Araştırma Makalesi
BibTex RIS Kaynak Göster

Bacillus subtilis'in Parazitoid Drino inconspicua (Meigen, 1830) (Diptera: Tachinidae) Üzerindeki Hedef Dışı Etkisi

Yıl 2025, Cilt: 7 Sayı: 2, 101 - 105, 29.12.2025
https://doi.org/10.55979/tjse.1706739

Öz

Bu çalışma, sürdürülebilir üretim ve zararlı kontrolü konusunda çalışanları, biyolojik mücadele etmenlerinin hedef dışı organizmalar üzerinde de olumsuz etkilere sahip olabileceği konusunda bilgilendirmek için gerçekleştirilmiştir. Burdur ili sınırlarında bulunan çam ormanları çalışma materyallerinin bir kısmının temin edildiği alanlardır. Bacillus subtilis'in Drino inconspicua üzerindeki in vitro etkileri, konukçu (Neodiprion sertifer larvaları) üzerine farklı konsantrasyonlarda bakteri süspansiyonları uygulanarak belirlenmiştir. Uygulama sonucunda, biyolojik mücadele etmeni bakteri, ortalama olarak N. sertifer larvalarının %58'ini öldürmüştür. Larvaların bir kısmı, pupa olmadan önce bakteri uygulanan çam iğneleriyle beslenmeyi bıraktıkları için hayatta kalmıştır. Tespit edilen tüm D. inconspicua larvaları, bakteriyel uygulamanın en düşük konsantrasyonunda ölmüştür. Biyolojik mücadele etmenlerinin etkileri, zararlı ile aynı ekosistemdeki hedef dışı organizmalara yönelik istenmeyen sonuçlar ışığında değerlendirilmelidir. Biyolojik mücadele, zararlı ve hastalık kontrol yöntemleri arasında en az istenmeyen etkiye sahip sürdürülebilir bir yöntem olmasına rağmen, doğada çok karmaşık ilişkiler bulunduğundan, istenmeyen etkilerin detaylı bir şekilde araştırılması önemlidir. Bu şekilde insanlığa fayda sağlayan canlılara karşı daha duyarlı olma şansına sahip olabiliriz.

