Derleme
BibTex RIS Kaynak Göster

Dimetil Eterin Buji Ateşlemeli Motorlarda HC Emisyonlarına Etkileri

Yıl 2025, Cilt: 7 Sayı: 2, 145 - 163, 29.12.2025
https://doi.org/10.55979/tjse.1699638

Öz

Alkoller ve eterler gibi oksijen içerikli yakıtlar yanmayı iyileştirmek ve emisyonları azaltmak için içten yanmalı motorlarda alternatif yakıt veya yakıt katkısı olarak kullanılabilirler. Bu alkol ve eter yakıtlar genellikle kömür, doğalgaz, biyokütle ve atık ürünler gibi bir kısmı yenilenebilir ve yerel olan çeşitli kaynaklardan üretilebilirler. Oksijen içerikli yakıtların çoğu daha temiz bir yanma sağlamalrının yanı sıra konvansiyonel petrol kökenli yakıtlara benzer tutuşma ve yanma karakteristiklrerine sahiptirler. Etanol ve metil tersiyer bütil eter (MTBE) benzinin oktan sayısını ve oksijen içeriğini artırmak için düşük karışım oranlarında kullanılan başlıca katkılardandır. Alkol ve eter yakıtların benzine katılması bu yakıtların yüksek oksijen içeriği sayesinde yanmanın iyileştirilmesini sağlar ve bu sayede yanma verimi artarken emisyonlarda azalmaktadır. Ancak, bu alkol ve eter yakıtların enerji içeriği benzine göre düşük olduğundan bu yakıtlar katkı olarak kulanıldığında motorun yakıt tüketimi artmaktadır. Dimetil eter (DME) buji ateşlemeli motorlarda yakıt veya benzin katkı maddesi olarak uzun bir geçmişe sahip değildir. Ancak buji ateşlemeli motorlarda DME’yi benzinle birlikte kullanmak yanmayı iyileştirmek ve motorun termik verimini artırmak için olası çözümlerden biri olarak değerlendirlmektedir. Ayrıca, DME’nin buji ateşlemeli motorlarda benzinle birlikte kullanıldığında motorun ekonomik ve emisyon performansını artırabileceği düşünülmektedir. Öte yandan, ulaşımdan kaynaklanan karbon monoksit (CO) ve hidrokarbon (HC) emisyonlarının ana kaynağı buji ateşlemeli benzinli motorlu araçlardır. Buji ateşlemeli motorlarda DME kullanımının yüksek oksijen içeriği nedeniyle standart benzinli motorlara kıyasla daha düşük CO ve HC emisyonları üretebileceği belirtilmektedir. Bu nedenle, DME’nin buji ateşlemeli motorlarda kullanımına yönelik yapılan çalışmaların sonuçlarının bir arada değerlendirilmesi yeni çalışmalar ve pratik uygulamalar açısından önem arz etmektedir. Bu çalışma, DME’nin buji ateşlemeli motorlarda yakıt veya yakıt katkısı olarak kullanılması üzerine yapılan çalışmalardan derlenmiştir. Bu derleme çalışması buji ateşlemeli motorlarda DME kullanımının özellikle HC emisyonu üzerindeki etkilerini araştırmayı amaçlamaktadır.

Teşekkür

Çalışmayı destekleyen herhangi kurum ya da kuruluş bulunmamaktadır. Ayrıca, makale herhangi bir tez veya projeden üretilmemiştir.

