2008.05.005.
  • Zaka, H. F., Lyle, J. M., & Kovalchuk, I. (2002). Radiobiological aspects of mutation breeding in plants. Mutation Research, 510(1-2), 141-152. https://doi. org/10.1016/S0027 5107(02)00017-6.
  • Wi, S. G., Chung, B. Y., Kim, J. S., Kim, J. H., Baek, M. H., Lee, J. W., & Kim, Y. S. (2007). Effects of gamma irradiation on morphological changes and biological responses in plants. Micron, 38(6), 553-564. https://doi. org/10.1016/j.micron.2006.11.002.
  • Kim, J. H., Baek, M. H., Chung, B. Y., Wi, S. G., & Kim, J. S. (2004). Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds. Journal of Plant Biology, 47(4), 314-321. https://doi. org/10.1007/BF03030542.
  • Kantoğlu, K. Y., Çakın, I., Çetintaş, A. O., Göktuğ, A., & Laouini, M. (2025). Determining the effective mutation dose and impacts of irradiation for some vegetable species. Agriculture and Forestry, 71(2), 7-20. https:// doi.org/10.17707/AgricultForest.71.2.03.
  • Mba, C., Afza, R., Bado, S., & Shu, Q. Y. (2010). Mutagenic radiations: Molecular mechanisms and applications in crop improvement. In Q. Y. Shu (Ed.), Induced plant mutations in the genomics era (pp. 1-17). FAO/IAEA..
  • Shu, Q. Y., Forster, B. P., & Nakagawa, H. (2012). Plant mutation breeding and biotechnology. CABI.
  • Chinnusamy, V., & Zhu, J. K. (2009). Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 12(2), 133-139. https://doi. org/10.1016/j.pbi.2008.12.006.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Radyasyon Teknolojisi
Bölüm Araştırma Makalesi
Yazarlar

Irmak Çakın

Kadriye Yaprak Kantoğlu

Erhan Aksu

Gönderilme Tarihi 29 Mayıs 2025
Kabul Tarihi 25 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 38 Sayı: 2

Kaynak Göster

APA Çakın, I., Kantoğlu, K. Y., & Aksu, E. (2025). Mutation dose determination of cherry tomato (Solanum lycopersicum L. cerasiforme) under in vitro and ex vitro conditionsions. Turkish Journal of Nuclear Sciences, 38(2), 21-30. https://izlik.org/JA23RW29LP
AMA 1.Çakın I, Kantoğlu KY, Aksu E. Mutation dose determination of cherry tomato (Solanum lycopersicum L. cerasiforme) under in vitro and ex vitro conditionsions. Turkish Journal of Nuclear Sciences. 2025;38(2):21-30. https://izlik.org/JA23RW29LP
Chicago Çakın, Irmak, Kadriye Yaprak Kantoğlu, ve Erhan Aksu. 2025. “Mutation dose determination of cherry tomato (Solanum lycopersicum L. cerasiforme) under in vitro and ex vitro conditionsions”. Turkish Journal of Nuclear Sciences 38 (2): 21-30. https://izlik.org/JA23RW29LP.
EndNote Çakın I, Kantoğlu KY, Aksu E (01 Aralık 2025) Mutation dose determination of cherry tomato (Solanum lycopersicum L. cerasiforme) under in vitro and ex vitro conditionsions. Turkish Journal of Nuclear Sciences 38 2 21–30.
IEEE [1]I. Çakın, K. Y. Kantoğlu, ve E. Aksu, “Mutation dose determination of cherry tomato (Solanum lycopersicum L. cerasiforme) under in vitro and ex vitro conditionsions”, Turkish Journal of Nuclear Sciences, c. 38, sy 2, ss. 21–30, Ara. 2025, [çevrimiçi]. Erişim adresi: https://izlik.org/JA23RW29LP
ISNAD Çakın, Irmak - Kantoğlu, Kadriye Yaprak - Aksu, Erhan. “Mutation dose determination of cherry tomato (Solanum lycopersicum L. cerasiforme) under in vitro and ex vitro conditionsions”. Turkish Journal of Nuclear Sciences 38/2 (01 Aralık 2025): 21-30. https://izlik.org/JA23RW29LP.
JAMA 1.Çakın I, Kantoğlu KY, Aksu E. Mutation dose determination of cherry tomato (Solanum lycopersicum L. cerasiforme) under in vitro and ex vitro conditionsions. Turkish Journal of Nuclear Sciences. 2025;38:21–30.
MLA Çakın, Irmak, vd. “Mutation dose determination of cherry tomato (Solanum lycopersicum L. cerasiforme) under in vitro and ex vitro conditionsions”. Turkish Journal of Nuclear Sciences, c. 38, sy 2, Aralık 2025, ss. 21-30, https://izlik.org/JA23RW29LP.
Vancouver 1.Çakın I, Kantoğlu KY, Aksu E. Mutation dose determination of cherry tomato (Solanum lycopersicum L. cerasiforme) under in vitro and ex vitro conditionsions. Turkish Journal of Nuclear Sciences [Internet]. 01 Aralık 2025;38(2):21-30. Erişim adresi: https://izlik.org/JA23RW29LP