Kaynakça

  • Avcı, M., & Akıncı, Z. E. (2016). Neodiprion sertifer’in Göller Bölgesi ormanlarında biyolojisi ve doğal düşmanları. Turkish Journal of Forestry,17(1), 30–36. https://doi.org/10.18182/tjf.56487.
  • Al-Momani, F., & Obeidat, M. (2013). Ecology, toxicity, and hydrolytic activities of Bacillus thuringiensis in forests. Turkish Journal of Agriculture and Forestry,37(1), 76–82. https://doi.org/10.3906/tar-1104-33.
  • Aqueel, M. A., & Leather, S. R. (2013). Virulence of Verticillium lecanii (Z.) against cerealaphids; do estiming of infection affect the performance of parasitoids and predators? Pest Management Science,69, 493–498. https://doi.org/10.1002/ps.3398.
  • Arnaud Jr, P. H. (1978). A Host-parasite Catalog of North American Tachinidae (Diptera). USDA Miscellaneous Publications 1319. Science and Education Administration, Washington D.C.
  • Assié, L. K., Deleu, M., Arnaud, L., Paquo, M., Thonart, P., Gaspar, C., & Haubruge, E. (2002). Insecticid eactivity of surfactins and iturinsfrom a biopesticide Bacillussubtilis Cohn (S499 strain). Mededelingenvan de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen,67(3), 647-655.
  • Bremer, E., Calteau, A., Danchin, A., Harwood, C., Helmann, J. D., Médigue, C., Palsson, B. O., Sekowska, A., Vallenet, D., Zuniga, A., & Zuniga, C. A. (2023). A model industrial work horse: Bacillus subtilis strain 168 and its genome after a quarter of a century. Microbial Biotechnology,16(6), 1203-1231. https://doi.org/10.1111/1751-7915.14257.
  • Carroll, A. L, Lawlor, M. F., & Quiring, D. T. (1993). Influence of feding by Zeiraphera canadensis, the spruce bud moth, on stem-woodgrowth of young white spruce. Forest Ecology and Management,58(1-2), 41-49. https://doi.org/10.1016/0378-1127(93)90130-F.
  • Carus, S. (2009). Effects of defoliation caused by the processionary moth on growth of Crimean pines in western Turkey. Phytoparasitica,37(2), 105-114. https://doi.org/10.1007/s12600-008-0018-z.
  • Carus, S., & Avcı, M. (2005). Growth loss of lebanon cedar (Cedrus libani) stands as related to periodic outbreaks of the cedar shoot moth (Dichelia cedricola). Phytoparasitica,33(1), 33-48. https://doi.org/10.1007/BF02980923.
  • Çatal, Y. (2011). Impacts of Neodiprion sertifer (Geoff., 1785) (Hymenoptera: Diprionidae) on growth and increment loss in young Pinus brutia (Ten.) generations. Turkish Journal of Entomology,35(3), 423-435.
  • Cerretti, P. (2010). I tachinidi della fauna italiana (Diptera Tachinidae), con chiave interattiva dei generi ovest-paleartici. Vol. I. Centro Nazionale Biodiversita Forestale – Verona.
  • Cerretti, P., O’Hara, J. E., Wood, D. M., Shima, H., Inclan, D. J., & Stireman III, J. O. (2014). Signal through the noise? Phylogeny of the Tachinidae (Diptera) as inferred from morphological evidence. Systematic Entomology, 39(2), 335–353. https://doi.org/10.1111/syen.12062.
  • Das, K., & Mukherjee, A. K. (2006). Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains. Acta Tropica, 97, 168–173. https://doi.org/10.1016/j.actatropica.2005.10.002.
  • Davis, J. S., Glover, A. N., Everson, K. M., Coyle, D. R., & Linnen, C. R. (2023). Identification, biology, and management of conifer sawflies (Hymenoptera: Diprioninae) in eastern North America. Journal of Integrated Pest Management,14(1),1-16.https://doi.org/10.1093/jipm/pmad011.
  • Errington, J., & Wu, L. J. (2017). Cell cycle machinery in Bacillus subtilis. Subcellular Biochemistry, 84, 67–101. https://doi.org/10.1007/978-3-319-53047-5_3
  • Geetha, I., & Manonmani, A. M. (2010). Surfactin: a novel mosquitocidal biosurfactant produced by Bacillus subtilis ssp. subtilis (VCRC B471) and influence of abiotic factors on its pupicidal efficacy. Letters in Applied Microbiology,51, 406–412. https://doi.org/10.1111/j.1472-765X.2010.02912.x.
  • Godfray, H. C. J., Blacquière, T., Field, L. M., Hails, R. S., Potts, S. G., Raine, N. E., Vanbergen, A. J., & McLean, A. R. (2015). A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B Biological Sciences, 282(1818), 20151821 https://doi.org/10.1098/rspb.2015.1821.
  • Guedes, R. N. C., Smagghe, G., Stark, J. D., & Desneux, N. (2016). Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annual Review of Entomology, 61, 43e62. https://doi.org/10.1146/annurev-ento-010715-023646.
  • Harwood, C. R., Pohl, S., Smith, W., & Wipat, A. (2013). Bacillus subtilis: Model gram-positive synthetic biology chassis. Methods in Microbiology, Academic Press,40, 87-117. https://doi.org/10.1016/B978-0-12-417029-2.00004-2.
  • Herting, B. (1960). Biologie der westpaläarktischen Raupenfliegen (Dipt., Tachinidae). Monographien zur angewandten Entomologie,16, 1-188.
  • IPBES (2016). The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. S.G. Potts, V. L. Imperatriz-Fonseca, and H. T. Ngo (eds). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany.https://doi.org/10.5281/zenodo.3402856.
  • Kalayci Kara, A., Fakıoğlu, Ö., Kotan, R., Atamanalp, M., & Alak, G. (2021). The investigation of bioremediation potential of Bacillus subtilis and B. Thuringiensis isolates under controlled conditions in fresh water. Archives of Microbiology,203(5), 2075-2085. https://doi.org/10.1007/s00203-021-02187-9.
  • Lacey, L. A., & Siegel, J. P. (2000). Safety and ecotoxicology of entomopathogenic bacteria, In Entomopathogenic Bacteria: From Laboratory to Field Application. (pp. 253-273)