Kaynakça

  • Alam, M., & Kajitani, S. (2001). DME As An Alternative Fuel For Direct Injection Diesel Engine. 4th International Conference on Mechanical Engineering. December 26–28, Dhaka, Bangladesh, 87–92.
  • Anggarani, R., Maymuchar, Wibowo, C. S., & Sukaraharja, R. (2015). Performance and emission characteristics of dimethyl ether (DME) mixed liquefied gas for vehicle (LGV) as alternative fuel for spark ignition engine. Energy Procedia, 65, 274–281. https://doi.org/10.1016/j.egypro.2015.01.048
  • Arcoumanis, C., Bae, C., Crookes, R., & Kinoshita E. (2008). The potential of di–methyl ether (DME) as an alternative fuel for compression–ignition engines: A review. Fuel, 87, 1014–1030. https://doi.org/10.1016/j.fuel.2007.06.007
  • Awad, O. I., Mamat, R., Ibrahim, T. K., Hammid, A. T., Yusri, I. M., Hamidi, M. A., Humada, A. M., & Yusop A. F. (2018a). Overview of the oxygenated fuels in spark ignition engine: Environmental and performance. Renewable and Sustainable Energy Reviews, 91, 394–408. https://doi.org/10.1016/j.rser.2018.03.107
  • Awad, O. I., Mamat, R., Alib, O. M., Sidik, N. A. C., Yusaf, T., Kadirgam, K., & Kettner, M. (2018b). Alcohol and ether as alternative fuels in spark ignition engine: A review. Renewable and Sustainable Energy Reviews, 82, 2586–2605. https://doi.org/10.1016/j.rser.2017.09.074
  • Azizi, Z., Rezaeimanesh, M., Tohidian, T., & Rahimpour, M. R. (2014). Dimethyl ether: A review of technologies and production challenges. Chemical Engineering and Processing, 82, 150–172. https://doi.org/10.1016/j.cep.2014.06.007
  • Cong, X., Ji, C., & Wang, S. (2021). Investigation into engine performance of a hydrogen–dimethyl ether spark–ignition engine under various dimethyl ether fractions. Fuel, 306, 121429. https://doi.org/10.1016/j.fuel.2021.121429
  • Duan, J., Sun, Y., Yang, Z., & Sun, Z. (2012). Combustion and emissions characteristics of diesel engine operating on composite combustion mode of DME and diesel. Proceedings of International Conference on Mechanical Engineering and Material Science, 27, 463–466. https://doi.org/10.2991/mems.2012.77
  • He, B.–Q., Xu, S.–P., Fu, X.–Q., & Zhao, H. (2020). Combustion and emission characteristics of an ultra–lean burn gasoline engine with dimethyl ether auto–ignition. Energy, 209, 118437. https://doi.org/10.1016/j.energy.2020.118437
  • Huang, Z., Qiao, X., Zhang, W., Wu, J., & Zhang, J. (2009). Dimethyl ether as alternative fuel for CI engine and vehicle. Frontiers of Energy and Power Engineering in China, 3(1), 99–108. https://doi.org/10.1007/s11708–009–0013–1
  • Huang, Y., Surawski, N. C., Zhuang, Y., Zhou, J. L., & Hong, G. (2021). Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines. Renewable and Sustainable Energy Reviews, 143, 110921. https://doi.org/10.1016/j.rser.2021.110921
  • Ji, C., Liang, C., & Wang, S. (2011). Investigation on combustion and emissions of DME/gasoline mixtures in a spark–ignition engine. Fuel, 90, 1133–1138. https://doi.org/10.1016/j.fuel.2010.11.033
  • Ji, C., Liang, C., Zhu, Y., Liu, X., & Gao, B. (2012). Investigation on idle performance of a spark–ignited ethanol engine with dimethyl ether addition. Fuel Processing Technology, 94, 94–100. https://doi.org/10.1016/j.fuproc.2011.10.006
  • Ji, C., Liang, C., Gao, B., Wei, B. Liu, X., & Zhu Y. (2013). The cold start performance of a spark–ignited dimethyl ether engine. Energy, 50, 187–193. https://doi.org/10.1016/j.energy.2012.10.028
  • Ji, C., Shi, L., Wang, S., Cong, X., Su, T., & Yu, M. (2017). Investigation on performance of a spark–ignition engine fueled with dimethyl ether and gasoline mixtures under idle and stoichiometric conditions. Energy, 126, 335–342. https://doi.org/10.1016/j.energy.2017.03.045
  • Kruczyńki, S., Ślęzak, M., Gis, W., Orliński, P., Kulczycki, A., Dzięgielewski, W., & Bednarski, M. (2017). Problems in fuelling spark ignition engines with dimethyl ether. Combustion Engines, 170(3), 154–158. https://doi.org/10.19206/CE–2017–326
  • Kowalewicz, A., & Wojtyniak, M. (2005). Alternative fuels and their application to combustion engines. Journal of Automobile Engineering, 219, 103–125. https://doi.org/10.1243/095440705X6399
  • Lee, S., Oh, S., & Choi, Y. (2009). Performance and emission characteristics of an SI engine operated with DME blended LPG fuel. Fuel, 88, 1009–1015. https://doi.org/10.1016/j.fuel.2008.12.016
  • Lee, S., Oh, S., Choi, Y., & Kang K. (2011). Effect of n–Butane and propane on performance and emission characteristics of an SI engine operated with DME–blended LPG fuel. Fuel, 90, 1674–1680. https://doi.org/10.1016/j.fuel.2010.11.040
