Yıl 2020, Cilt 5 , Sayı 3, Sayfalar 208 - 213 2020-12-30

Focal surfaces are special cases of line congruences. With the aid of the definiton of a focal surface of a given surface M, we obtain a new type of focal surface in Galilean 3-space G_3. We show that the focal surface we found is not the same type of surface as the given surface. We present the visualizations of the focal surface and the given surface with an example. Lastly, by searching the curvature functions, we give the minimality conditions of the focal surface.
Line congruence, focal surface, tubular surface, Galilen Space
  • [1] Ali AT. Position vectors of curves in the Galilean space G3. Mat. Vesn. 64(3), 2012, 200–210.
  • [2] Aydın ME, Külahçı MA, Öğrenmiş¸ AO. Constant curvature translation surfaces in Galilean 3-space. International Electronic Journal of Geometry. 12(1), 2019, 9–19.
  • [3] Aydın ME, Öğrenmiş¸ AO. Spherical product surface in the Galilean space. Konuralp Journal of Mathematics. 4(2), 2019, 290-298.
  • [4] Bulca B, Arslan K, Bayram B, Öztürk G. Canal surfaces in 4-dimensional Euclidean space. Libertas Mathematica. 32, 2012, 1–13.
  • [5] Dede M. Tubular surfaces in Galilean space. Math. Commun. 18, 2013, 209–217.
  • [6] Dede M, Ekici C, Çöken AC. On the parallel surfaces in the Galilean space. Hacettepe Journal of Mathematics and Statistics. 42(6), 2013, 605615.
  • [7] Hagen H, Hahmann S. Generalized Focal Surfaces: A New Method for Surface Interrogation. Proceedings Visualization’92, Boston; 1992, 70–76.
  • [8] Hagen H, Pottmann H, Divivier A. Visualization functions on a surface. Journal of Visualization and Animation. 2, 1991, 52–58.
  • [9] Kamenarovic I. Existence theorems for ruled surfaces in the Galilean space G3. Rad Hazu Math. 456(10), 1991, 183–196.
  • [10] Kişi İ, Öztürk G. A new approach to canal surface with parallel transport frame. International Journal of Geometric Methods in Modern Physics. 14, 2017, 1–16.
  • [11] Kişi İ, Öztürk G. A new type of tubular surface having pointwise 1-type Gauss map in Euclidean 4-space E4. J. Korean Math. Soc. 55, 2018, 923–938.
  • [12] Kişi İ, Öztürk G. Spherical product surface having pointwise 1-type Gauss map in Galilean 3-space G3. International Journal of Geometric Methods in Modern Physics. 16(12), 2019, 1–10.
  • [13] Kişi İ, Öztürk G. Tubular surface having pointwise 1-type Gauss map in Euclidean 4-space. International Electronic Journal of Geometry. 12, 2019, 202–209.
  • [14] Kişi İ, Öztürk G, Arslan K. A new type of canal surface in Euclidean 4-space E4. Sakarya University Journal of Science. 23, 2019, 801–809.
  • [15] Özdemir B. A characterization of focal curves and focal surfaces in E4. PhD Thesis, Uludag˘ University, Bursa, Turkey, 2008.
  • [16] Özdemir B, Arslan K. On generalized focal surfaces in E3. Rev. Bull. Calcutta Math. Soc. 16(1), 2008, 23–32.
  • [17] Öztürk G, Arslan K. On focal curves in Euclidean n-space Rn. Novi Sad J. Math. 48(1), 2016, 35–44.
  • [18] Öztürk G, Bulca B, (Kılıc) Bayram B, Arslan K. On canal surfaces in E3. Selc¸uk J. Appl. Math. 11, 2010, 103–108.
  • [19] Pavkovic BJ, Kamenarovic I. The equiform di erential geometry of curves in the Galilean space G3. Glasnik Matematicki. 22(42), 1987, 449–457.
  • [20] Röschel O. Die Geometrie Des Galileischen Raumes. Forschungszentrum Graz Research Centre, Austria, 1986.
  • [21] Sipus ZM. Ruled Weingarten surfaces in the Galilean space. Periodica Mathematica Hungarica. 56(2), 2008, 213–225.
  • [22] Sipus ZM, Divjak B. Surfaces of constant curvature in the pseudo-Galilean space. International Journal of Mathematics and Mathematical Sciences. 12, 2012, 1–28.
  • [23] Shepherd MD. Line congruences as surfaces in the space of lines. Di erential Geometry and its Applications. 10, 1999, l–26.
  • [24] Yaglom IM. A Simple Non-Euclidean Geometry and Its Physical Basis. Springer- Verlag Inc., New York, 1979.
Birincil Dil en
Konular Fen
Bölüm Volume V Issue III 2020
Yazarlar

Yazar: İlim KİŞİ (Sorumlu Yazar)
Kurum: KOCAELİ ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0002-1608-0354
Yazar: Günay ÖZTÜRK
Kurum: İZMİR DEMOKRASİ ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 30 Aralık 2020

Bibtex @araştırma makalesi { tjos832876, journal = {Turkish Journal of Science}, issn = {2587-0971}, eissn = {2587-0971}, address = {KED YAYINCILIK LTD. ŞTİ. Ağrı}, publisher = {Ahmet Ocak AKDEMİR}, year = {2020}, volume = {5}, pages = {208 - 213}, doi = {}, title = {A new study on focal surface of a given surface}, key = {cite}, author = {Kişi, İlim and Öztürk, Günay} }
APA Kişi, İ , Öztürk, G . (2020). A new study on focal surface of a given surface . Turkish Journal of Science , 5 (3) , 208-213 . Retrieved from https://dergipark.org.tr/tr/pub/tjos/issue/59057/832876
MLA Kişi, İ , Öztürk, G . "A new study on focal surface of a given surface" . Turkish Journal of Science 5 (2020 ): 208-213 <https://dergipark.org.tr/tr/pub/tjos/issue/59057/832876>
Chicago Kişi, İ , Öztürk, G . "A new study on focal surface of a given surface". Turkish Journal of Science 5 (2020 ): 208-213
RIS TY - JOUR T1 - A new study on focal surface of a given surface AU - İlim Kişi , Günay Öztürk Y1 - 2020 PY - 2020 N1 - DO - T2 - Turkish Journal of Science JF - Journal JO - JOR SP - 208 EP - 213 VL - 5 IS - 3 SN - 2587-0971-2587-0971 M3 - UR - Y2 - 2020 ER -
EndNote %0 Turkish Journal of Science A new study on focal surface of a given surface %A İlim Kişi , Günay Öztürk %T A new study on focal surface of a given surface %D 2020 %J Turkish Journal of Science %P 2587-0971-2587-0971 %V 5 %N 3 %R %U
ISNAD Kişi, İlim , Öztürk, Günay . "A new study on focal surface of a given surface". Turkish Journal of Science 5 / 3 (Aralık 2020): 208-213 .
AMA Kişi İ , Öztürk G . A new study on focal surface of a given surface. TJOS. 2020; 5(3): 208-213.
Vancouver Kişi İ , Öztürk G . A new study on focal surface of a given surface. Turkish Journal of Science. 2020; 5(3): 208-213.
IEEE İ. Kişi ve G. Öztürk , "A new study on focal surface of a given surface", Turkish Journal of Science, c. 5, sayı. 3, ss. 208-213, Ara. 2021