  • Manonmani, A. M., Geetha, I., & Bhuvaneswari, S. (2011). Enhanced production of mosquitocidal cyclic lipopeptide from Bacillus subtilis subsp. subtilis. IndianJournal of MedicalResearch,134, 476–482.
  • Mesquita, A. L. M., & Lacey L. A. (2001). Interactions among entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes), the parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae) and their aphid host. Biological Control, 22, 51–59. https://doi.org/10.1006/bcon.2001.0950.
  • Miljaković, D., Marinković, J., & Balešević‐Tubić, S. (2020). The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms,8(7), 1037. https://doi.org/10.3390/microorganisms8071037.
  • Miranda-Fuentes, P., Quesada-Moraga, E., Aldebis, H. K., & Yousef-Naef, M. (2020). Compatibility between the endoparasitoid Hyposoter didymator and the entomopathogenic fungus Metarhizium brunneum: a laboratory simulation for the simultaneous use to control Spodoptera littoralis. Pest Management Science,76, 1060–1070. https://doi.org/10.1002/ps.5616.
  • Miranda-Fuentes, P., Yousef, M., Valverde-García, P., Rodríguez-Gómez, I. M., Garrido-Jurado, I., & Moraga, E. Q. (2021). Entomopathogenic fungal endophyte-mediated tritrophic interactions between Spodoptera littoralis and its parasitoid Hyposoter didymator. Journal of PestScience, 94, 933-945. https://doi.org/10.1007/s10340-020-01306-7.
  • Moazami, N. (2019). Biological Control. In Comprehensive Biotechnology (Third Edition). (pp. 772-784)
  • Mol, M., Kabra, R., & Singh S. (2017). Genome modularity and synthetic biology: Engineering systems. Progress in Biophysics and Molecular Biology,132, 43-51. https://doi.org/10.1016/j.pbiomolbio.2017.08.002.
  • Noa, B. D., Mafi, M., Nyska, A., Gross, A., Greiner, A. & Mizrahi, B., (2021). Bacillus subtilis in PVA Microparticles for Treating Open Wounds. ACS Omega,6(21), 13647-13653 https://doi.org/10.1021/acsomega.1c00790.
  • Nordgaard, M., Blake, C., Maróti, G., Hu, G., Wang, Y. Strube, M. L., & Kovács, Á. T. (2022). Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. Iscience, 25, 104406.https://doi.org/10.1016/j.isci.2022.104406.
  • O’Hara, J. E. (2013). History of tachinid classification (Diptera, Tachinidae). ZooKeys, 316, 1-34. Oulebsir-MohandKaci, H., Benzina-Tihar, F., Ismael, M. M., Selmani, S., & Koribeche, N. (2021). Bacillaceae as entomopathogenic: A review. Egyptian Journal of Plant Protection Research,9(1), 15-38.
  • Pape, T., Blagoderov, V., & Mostovski, M. B. (2011). Order Diptera Linnaeus, 1758. In Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness. (pp. 222–229) https://doi.org/10.11646/zootaxa.3148.1.9
  • Popp, J., Pető, K., & Nagy, J. (2013). Pesticide productivity and food security. A review. Agronomy for Sustainable Development,33, 243e255. https://doi.org/10.1007/s13593-012-0105-x.
  • Portilla, M., Snodgrass, G., & Luttrell, R. (2017). Lethal and sub-lethal efects of Beauveria bassiana (Cordycipitaceae) strain NI8 on Chrysoperla rufilabris (Neuroptera: Chrysopidae). Florida Entomologist,100, 627–633. https://doi.org/10.1653/024.100.0321.
  • Roy, H. E., Brown, P., Rothery, P., Ware, R. L., & Majerus, M. E. N. (2008). Interactions between the fungal pathogen Beauveria bassiana and three species of coccinellid: Harmonia axyridis, Coccinella septempunctata and Adalia bipunctata. BioControl,53, 265–276. https://doi.org/10.1007/s10526-007-9122-0.
  • Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., & Desneux, N. (2016). Are bee diseases linked to pesticides? A brief review. Environment International,89-90, 7-11. https://doi.org/10.1016/j.envint.2016.01.009.
  • Stenberg, J. A. (2017). A conceptual framework for integrated pest management. Trends in Plant Science,22, 759–769. https://doi.org/10.1016/j.tplan ts.2017.06.010.
  • Stireman, J. O., Cerretti, P., O'Hara, J. E., Blaschke, J. D., & Moulton, J. K. (2019). Molecular phylogeny and evolution of world Tachinidae (Diptera). Molecular Phylogenetics and Evolution,139, 106358. https://doi.org/10.1016/j.ympev.2018.12.002
  • Stireman III, J. O., O’Hara, J. E., & Wood, D. M. (2006). Tachinidae: evolution, behavior, and ecology. Annual Review of Entomology,51, 525–555. https://doi.org/10.1146/annurev.ento.51.110104.151133
  • Su, Y., Liu, C., Fang, H., & Zhang, D. (2020). Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microbial Cell Factories,19, 173 https://doi.org/10.1186/s12934-020-01436-8.
  • Torres, M. J., Rocha, V. F., Petroselli, G., Villena, R. J., & Audisio, M. C. (2022). Entomopathogenic potential of Bacillus subtilis and Bacillus amyloliquefaciens strains against Musca domestica under controlled conditions. Entomologia Experimentalis et Applicata,170, 584–592. https://doi.org/10.1111/eea.13186
  • USEPA-US (2024). Environmental Protection Agency-Biopesticide Registration Tools. Retrieved September 08, 2024, from https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides.
  • Webber, R. T. (1932). Sturmiain conspicua Meigen, a tachinid parasite of the gypsy moth. Journal of Agricultural Research, 45, 193-208.
  • Yamashita, K., Zhang, K., Ichiki, R. T., Nakamura, S., & Furukawa, S. (2019). Novel host immune evasion strategy of the endoparasitoid Drino inconspicuoides. Bulletin of Entomological Research, 109(5), 643-648.https://doi.org/10.1017/S0007485318001049.