  • Liang, C., Ji, C., & Liu, X. (2011). Combustion and emissions performance of a DME–enriched spark–ignited methanol engine at idle condition. Applied Energy, 88, 3704–3711. https://doi.org/10.1016/j.apenergy.2011.04.056
  • Liang, C., Ji, C., Gao, B., Liu, X., & Zhu Y. (2012). Investigation on the performance of a spark–ignited ethanol engine with DME enrichment. Energy Conversion and Management, 58, 19–25. https://doi.org/10.1016/j.enconman.2012.01.004
  • Liang, C., Ji, C., & Gao, B. (2013). Load characteristics of a spark–ignited ethanol engine with DME enrichment. Applied Energy, 112, 500–506. https://doi.org/10.1016/j.apenergy.2013.03.039
  • Park, S. H., & Lee, C. S. (2014). Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel. Energy Conversion and Management, 86, 848–863. https://doi.org/10.1016/j.enconman.2014.06.051
  • Putrasari, Y., & Lim, O. (2022). Dimethyl ether as the next generation fuel to control nitrogen oxides and particulate matter emissions from internal combustion engines: a review. ACS Omega, 7, 32–37. https://doi.org/10.1021/acsomega.1c03885
  • Rossi, T., Lixi, S., Puricelli, S., Grosso, M., Faedo, D., & Casadei, S. (2024). Fuel consumption and exhaust emissions from Euro 6d vehicles fueled by innovative LPG/DME blend. Journal of the Energy Institute, 117, 101851. https://doi.org/10.1016/j.joei.2024.101851
  • Semelsberger, T. A., Borup, R. L., & Greene, H. L. (2006). Dimethyl ether (DME) as an alternative fuel. Journal of Power Sources, 156, 497–511. https://doi.org/10.1016/j.jpowsour.2005.05.082
  • Shi, L., Ji, C., Wang, S., Cong, X., Su, T., & Wang, D. (2018). Combustion and emissions characteristics of a S.I. engine fueled with gasoline–DME blends under different spark timings. Fuel, 211, 11–17. https://doi.org/10.1016/j.fuel.2017.09.019
  • Shi, L., Ji, C., Wang, S., Su, T., Cong, X., Wang, D., & Tang C. (2019a). Effects of second injection timing on combustion characteristics of the spark ignition direct injection gasoline engines with dimethyl ether enrichment in the intake port. Energy, 180, 10–18. https://doi.org/10.1016/j.energy.2019.05.056
  • Shi, L., Ji, C., Wang, S., Cong, X., Su, T., & Shi, C. (2019b). Impacts of dimethyl ether enrichment and various injection strategies on combustion and emissions of direct injection gasoline engines in the lean–burn condition. Fuel, 254, 115636. https://doi.org/10.1016/j.fuel.2019.115636
  • Stepanenko, D., & Kneba, Z. (2019). DME as alternative fuel for compression ignition engines–a review. Combustion Engines, 177(2), 172–179. https://doi.org/10.19206/CE–2019–230
  • Sun, P., Feng, J., Yang, S., Wang, C., Cui, K., Dong, W., Du, Y., Yu, X., & Zhou, J. (2022). Particulate number and size distribution of dimethyl ether/gasoline combined injection spark ignition engines at medium engine speed and load. Fuel, 313, 122645. https://doi.org/10.1016/j.fuel.2021.122645
  • Wattanavichien, K. (2009). Implementation of DME in a small direct injection diesel engine. International Journal of Renewable Energy, 4(2), 1–12.
  • Yang, S., Sun, P., Feng, J., Cui, K., Wang, C., Dong, W., Yu, X., & Gu, Y. (2023) Combustion and emission characteristics of dimethyl ether/gasoline DFSI engine under different excess air coefficients. Case Studies in Thermal Engineering, 49, 103342. https://doi.org/10.1016/j.csite.2023.103342
  • Yao, M., Chen, Z., Zheng, Z., Zhang, B., & Xing, Y. (2006). Study on the controlling strategies of homogeneous charge compression ignition combustion with fuel of dimethyl ether and methanol. Fuel, 85, 2046–2056. https://doi.org/10.1016/j.fuel.2006.03.016
  • Yeom, K., & Bae, C. (2009). Knock characteristics in liquefied petroleum gas (LPG)–dimethyl ether (DME) and gasoline–DME homogeneous charge compression ignition engines. Energy & Fuels, 23, 1956–1964. https://doi.org/10.1021/ef800846u
  • Yoon, S. H., Cha, J. P., & Lee, C. S. (2010). An investigation of the effects of spray angle and injection strategy on dimethyl ether (DME) combustion and exhaust emission characteristics in a common–rail diesel engine. Fuel Processing Technology, 91, 1364–1372. https://doi.org/10.1016/j.fuproc.2010.04.017
  • Zhang, H. F., Seo, K., & Zhao, H. (2013). Combustion and emission analysis of the direct DME injection enabled and controlled auto–ignition gasoline combustion engine operation. Fuel, 107, 800–814. https://doi.org/10.1016/j.fuel.2013.01.067

