Araştırma Makalesi
BibTex RIS Kaynak Göster

A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property

Yıl 2021, Cilt: 6 Sayı: 1, 14 - 23, 30.04.2021

Öz

Introducing the notion of asymptotically isometric copies inside Banach spaces, Dowling, Lennard and Turett made easier to detect failure of the fixed point property for nonexpansive mappings. Their tool was very usefull for indicating the failure. Since then, researchers have investigated alternative tools. Recently, Nezir introduced the notion of asymptotically isometric copies of $\ell^{1\boxplus 0}$. He noticed that a renorming of $\ell^1$ turns out to be a degenerate Lorentz-Marcinkiewicz space and using its structure he introduced his notion which implies the failure of the fixed point property for nonexpansive mappings. In this study, we introduce another notion which is derived from the structure of another degenerate Lorentz-Marcinkiewicz space and we show that detecting our new tool in Banach spaces will indicate the failure of the fixed point property for nonexpansive mappings.

Kaynakça

  • Alvaro JM, Cembranos P, Mendoza J. Renormings of $c_0$ and the fixed point property. J. Math. Anal. Appl. 454(2), 2017, 1106-1113. Diestel J. Sequences and series in Banach spaces. Springer Science & Business Media, 2012.
  • Dowling PN, Lennard CJ, Turett B. Reflexivity and the fixed-point property for nonexpansive maps. J. Math. Anal. Appl. 200(3), 1996, 653-662.
  • Dowling PN, Lennard CJ. Every nonreflexive subspace of $L_1[0, 1]$ fails the fixed point property. Proc. Amer. Math. Soc. 125, 1997, 443-446.
  • Dowling PN, Johnson WB, Lennard CJ, Turett B. The optimality of James's distortion theorems. Proc. Amer. Math. Soc. 125, 1997, 167-174.
  • Dowling PN, Lennard CJ, Turett B. Renormings of $\ell_1$ and $c_{0}$ and fixed point properties. In: Handbook of Metric Fixed Point Theory, Springer, Netherlands, 2001, pp. 269-297.
  • Lin PK. There is an equivalent norm on $\ell_1$ that has the fixed point property. Nonlinear Anal. 68, 2008, 2303--2308.
  • Lindenstrauss J, Tzafriri L. Classical Banach spaces I: sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 92, Springer-Verlag. 1977.
  • Lorentz GG. Some new functional spaces. Ann. Math. 1950. 37-55.
  • Nezir V. Fixed point properties for a degenerate Lorentz-Marcinkiewicz space. Turkish Journal of Mathematics. 43(4), 2019, 1919-1939. Nezir V. Asymptotically isometric copies of $\ell^{1\boxplus 0}$. Hacet. J. Math. Stat. 49(3), 2020, 984-997.
Yıl 2021, Cilt: 6 Sayı: 1, 14 - 23, 30.04.2021

Öz

Kaynakça

  • Alvaro JM, Cembranos P, Mendoza J. Renormings of $c_0$ and the fixed point property. J. Math. Anal. Appl. 454(2), 2017, 1106-1113. Diestel J. Sequences and series in Banach spaces. Springer Science & Business Media, 2012.
  • Dowling PN, Lennard CJ, Turett B. Reflexivity and the fixed-point property for nonexpansive maps. J. Math. Anal. Appl. 200(3), 1996, 653-662.
  • Dowling PN, Lennard CJ. Every nonreflexive subspace of $L_1[0, 1]$ fails the fixed point property. Proc. Amer. Math. Soc. 125, 1997, 443-446.
  • Dowling PN, Johnson WB, Lennard CJ, Turett B. The optimality of James's distortion theorems. Proc. Amer. Math. Soc. 125, 1997, 167-174.
  • Dowling PN, Lennard CJ, Turett B. Renormings of $\ell_1$ and $c_{0}$ and fixed point properties. In: Handbook of Metric Fixed Point Theory, Springer, Netherlands, 2001, pp. 269-297.
  • Lin PK. There is an equivalent norm on $\ell_1$ that has the fixed point property. Nonlinear Anal. 68, 2008, 2303--2308.
  • Lindenstrauss J, Tzafriri L. Classical Banach spaces I: sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 92, Springer-Verlag. 1977.
  • Lorentz GG. Some new functional spaces. Ann. Math. 1950. 37-55.
  • Nezir V. Fixed point properties for a degenerate Lorentz-Marcinkiewicz space. Turkish Journal of Mathematics. 43(4), 2019, 1919-1939. Nezir V. Asymptotically isometric copies of $\ell^{1\boxplus 0}$. Hacet. J. Math. Stat. 49(3), 2020, 984-997.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Volume VI Issue I 2021
Yazarlar

Veysel Nezir 0000-0001-9640-8526

Nizami Mustafa 0000-0002-2758-0274

Yayımlanma Tarihi 30 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 6 Sayı: 1

Kaynak Göster

APA Nezir, V., & Mustafa, N. (2021). A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property. Turkish Journal of Science, 6(1), 14-23.
AMA Nezir V, Mustafa N. A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property. TJOS. Nisan 2021;6(1):14-23.
Chicago Nezir, Veysel, ve Nizami Mustafa. “A Nice Copy of a Degenerate Lorentz-Marcinkiewicz Space That Implies the Failure of the Fixed Point Property”. Turkish Journal of Science 6, sy. 1 (Nisan 2021): 14-23.
EndNote Nezir V, Mustafa N (01 Nisan 2021) A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property. Turkish Journal of Science 6 1 14–23.
IEEE V. Nezir ve N. Mustafa, “A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property”, TJOS, c. 6, sy. 1, ss. 14–23, 2021.
ISNAD Nezir, Veysel - Mustafa, Nizami. “A Nice Copy of a Degenerate Lorentz-Marcinkiewicz Space That Implies the Failure of the Fixed Point Property”. Turkish Journal of Science 6/1 (Nisan 2021), 14-23.
JAMA Nezir V, Mustafa N. A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property. TJOS. 2021;6:14–23.
MLA Nezir, Veysel ve Nizami Mustafa. “A Nice Copy of a Degenerate Lorentz-Marcinkiewicz Space That Implies the Failure of the Fixed Point Property”. Turkish Journal of Science, c. 6, sy. 1, 2021, ss. 14-23.
Vancouver Nezir V, Mustafa N. A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property. TJOS. 2021;6(1):14-23.