Non-Target Effect of Bacillus subtilis on the Parasitoid Drino inconspicua (Meigen, 1830) (Diptera: Tachinidae)

Yıl 2025, Cilt: 7 Sayı: 2, 101 - 105, 29.12.2025
https://doi.org/10.55979/tjse.1706739

Öz

This study was conducted to inform those working on sustainable production and pest control that biological control agents may also have side effects on non-target organisms. The study area was pine forests of Burdur, Türkiye. The in vitro effects of Bacillus subtilis on Drino inconspicua was determined by applying different concentrations of bacterial suspensions on its host (Neodiprion sertifer larvae). This bacterial treatment managed to control 58% of the N. sertifer larvae on average. Some of the larvae survived because they stopped feeding before pupariation. All the detected D. inconspicua larvae died within the lowest concentration of bacterial treatment. The effects of biological agents must be evaluated in light of the undesirable outcome to non-target organisms on an ecosystem. Although biological control is the sustainable method with the least undesirable effects among pest and disease control methods, since nature has a very complex structure, the undesired effects must be investigated in detail. In this way, we will have the chance to be more sensitive towards living things that benefit humanity.

Etik Beyan

The authors declared that there is no conflict of interest.

Teşekkür

We would like to thank Assoc. Prof. Dr. Fatma Gül GÖZE ÖZDEMİR and Dr. Şükran OĞUZOĞLU for encouraging us.