Effects of Dimethyl Ether on HC Emissions in Spark Ignition Engines

Yıl 2025, Cilt: 7 Sayı: 2, 145 - 163, 29.12.2025
https://doi.org/10.55979/tjse.1699638

Öz

The oxygenated fuels such as alcohols and ethers can be used in internal combustion engine (ICE) as fuel and fuel additive for improving the combustion and reducing the exhaust emissions. These alcohol and ether fuels can usually be produced from a variety of sources, some of which are renewable and local, such as coal, natural gas, biomass and waste products. Most of the oxygenated fuels have similar ignition and combustion characteristics to conventional petroleum based fuels besides they give cleaner combustion. Ethanol and methyl tert–butyl ether (MTBE) are mainly used as additives at low blending ratio to enhance the octane number and oxygen content of gasoline. The addition of alcohol and ether fuels to gasoline lead to a more complete combustion due to the higher oxygen content, thereby leads to increased combustion efficiency and decreased engine out emissions. On the other hand, the energy content of alcohol and ether fuels is lower than gasoline; thereby fuel consumption of the engine will increase when using these alcohol and ether as a fuel additive. Dimethyl ether (DME) does not have a long history as a fuel or an additive to gasoline in spark ignition (SI) engines, but using of DME with gasoline in SI engines is considered as one of the possible solutions to improve combustion and increase the thermal efficiency of the engine. Moreover, it is considered that DME can enhance the economical and emissions performances of engine when it is used with gasoline in SI engines. On the other hand, the main sources of carbon monoxide (CO) and hydrocarbon (HC) emissions from transport are gasoline engine vehicles. It is stated that using of DME in SI engines can generate the lower CO and HC emissions compared to the standard gasoline engines due to the high oxygen content of DME. Therefore, it is important to evaluate together the results of the studies on the use of DME in SI engines for the future studies and practical applications. This study was compiled the results of the papers which completed on using of DME as a fuel or fuel additive in SI engines. The review study aims to investigate the effects of using DME in SI engines especially on hydrocarbon (HC) emissions.

