Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 5 Sayı: 3, 220 - 225, 30.12.2020

Öz

Kaynakça

  • Allen LJS. An Introduction to Mathematical Biology. Prentice Hall, Upper Saddle River, NJ,2007.
  • Cao Q, Wu J, Wang Y. Bifurcation solutions in the di usive minimal sediment. Computers and Mathematics with Applications. 77, 2019, 888–906.
  • Kaper TJ, Vo T. Delayed loss of stability due to the slow passage through Hopf bifurcations in reaction-di usion equations. Chaos, Interdiscip. J. Nonlinear Sci. 28(9), 2018, 91–103.
  • Kot M. Elements of Mathematical Ecology. Cambridge University Press, Cambridge, 2001.
  • Li F, Li H. Hopf bifurcation of a predator-prey model with time delay and stage structure for the prey. Math. Comput. Model. 55(3–4), 2012, 672–679.
  • Song Y, Xiao W, Qi X. Stability and Hopf bifurcation of a predator-prey model with stage structure and time delay for the prey. Nonlinear Dyn. 83(3), 2016, 1409–1418.
  • Sotomayor J. Generic bifurcations of dynamical systems. Dyn. Syst. 1973, 561–582.
  • Wu F, Jiao Y. Stability and Hopf bifurcation of a predator-prey model, Boundary Value Problems, 129, 2019, 1–11.
  • Xiao D, Ruan S. Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61(4), 2001, 1445–1472.
  • Xiao Y, Chen L. A ratio-dependent predator-prey model with disease in the prey. Appl. Math. Comput. 131(2–3), 2002, 397–414.
  • Zhang L, Liu J, Banerjee M. Hopf and steady state bifurcation analysis in a ratio-dependent predator–prey model. Commun. Nonlinear Sci. Numer. Simulat. 44, 2017, 52–73.

A Note on Hopf Bifurcation and Steady State Analysis for a Predator-Prey Model

Yıl 2020, Cilt: 5 Sayı: 3, 220 - 225, 30.12.2020

Öz

This paper is concerned with the Hopf bifurcation and steady state analysis of a predator-prey
model. Firstly, by analyzing the characteristic equation, the local stability of the nonnegative equilibriums
is discussed. Then the Hopf bifurcation around the positive equilibrium is obtained, and the direction
and the stability of the Hopf bifurcation are investigated. Finally, some numerical simulations are given to
support the theoretical results.

Kaynakça

  • Allen LJS. An Introduction to Mathematical Biology. Prentice Hall, Upper Saddle River, NJ,2007.
  • Cao Q, Wu J, Wang Y. Bifurcation solutions in the di usive minimal sediment. Computers and Mathematics with Applications. 77, 2019, 888–906.
  • Kaper TJ, Vo T. Delayed loss of stability due to the slow passage through Hopf bifurcations in reaction-di usion equations. Chaos, Interdiscip. J. Nonlinear Sci. 28(9), 2018, 91–103.
  • Kot M. Elements of Mathematical Ecology. Cambridge University Press, Cambridge, 2001.
  • Li F, Li H. Hopf bifurcation of a predator-prey model with time delay and stage structure for the prey. Math. Comput. Model. 55(3–4), 2012, 672–679.
  • Song Y, Xiao W, Qi X. Stability and Hopf bifurcation of a predator-prey model with stage structure and time delay for the prey. Nonlinear Dyn. 83(3), 2016, 1409–1418.
  • Sotomayor J. Generic bifurcations of dynamical systems. Dyn. Syst. 1973, 561–582.
  • Wu F, Jiao Y. Stability and Hopf bifurcation of a predator-prey model, Boundary Value Problems, 129, 2019, 1–11.
  • Xiao D, Ruan S. Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61(4), 2001, 1445–1472.
  • Xiao Y, Chen L. A ratio-dependent predator-prey model with disease in the prey. Appl. Math. Comput. 131(2–3), 2002, 397–414.
  • Zhang L, Liu J, Banerjee M. Hopf and steady state bifurcation analysis in a ratio-dependent predator–prey model. Commun. Nonlinear Sci. Numer. Simulat. 44, 2017, 52–73.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Volume V Issue III 2020
Yazarlar

İrem Çay

Yayımlanma Tarihi 30 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 5 Sayı: 3

Kaynak Göster

APA Çay, İ. (2020). A Note on Hopf Bifurcation and Steady State Analysis for a Predator-Prey Model. Turkish Journal of Science, 5(3), 220-225.
AMA Çay İ. A Note on Hopf Bifurcation and Steady State Analysis for a Predator-Prey Model. TJOS. Aralık 2020;5(3):220-225.
Chicago Çay, İrem. “A Note on Hopf Bifurcation and Steady State Analysis for a Predator-Prey Model”. Turkish Journal of Science 5, sy. 3 (Aralık 2020): 220-25.
EndNote Çay İ (01 Aralık 2020) A Note on Hopf Bifurcation and Steady State Analysis for a Predator-Prey Model. Turkish Journal of Science 5 3 220–225.
IEEE İ. Çay, “A Note on Hopf Bifurcation and Steady State Analysis for a Predator-Prey Model”, TJOS, c. 5, sy. 3, ss. 220–225, 2020.
ISNAD Çay, İrem. “A Note on Hopf Bifurcation and Steady State Analysis for a Predator-Prey Model”. Turkish Journal of Science 5/3 (Aralık 2020), 220-225.
JAMA Çay İ. A Note on Hopf Bifurcation and Steady State Analysis for a Predator-Prey Model. TJOS. 2020;5:220–225.
MLA Çay, İrem. “A Note on Hopf Bifurcation and Steady State Analysis for a Predator-Prey Model”. Turkish Journal of Science, c. 5, sy. 3, 2020, ss. 220-5.
Vancouver Çay İ. A Note on Hopf Bifurcation and Steady State Analysis for a Predator-Prey Model. TJOS. 2020;5(3):220-5.