Kaynakça

  • Avcı, M., & Akıncı, Z. E. (2016). Neodiprion sertifer’in Göller Bölgesi ormanlarında biyolojisi ve doğal düşmanları. Turkish Journal of Forestry,17(1), 30–36. https://doi.org/10.18182/tjf.56487.
  • Al-Momani, F., & Obeidat, M. (2013). Ecology, toxicity, and hydrolytic activities of Bacillus thuringiensis in forests. Turkish Journal of Agriculture and Forestry,37(1), 76–82. https://doi.org/10.3906/tar-1104-33.
  • Aqueel, M. A., & Leather, S. R. (2013). Virulence of Verticillium lecanii (Z.) against cerealaphids; do estiming of infection affect the performance of parasitoids and predators? Pest Management Science,69, 493–498. https://doi.org/10.1002/ps.3398.
  • Arnaud Jr, P. H. (1978). A Host-parasite Catalog of North American Tachinidae (Diptera). USDA Miscellaneous Publications 1319. Science and Education Administration, Washington D.C.
  • Assié, L. K., Deleu, M., Arnaud, L., Paquo, M., Thonart, P., Gaspar, C., & Haubruge, E. (2002). Insecticid eactivity of surfactins and iturinsfrom a biopesticide Bacillussubtilis Cohn (S499 strain). Mededelingenvan de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen,67(3), 647-655.
  • Bremer, E., Calteau, A., Danchin, A., Harwood, C., Helmann, J. D., Médigue, C., Palsson, B. O., Sekowska, A., Vallenet, D., Zuniga, A., & Zuniga, C. A. (2023). A model industrial work horse: Bacillus subtilis strain 168 and its genome after a quarter of a century. Microbial Biotechnology,16(6), 1203-1231. https://doi.org/10.1111/1751-7915.14257.
  • Carroll, A. L, Lawlor, M. F., & Quiring, D. T. (1993). Influence of feding by Zeiraphera canadensis, the spruce bud moth, on stem-woodgrowth of young white spruce. Forest Ecology and Management,58(1-2), 41-49. https://doi.org/10.1016/0378-1127(93)90130-F.
  • Carus, S. (2009). Effects of defoliation caused by the processionary moth on growth of Crimean pines in western Turkey. Phytoparasitica,37(2), 105-114. https://doi.org/10.1007/s12600-008-0018-z.
  • Carus, S., & Avcı, M. (2005). Growth loss of lebanon cedar (Cedrus libani) stands as related to periodic outbreaks of the cedar shoot moth (Dichelia cedricola). Phytoparasitica,33(1), 33-48. https://doi.org/10.1007/BF02980923.
  • Çatal, Y. (2011). Impacts of Neodiprion sertifer (Geoff., 1785) (Hymenoptera: Diprionidae) on growth and increment loss in young Pinus brutia (Ten.) generations. Turkish Journal of Entomology,35(3), 423-435.
  • Cerretti, P. (2010). I tachinidi della fauna italiana (Diptera Tachinidae), con chiave interattiva dei generi ovest-paleartici. Vol. I. Centro Nazionale Biodiversita Forestale – Verona.
  • Cerretti, P., O’Hara, J. E., Wood, D. M., Shima, H., Inclan, D. J., & Stireman III, J. O. (2014). Signal through the noise? Phylogeny of the Tachinidae (Diptera) as inferred from morphological evidence. Systematic Entomology, 39(2), 335–353. https://doi.org/10.1111/syen.12062.
  • Das, K., & Mukherjee, A. K. (2006). Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains. Acta Tropica, 97, 168–173. https://doi.org/10.1016/j.actatropica.2005.10.002.
  • Davis, J. S., Glover, A. N., Everson, K. M., Coyle, D. R., & Linnen, C. R. (2023). Identification, biology, and management of conifer sawflies (Hymenoptera: Diprioninae) in eastern North America. Journal of Integrated Pest Management,14(1),1-16.https://doi.org/10.1093/jipm/pmad011.
  • Errington, J., & Wu, L. J. (2017). Cell cycle machinery in Bacillus subtilis. Subcellular Biochemistry, 84, 67–101. https://doi.org/10.1007/978-3-319-53047-5_3
  • Geetha, I., & Manonmani, A. M. (2010). Surfactin: a novel mosquitocidal biosurfactant produced by Bacillus subtilis ssp. subtilis (VCRC B471) and influence of abiotic factors on its pupicidal efficacy. Letters in Applied Microbiology,51, 406–412. https://doi.org/10.1111/j.1472-765X.2010.02912.x.