Kaynakça

  • Alam, M., & Kajitani, S. (2001). DME As An Alternative Fuel For Direct Injection Diesel Engine. 4th International Conference on Mechanical Engineering. December 26–28, Dhaka, Bangladesh, 87–92.
  • Anggarani, R., Maymuchar, Wibowo, C. S., & Sukaraharja, R. (2015). Performance and emission characteristics of dimethyl ether (DME) mixed liquefied gas for vehicle (LGV) as alternative fuel for spark ignition engine. Energy Procedia, 65, 274–281. https://doi.org/10.1016/j.egypro.2015.01.048
  • Arcoumanis, C., Bae, C., Crookes, R., & Kinoshita E. (2008). The potential of di–methyl ether (DME) as an alternative fuel for compression–ignition engines: A review. Fuel, 87, 1014–1030. https://doi.org/10.1016/j.fuel.2007.06.007
  • Awad, O. I., Mamat, R., Ibrahim, T. K., Hammid, A. T., Yusri, I. M., Hamidi, M. A., Humada, A. M., & Yusop A. F. (2018a). Overview of the oxygenated fuels in spark ignition engine: Environmental and performance. Renewable and Sustainable Energy Reviews, 91, 394–408. https://doi.org/10.1016/j.rser.2018.03.107
  • Awad, O. I., Mamat, R., Alib, O. M., Sidik, N. A. C., Yusaf, T., Kadirgam, K., & Kettner, M. (2018b). Alcohol and ether as alternative fuels in spark ignition engine: A review. Renewable and Sustainable Energy Reviews, 82, 2586–2605. https://doi.org/10.1016/j.rser.2017.09.074
  • Azizi, Z., Rezaeimanesh, M., Tohidian, T., & Rahimpour, M. R. (2014). Dimethyl ether: A review of technologies and production challenges. Chemical Engineering and Processing, 82, 150–172. https://doi.org/10.1016/j.cep.2014.06.007
  • Cong, X., Ji, C., & Wang, S. (2021). Investigation into engine performance of a hydrogen–dimethyl ether spark–ignition engine under various dimethyl ether fractions. Fuel, 306, 121429. https://doi.org/10.1016/j.fuel.2021.121429
  • Duan, J., Sun, Y., Yang, Z., & Sun, Z. (2012). Combustion and emissions characteristics of diesel engine operating on composite combustion mode of DME and diesel. Proceedings of International Conference on Mechanical Engineering and Material Science, 27, 463–466. https://doi.org/10.2991/mems.2012.77
  • He, B.–Q., Xu, S.–P., Fu, X.–Q., & Zhao, H. (2020). Combustion and emission characteristics of an ultra–lean burn gasoline engine with dimethyl ether auto–ignition. Energy, 209, 118437. https://doi.org/10.1016/j.energy.2020.118437
  • Huang, Z., Qiao, X., Zhang, W., Wu, J., & Zhang, J. (2009). Dimethyl ether as alternative fuel for CI engine and vehicle. Frontiers of Energy and Power Engineering in China, 3(1), 99–108. https://doi.org/10.1007/s11708–009–0013–1
  • Huang, Y., Surawski, N. C., Zhuang, Y., Zhou, J. L., & Hong, G. (2021). Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines. Renewable and Sustainable Energy Reviews, 143, 110921. https://doi.org/10.1016/j.rser.2021.110921
  • Ji, C., Liang, C., & Wang, S. (2011). Investigation on combustion and emissions of DME/gasoline mixtures in a spark–ignition engine. Fuel, 90, 1133–1138. https://doi.org/10.1016/j.fuel.2010.11.033
  • Ji, C., Liang, C., Zhu, Y., Liu, X., & Gao, B. (2012). Investigation on idle performance of a spark–ignited ethanol engine with dimethyl ether addition. Fuel Processing Technology, 94, 94–100. https://doi.org/10.1016/j.fuproc.2011.10.006