  • Godfray, H. C. J., Blacquière, T., Field, L. M., Hails, R. S., Potts, S. G., Raine, N. E., Vanbergen, A. J., & McLean, A. R. (2015). A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B Biological Sciences, 282(1818), 20151821 https://doi.org/10.1098/rspb.2015.1821.
  • Guedes, R. N. C., Smagghe, G., Stark, J. D., & Desneux, N. (2016). Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annual Review of Entomology, 61, 43e62. https://doi.org/10.1146/annurev-ento-010715-023646.
  • Harwood, C. R., Pohl, S., Smith, W., & Wipat, A. (2013). Bacillus subtilis: Model gram-positive synthetic biology chassis. Methods in Microbiology, Academic Press,40, 87-117. https://doi.org/10.1016/B978-0-12-417029-2.00004-2.
  • Herting, B. (1960). Biologie der westpaläarktischen Raupenfliegen (Dipt., Tachinidae). Monographien zur angewandten Entomologie,16, 1-188.
  • IPBES (2016). The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. S.G. Potts, V. L. Imperatriz-Fonseca, and H. T. Ngo (eds). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany.https://doi.org/10.5281/zenodo.3402856.
  • Kalayci Kara, A., Fakıoğlu, Ö., Kotan, R., Atamanalp, M., & Alak, G. (2021). The investigation of bioremediation potential of Bacillus subtilis and B. Thuringiensis isolates under controlled conditions in fresh water. Archives of Microbiology,203(5), 2075-2085. https://doi.org/10.1007/s00203-021-02187-9.
  • Lacey, L. A., & Siegel, J. P. (2000). Safety and ecotoxicology of entomopathogenic bacteria, In Entomopathogenic Bacteria: From Laboratory to Field Application. (pp. 253-273)
  • Manonmani, A. M., Geetha, I., & Bhuvaneswari, S. (2011). Enhanced production of mosquitocidal cyclic lipopeptide from Bacillus subtilis subsp. subtilis. IndianJournal of MedicalResearch,134, 476–482.
  • Mesquita, A. L. M., & Lacey L. A. (2001). Interactions among entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes), the parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae) and their aphid host. Biological Control, 22, 51–59. https://doi.org/10.1006/bcon.2001.0950.
  • Miljaković, D., Marinković, J., & Balešević‐Tubić, S. (2020). The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms,8(7), 1037. https://doi.org/10.3390/microorganisms8071037.
  • Miranda-Fuentes, P., Quesada-Moraga, E., Aldebis, H. K., & Yousef-Naef, M. (2020). Compatibility between the endoparasitoid Hyposoter didymator and the entomopathogenic fungus Metarhizium brunneum: a laboratory simulation for the simultaneous use to control Spodoptera littoralis. Pest Management Science,76, 1060–1070. https://doi.org/10.1002/ps.5616.
  • Miranda-Fuentes, P., Yousef, M., Valverde-García, P., Rodríguez-Gómez, I. M., Garrido-Jurado, I., & Moraga, E. Q. (2021). Entomopathogenic fungal endophyte-mediated tritrophic interactions between Spodoptera littoralis and its parasitoid Hyposoter didymator. Journal of PestScience, 94, 933-945. https://doi.org/10.1007/s10340-020-01306-7.
  • Moazami, N. (2019). Biological Control. In Comprehensive Biotechnology (Third Edition). (pp. 772-784)
  • Mol, M., Kabra, R., & Singh S. (2017). Genome modularity and synthetic biology: Engineering systems. Progress in Biophysics and Molecular Biology,132, 43-51. https://doi.org/10.1016/j.pbiomolbio.2017.08.002.
  • Noa, B. D., Mafi, M., Nyska, A., Gross, A., Greiner, A. & Mizrahi, B., (2021). Bacillus subtilis in PVA Microparticles for Treating Open Wounds. ACS Omega,6(21), 13647-13653 https://doi.org/10.1021/acsomega.1c00790.
  • Nordgaard, M., Blake, C., Maróti, G., Hu, G., Wang, Y. Strube, M. L., & Kovács, Á. T. (2022). Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. Iscience, 25, 104406.https://doi.org/10.1016/j.isci.2022.104406.