  • Ji, C., Liang, C., Gao, B., Wei, B. Liu, X., & Zhu Y. (2013). The cold start performance of a spark–ignited dimethyl ether engine. Energy, 50, 187–193. https://doi.org/10.1016/j.energy.2012.10.028
  • Ji, C., Shi, L., Wang, S., Cong, X., Su, T., & Yu, M. (2017). Investigation on performance of a spark–ignition engine fueled with dimethyl ether and gasoline mixtures under idle and stoichiometric conditions. Energy, 126, 335–342. https://doi.org/10.1016/j.energy.2017.03.045
  • Kruczyńki, S., Ślęzak, M., Gis, W., Orliński, P., Kulczycki, A., Dzięgielewski, W., & Bednarski, M. (2017). Problems in fuelling spark ignition engines with dimethyl ether. Combustion Engines, 170(3), 154–158. https://doi.org/10.19206/CE–2017–326
  • Kowalewicz, A., & Wojtyniak, M. (2005). Alternative fuels and their application to combustion engines. Journal of Automobile Engineering, 219, 103–125. https://doi.org/10.1243/095440705X6399
  • Lee, S., Oh, S., & Choi, Y. (2009). Performance and emission characteristics of an SI engine operated with DME blended LPG fuel. Fuel, 88, 1009–1015. https://doi.org/10.1016/j.fuel.2008.12.016
  • Lee, S., Oh, S., Choi, Y., & Kang K. (2011). Effect of n–Butane and propane on performance and emission characteristics of an SI engine operated with DME–blended LPG fuel. Fuel, 90, 1674–1680. https://doi.org/10.1016/j.fuel.2010.11.040
  • Liang, C., Ji, C., & Liu, X. (2011). Combustion and emissions performance of a DME–enriched spark–ignited methanol engine at idle condition. Applied Energy, 88, 3704–3711. https://doi.org/10.1016/j.apenergy.2011.04.056
  • Liang, C., Ji, C., Gao, B., Liu, X., & Zhu Y. (2012). Investigation on the performance of a spark–ignited ethanol engine with DME enrichment. Energy Conversion and Management, 58, 19–25. https://doi.org/10.1016/j.enconman.2012.01.004
  • Liang, C., Ji, C., & Gao, B. (2013). Load characteristics of a spark–ignited ethanol engine with DME enrichment. Applied Energy, 112, 500–506. https://doi.org/10.1016/j.apenergy.2013.03.039
  • Park, S. H., & Lee, C. S. (2014). Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel. Energy Conversion and Management, 86, 848–863. https://doi.org/10.1016/j.enconman.2014.06.051
  • Putrasari, Y., & Lim, O. (2022). Dimethyl ether as the next generation fuel to control nitrogen oxides and particulate matter emissions from internal combustion engines: a review. ACS Omega, 7, 32–37. https://doi.org/10.1021/acsomega.1c03885
  • Rossi, T., Lixi, S., Puricelli, S., Grosso, M., Faedo, D., & Casadei, S. (2024). Fuel consumption and exhaust emissions from Euro 6d vehicles fueled by innovative LPG/DME blend. Journal of the Energy Institute, 117, 101851. https://doi.org/10.1016/j.joei.2024.101851
  • Semelsberger, T. A., Borup, R. L., & Greene, H. L. (2006). Dimethyl ether (DME) as an alternative fuel. Journal of Power Sources, 156, 497–511. https://doi.org/10.1016/j.jpowsour.2005.05.082
  • Shi, L., Ji, C., Wang, S., Cong, X., Su, T., & Wang, D. (2018). Combustion and emissions characteristics of a S.I. engine fueled with gasoline–DME blends under different spark timings. Fuel, 211, 11–17. https://doi.org/10.1016/j.fuel.2017.09.019
  • Shi, L., Ji, C., Wang, S., Su, T., Cong, X., Wang, D., & Tang C. (2019a). Effects of second injection timing on combustion characteristics of the spark ignition direct injection gasoline engines with dimethyl ether enrichment in the intake port. Energy, 180, 10–18. https://doi.org/10.1016/j.energy.2019.05.056
  • Shi, L., Ji, C., Wang, S., Cong, X., Su, T., & Shi, C. (2019b). Impacts of dimethyl ether enrichment and various injection strategies on combustion and emissions of direct injection gasoline engines in the lean–burn condition. Fuel, 254, 115636. https://doi.org/10.1016/j.fuel.2019.115636
  • Stepanenko, D., & Kneba, Z. (2019). DME as alternative fuel for compression ignition engines–a review. Combustion Engines, 177(2), 172–179. https://doi.org/10.19206/CE–2019–230
  • Sun, P., Feng, J., Yang, S., Wang, C., Cui, K., Dong, W., Du, Y., Yu, X., & Zhou, J. (2022). Particulate number and size distribution of dimethyl ether/gasoline combined injection spark ignition engines at medium engine speed and load. Fuel, 313, 122645. https://doi.org/10.1016/j.fuel.2021.122645
  • Wattanavichien, K. (2009). Implementation of DME in a small direct injection diesel engine. International Journal of Renewable Energy, 4(2), 1–12.
  • Yang, S., Sun, P., Feng, J., Cui, K., Wang, C., Dong, W., Yu, X., & Gu, Y. (2023) Combustion and emission characteristics of dimethyl ether/gasoline DFSI engine under different excess air coefficients. Case Studies in Thermal Engineering, 49, 103342. https://doi.org/10.1016/j.csite.2023.103342
  • Yao, M., Chen, Z., Zheng, Z., Zhang, B., & Xing, Y. (2006). Study on the controlling strategies of homogeneous charge compression ignition combustion with fuel of dimethyl ether and methanol. Fuel, 85, 2046–2056. https://doi.org/10.1016/j.fuel.2006.03.016
  • Yeom, K., & Bae, C. (2009). Knock characteristics in liquefied petroleum gas (LPG)–dimethyl ether (DME) and gasoline–DME homogeneous charge compression ignition engines. Energy & Fuels, 23, 1956–1964. https://doi.org/10.1021/ef800846u
  • Yoon, S. H., Cha, J. P., & Lee, C. S. (2010). An investigation of the effects of spray angle and injection strategy on dimethyl ether (DME) combustion and exhaust emission characteristics in a common–rail diesel engine. Fuel Processing Technology, 91, 1364–1372. https://doi.org/10.1016/j.fuproc.2010.04.017
  • Zhang, H. F., Seo, K., & Zhao, H. (2013). Combustion and emission analysis of the direct DME injection enabled and controlled auto–ignition gasoline combustion engine operation. Fuel, 107, 800–814. https://doi.org/10.1016/j.fuel.2013.01.067
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İçten Yanmalı Motorlar, Otomotiv Yanma ve Yakıt Mühendisliği
Bölüm Derleme
Yazarlar

İsmet Sezer 0000-0001-7342-9172

Gönderilme Tarihi 14 Mayıs 2025
Kabul Tarihi 16 Eylül 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Sezer, İ. (2025). Dimetil Eterin Buji Ateşlemeli Motorlarda HC Emisyonlarına Etkileri. Turkish Journal of Science and Engineering, 7(2), 145-163. https://doi.org/10.55979/tjse.1699638