  • O’Hara, J. E. (2013). History of tachinid classification (Diptera, Tachinidae). ZooKeys, 316, 1-34. Oulebsir-MohandKaci, H., Benzina-Tihar, F., Ismael, M. M., Selmani, S., & Koribeche, N. (2021). Bacillaceae as entomopathogenic: A review. Egyptian Journal of Plant Protection Research,9(1), 15-38.
  • Pape, T., Blagoderov, V., & Mostovski, M. B. (2011). Order Diptera Linnaeus, 1758. In Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness. (pp. 222–229) https://doi.org/10.11646/zootaxa.3148.1.9
  • Popp, J., Pető, K., & Nagy, J. (2013). Pesticide productivity and food security. A review. Agronomy for Sustainable Development,33, 243e255. https://doi.org/10.1007/s13593-012-0105-x.
  • Portilla, M., Snodgrass, G., & Luttrell, R. (2017). Lethal and sub-lethal efects of Beauveria bassiana (Cordycipitaceae) strain NI8 on Chrysoperla rufilabris (Neuroptera: Chrysopidae). Florida Entomologist,100, 627–633. https://doi.org/10.1653/024.100.0321.
  • Roy, H. E., Brown, P., Rothery, P., Ware, R. L., & Majerus, M. E. N. (2008). Interactions between the fungal pathogen Beauveria bassiana and three species of coccinellid: Harmonia axyridis, Coccinella septempunctata and Adalia bipunctata. BioControl,53, 265–276. https://doi.org/10.1007/s10526-007-9122-0.
  • Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., & Desneux, N. (2016). Are bee diseases linked to pesticides? A brief review. Environment International,89-90, 7-11. https://doi.org/10.1016/j.envint.2016.01.009.
  • Stenberg, J. A. (2017). A conceptual framework for integrated pest management. Trends in Plant Science,22, 759–769. https://doi.org/10.1016/j.tplan ts.2017.06.010.
  • Stireman, J. O., Cerretti, P., O'Hara, J. E., Blaschke, J. D., & Moulton, J. K. (2019). Molecular phylogeny and evolution of world Tachinidae (Diptera). Molecular Phylogenetics and Evolution,139, 106358. https://doi.org/10.1016/j.ympev.2018.12.002
  • Stireman III, J. O., O’Hara, J. E., & Wood, D. M. (2006). Tachinidae: evolution, behavior, and ecology. Annual Review of Entomology,51, 525–555. https://doi.org/10.1146/annurev.ento.51.110104.151133
  • Su, Y., Liu, C., Fang, H., & Zhang, D. (2020). Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microbial Cell Factories,19, 173 https://doi.org/10.1186/s12934-020-01436-8.
  • Torres, M. J., Rocha, V. F., Petroselli, G., Villena, R. J., & Audisio, M. C. (2022). Entomopathogenic potential of Bacillus subtilis and Bacillus amyloliquefaciens strains against Musca domestica under controlled conditions. Entomologia Experimentalis et Applicata,170, 584–592. https://doi.org/10.1111/eea.13186
  • USEPA-US (2024). Environmental Protection Agency-Biopesticide Registration Tools. Retrieved September 08, 2024, from https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides.
  • Webber, R. T. (1932). Sturmiain conspicua Meigen, a tachinid parasite of the gypsy moth. Journal of Agricultural Research, 45, 193-208.
  • Yamashita, K., Zhang, K., Ichiki, R. T., Nakamura, S., & Furukawa, S. (2019). Novel host immune evasion strategy of the endoparasitoid Drino inconspicuoides. Bulletin of Entomological Research, 109(5), 643-648.https://doi.org/10.1017/S0007485318001049.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Koruma (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Serdar Bilginturan 0000-0001-8898-0506

Melis Bilginturan 0000-0002-4351-7646

Gönderilme Tarihi 26 Mayıs 2025
Kabul Tarihi 4 Ağustos 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Bilginturan, S., & Bilginturan, M. (2025). Non-Target Effect of Bacillus subtilis on the Parasitoid Drino inconspicua (Meigen, 1830) (Diptera: Tachinidae). Turkish Journal of Science and Engineering, 7(2), 101-105. https://doi.org/10.55979/tjse.1706739